Pseudocereal-Based Functional Beverages: Main Properties and Nutritional Evaluation with an Emphasis on Amino Acid Content: A Review
Abstract
1. Introduction
2. The Definition of Functional Foods
3. Criteria of Functional Foods
- The food has certain health benefits;
- The nature of the food (e.g., does it contain conventional or modified, fortified, or naturally occurring ingredients? Is it overdosed?);
- Nutritional effectiveness (e.g., does it go beyond conventional foods?);
- Consumption pattern (e.g., does it take cultural habits into account? Can it be integrated into the daily eating pattern?).
4. Categories of Functional Foods
- Natural foods—these occur naturally, without any modification or processing;
- Fortified foods—functional ingredients are added;
- Removal of a harmful or abnormal component—which may have a negative effect on human health;
- Modification of technological processes—enhancing the formation of bioactive components during the process (e.g., fermentation);
- Special growing conditions, genetic manipulation or new varieties—special feeding, genetically modified products;
- Combinations of the above.
5. Functional Beverages
5.1. Types of Functional Drinks
5.1.1. Fruit and Vegetable Drinks
5.1.2. Milk-Based or Dairy Drinks
5.1.3. Plant-Based Milk Alternatives
- •
- Soy-based beverages—isoflavones, phytosterols;
- •
- Almond-based beverages—α-tocopherol, arabinose;
- •
- Oat-based beverages—ß-glucans.
5.1.4. Pre- and Probiotic Drinks
5.1.5. Sports Drinks
5.1.6. Energy Drinks
5.1.7. Phytoactive-Fortified Drinks
5.1.8. Beauty Drinks
5.1.9. Cognitive- and Immune-Enhancing Drinks
5.2. Types of Functional Beverages According to Their Condition-Specific Properties
- Energy—vitamin C, tannins, caffeine;
- Performance—electrolytes, ginseng, proteins;
- Nutricosmetics—trans-resveratrol, ß-sitosterol, anthocyanidins;
- Cardiovascular—phytosterols, isoflavones, fibers;
- Cognitive health—citicoline, selenium, resveratrol;
- Immunity—eugenol, apigenin, ascorbic acid;
- Digestive health—fibers, enzymes, lactic acid;
- Weight management—capsaicin, curcumin, flavonoids.
5.3. Classification of Functional Ingredients Used in Functional Drinks
5.4. Biologically Active Ingredients of Functional Beverages
5.4.1. Antioxidants
5.4.2. Omega-3 Fatty Acids
5.4.3. Prebiotics and Probiotics
Prebiotics | Prebiotic Sources | References |
---|---|---|
Inulin | Jerusalem artichoke (tubers), chicory, onion, garlic, barley, dahlia | [65] |
Lactulose | Heat-treated milk | [54] |
Xylo-oligosaccharides | Leeks, asparagus | [66] |
Resistant starch | Cooked and cooled high amylose content foods (rice, sweet potato, wheat, pulses, lentils, beans, etc.) | [67] |
Pectin | Orange, apple | [68] |
Arabinoxylan | Whole grains of cereals and pseudocereals | [69] |
Galacto-oligosaccharides | Coffee, dairy products | [70] |
Fructo-oligosaccharides | Artichokes, asparagus, bananas, chicory root, garlic, onions, leeks, and wheat | [71] |
Mannan saccharides | Konjac and the outer cell wall membrane of bacteria, plants, or yeast | [72] |
Beta-glucans | Barley, oats, bacteria, yeast | [66,73] |
- •
- Lactobacillus—L. rhamnosus, L. acidophilus, L. plantarum, L. casei, L. brevis, L. reuteri.
- •
- Bifidobacterium—B. infantis, B. animalis subsp.lactis, B. bifidum, B. longum, B. breve.
- •
- Saccharomyces—S. boulardii.
- •
- Escherichia—E. coli Nissle 191.
- •
- Bacillus—B. coagulans, B. subtilis, B. cereus.
- •
- Streptococcus—S. thermophilus.
- •
- Enterococcus—E. durans, E. faecium.
5.4.4. Bioactive Peptides and Proteins
5.4.5. Vitamins and Minerals
5.4.6. Dietary Fiber
- •
- Improving gut motility.
- •
- Reducing body weight and abdominal adiposity.
- •
- Improving insulin sensitivity and metabolic health.
- •
- Increasing the diversity of gut microflora and metabolites.
- •
- Preventing and alleviating chronic inflammation.
- •
- Preventing and treating depression.
- •
- Preventing and treating cardiovascular disease.
- •
- Preventing colorectal carcinoma (crc).
- •
- Reducing mortality.
5.4.7. Sweetening Components
5.5. Processing of Functional Beverages
5.5.1. Heat-Treatment Processes
5.5.2. Non-Heat Treatment Processes
6. The Importance of Plant-Based Protein Intake
6.1. Protein Efficiency Ratio (PER)
6.2. Protein Digestibility Corrected Amino Acid Score (PDCAAS)
6.3. Digestible Indispensable Amino Acid Score (DIAAS)
7. Pseudocereal-Based Functional Beverages
7.1. The Structure of Pseudocereals
7.2. Types of Pseudocereals
7.2.1. Quinoa
7.2.2. Buckwheat
7.2.3. Amaranth
7.3. Nutrient Content of Pseudocereals
7.3.1. Carbohydrate Content
7.3.2. Dietary Fiber Content
7.3.3. Protein Content and Amino Acid Profile
Quinoa
Buckwheat
Amaranth
7.3.4. Fat Content
7.3.5. Mineral and Vitamin Content
7.3.6. Biologically Active Compounds
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vignesh, A.; Amal, T.C.; Sarvalingam, A.; Vasanth, K. A review on the influence of nutraceuticals and functional foods on health. Food Chem. Adv. 2024, 5, 100749. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.; Sharma, S.; Kant, A.; Sevda, S.; Taherzadeh, M.J.; Garlapati, V.K. Functional foods as a formulation ingredients in beverages: Technological advancements and constraints. Bioengineered 2021, 12, 11055–11075. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sanwal, N.; Bareen, M.A.; Barua, S.; Sharma, N.; Olatunji, O.J.; Nirmal, N.P.; Sahu, J.K. Trends in functional beverages: Functional ingredients, processing technologies, stability, health benefits, and consumer perspective. Food Res. Int. 2023, 170, 113046. [Google Scholar] [CrossRef]
- Yan, T.H.; Babji, A.S.; Lim, S.J.; Sarbini, S.R. A Systematic Review of Edible Swiftlet’s Nest (ESN): Nutritional bioactive compounds, health benefits as functional food, and recent development as bioactive ESN glycopeptide hydrolysate. Trends Food Sci. Technol. 2021, 115, 117–132. [Google Scholar] [CrossRef]
- Gur, J.; Mawuntu, M.; Martirosyan, D. FFC’s Advancement of Functional Food Definition. Funct. Foods Health Dis. 2018, 8, 385. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Flores-Félix, J.D.; Alves, G.; Silva, L.R. Cherries and Blueberries-Based Beverages: Functional Foods with Antidiabetic and Immune Booster Properties. Molecules 2022, 27, 3294. [Google Scholar] [CrossRef]
- Kumar, P.C.; Sundararajan, A.; Oberoi, H.S. Quality parameters of foxtail and little millet incorporated fruit beverages. Pharma Innov. J. 2023, 11, 324–331. [Google Scholar]
- Gayathry, K.S.; John, J.A. Functional beverages: Special focus on anti-diabetic potential. J. Food Process. Preserv. 2021, 45, e15974. [Google Scholar] [CrossRef]
- Omoba, O.S.; Olagunju, A.I. Development of Functional Beverages in the Management of Degenerative Diseases. Funct. Food J. 2023, 5, 20–39. [Google Scholar]
- Nandan, A.; Koirala, P.; Tripathi, A.D.; Vikranta, U.; Shah, K.; Gupta, A.J.; Agarwal, A.; Nirmal, N. Nutritional and functional perspectives of pseudo-cereals. Food Chem. 2024, 448, 139072. [Google Scholar] [CrossRef]
- Sá, A.G.A.; House, J.D. Protein quality of cereals: Digestibility determination and processing impacts. J. Cereal Sci. 2024, 117, 103892. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Peñas, E.; Hernández-Ledesma, B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem. Toxicol. 2020, 137, 111178. [Google Scholar] [CrossRef]
- Obayomi, O.V.; Olaniran, A.F.; Owa, S.O. Unveiling the role of functional foods with emphasis on prebiotics and probiotics in human health: A review. J. Funct. Foods 2024, 119, 106337. [Google Scholar] [CrossRef]
- Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Lahlou, R.A.; Pires, P.; Salgado, M.; Silva, L.R. Natural functional beverages as an approach to manage diabetes. Int. J. Mol. Sci. 2023, 24, 16977. [Google Scholar] [CrossRef]
- Garcia, H.S.; Santiago-López, L.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Evaluation of a pseudocereal suitability to prepare a functional fermented beverage with epiphytic lactic acid bacteria of Huauzontle (Chenopodium berlandieri spp. nuttalliae). LWT 2021, 155, 112913. [Google Scholar] [CrossRef]
- Nazhand, A.; Souto, E.B.; Lucarini, M.; Souto, S.B.; Durazzo, A.; Santini, A. Ready to use therapeutical beverages: Focus on functional beverages containing probiotics, prebiotics and synbiotics. Beverages 2020, 6, 26. [Google Scholar] [CrossRef]
- Agarbati, A.; Canonico, L.; Ciani, M.; Morresi, C.; Damiani, E.; Bacchetti, T.; Comitini, F. Functional potential of a new plant-based fermented beverage: Benefits through non-conventional probiotic yeasts and antioxidant properties. Int. J. Food Microbiol. 2024, 424, 110857. [Google Scholar] [CrossRef]
- Hidalgo-Fuentes, B.; De Jesús-José, E.; Cabrera-Hidalgo, A.d.J.; Sandoval-Castilla, O.; Espinosa-Solares, T.; González-Reza, R.M.; Zambrano-Zaragoza, M.L.; Liceaga, A.M.; Aguilar-Toalá, J.E. Plant-Based Fermented Beverages: Nutritional composition, sensory properties, and health benefits. Foods 2024, 13, 844. [Google Scholar] [CrossRef]
- Plamada, D.; Teleky, B.-E.; Nemes, S.A.; Mitrea, L.; Szabo, K.; Călinoiu, L.-F.; Pascuta, M.S.; Varvara, R.-A.; Ciont, C.; Martău, G.A.; et al. Plant-Based Dairy Alternatives—A future direction to the Milky Way. Foods 2023, 12, 1883. [Google Scholar] [CrossRef]
- Xie, A.; Dong, Y.; Liu, Z.; Li, Z.; Shao, J.; Li, M.; Yue, X. A review of Plant-Based Drinks addressing nutrients, flavor, and processing technologies. Foods 2023, 12, 3952. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Murillo, J.; Franco, W.; Contardo, I. Impact of homolactic fermentation using Lactobacillus acidophilus on plant-based protein hydrolysis in quinoa and chickpea flour blended beverages. Food Chem. 2024, 463, 141110. [Google Scholar] [CrossRef]
- Fructuoso, I.; Romão, B.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Zandonadi, R.P. An overview on nutritional aspects of Plant-Based beverages used as substitutes for cow’s milk. Nutrients 2021, 13, 2650. [Google Scholar] [CrossRef]
- Jagim, A.R.; Harty, P.S.; Tinsley, G.M.; Kerksick, C.M.; Gonzalez, A.M.; Kreider, R.B.; Arent, S.M.; Jager, R.; Smith-Ryan, A.E.; Stout, J.R.; et al. International society of sports nutrition position stand: Energy drinks and energy shots. J. Int. Soc. Sports Nutr. 2023, 20, 2171314. [Google Scholar] [CrossRef]
- Dini, I. An overview of functional beverages. In Functional and Medicinal Beverages; Elsevier eBooks: Amsterdam, The Netherlands, 2019; pp. 1–40. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Yang, T.; Saad, A.M.; Alkafaas, S.S.; Elkafas, S.S.; Eldeeb, G.S.; Mohammed, D.M.; Salem, H.M.; Korma, S.A.; Loutfy, S.A.; et al. Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits of polyphenols: A comprehensive review. Int. J. Biol. Macromol. 2024, 277, 134223. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef]
- Abbas, K.; Li, J.; Gong, B.; Lu, Y.; Wu, X.; Lü, G.; Gao, H. Drought stress tolerance in vegetables: The functional role of structural features, key gene pathways, and exogenous hormones. Int. J. Mol. Sci. 2023, 24, 13876. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Mungofa, N.; Sibanyoni, J.J.; Mashau, M.E.; Beswa, D. Prospective role of indigenous leafy vegetables as functional food ingredients. Molecules 2022, 27, 7995. [Google Scholar] [CrossRef]
- Zamani, H.; De Joode, M.E.J.R.; Hossein, I.J.; Henckens, N.F.T.; Guggeis, M.A.; Berends, J.E.; De Kok, T.M.C.M.; Van Breda, S.G.J. The benefits and risks of beetroot juice consumption: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 61, 788–804. [Google Scholar] [CrossRef] [PubMed]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients 2019, 11, 1189. [Google Scholar] [CrossRef]
- Oh, Y.J.; Kim, T.S.; Moon, H.W.; Lee, S.Y.; Lee, S.Y.; Ji, G.E.; Hwang, K.T. Lactobacillus plantarum PMO 08 as a Probiotic Starter Culture for Plant-Based Fermented Beverages. Molecules 2020, 25, 5056. [Google Scholar] [CrossRef]
- Bielecka, J.; Markiewicz-Żukowska, R.; Puścion-Jakubik, A.; Grabia, M.; Nowakowski, P.; Soroczyńska, J.; Socha, K. Gluten-Free Cereals and Pseudo-cereals as a Potential Source of Exposure to Toxic Elements among Polish Residents. Nutrients 2022, 14, 2342. [Google Scholar] [CrossRef]
- Khairuddin, M.A.N.; Lasekan, O. Gluten-Free Cereal Products and Beverages: A review of their health benefits in the last five years. Foods 2021, 10, 2523. [Google Scholar] [CrossRef]
- Baraniak, J.; Kania-Dobrowolska, M. The dual nature of Amaranth—Functional food and potential medicine. Foods 2022, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- Nardo, A.E.; Suárez, S.; Quiroga, A.V.; Añón, M.C. Amaranth as a source of antihypertensive peptides. Front. Plant Sci. 2020, 11, 578631. [Google Scholar] [CrossRef]
- López-Martínez, M.I.; Moreno-Fernández, S.; Miguel, M. Development of functional ice cream with egg white hydrolysates. Int. J. Gastron. Food Sci. 2021, 25, 100334. [Google Scholar] [CrossRef]
- Makanjuola, S.A.; Enujiugha, V.N.; Omoba, O.S.; Sanni, D.M. Combination of Antioxidants from Different Sources Could offer Synergistic Benefits: A Case Study of Tea and Ginger Blend. Nat. Prod. Commun. 2015, 10, 1829–1832. [Google Scholar] [CrossRef]
- Ajanaku, C.O.; Ademosun, O.T.; Atohengbe, P.O.; Ajayi, S.O.; Obafemi, Y.D.; Owolabi, O.A.; Akinduti, P.A.; Ajanaku, K.O. Functional bioactive compounds in ginger, turmeric, and garlic. Front. Nutr. 2022, 9, 1012023. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Al-ali, S.; Tranchant, C.C.; Gammoh, S.; Alrosan, M.; Kubow, S.; Tan, T.; Ghatasheh, S. Current perspectives on fenugreek bioactive compounds and their potential impact on human health: A review of recent insights into functional foods and other high value applications. J. Food Sci. 2024, 89, 1835–1864. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Choulitoudi, E.; Tsimogiannis, D.; Oreopoulou, V. Six Common Herbs with Distinctive Bioactive, Antioxidant Components. A Review of Their Separation Techniques. Molecules 2021, 26, 2920. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, S.; Fernandes, L.; Caramelo, A.; Martins, M.; Rodrigues, T.; Matos, R.S. Soothing the itch: The role of medicinal plants in alleviating pruritus in palliative care. Plants 2024, 13, 3515. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cai, Y.; Wang, K.; Wang, Y. Bioactive Compounds in Sea Buckthorn and their Efficacy in Preventing and Treating Metabolic Syndrome. Foods 2023, 12, 1985. [Google Scholar] [CrossRef]
- Grigore-Gurgu, L.; Dumitrașcu, L.; Aprodu, I. Aromatic herbs as a source of bioactive compounds: An overview of their antioxidant capacity, antimicrobial activity, and major applications. Molecules 2025, 30, 1304. [Google Scholar] [CrossRef] [PubMed]
- Oargă, D.P.; Cornea-Cipcigan, M.; Cordea, M.I. Unveiling the mechanisms for the development of rosehip-based dermatological products: An updated review. Front. Pharmacol. 2024, 15, 1390419. [Google Scholar] [CrossRef]
- Saini, A.; Kaur, R.; Kumar, S.; Saini, R.K.; Kashyap, B.; Kumar, V. New horizon of rosehip seed oil: Extraction, characterization for its potential applications as a functional ingredient. Food Chem. 2023, 437, 137568. [Google Scholar] [CrossRef]
- Mandal, D.; Sarkar, T.; Chakraborty, R. Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology. Appl. Biochem. Biotechnol. 2022, 195, 1319–1513. [Google Scholar] [CrossRef]
- Mukarram, M.; Choudhary, S.; Khan, M.A.; Poltronieri, P.; Khan, M.M.A.; Ali, J.; Kurjak, D.; Shahid, M. Lemongrass Essential Oil Components with Antimicrobial and Anticancer Activities. Antioxidants 2021, 11, 20. [Google Scholar] [CrossRef]
- Roat, P.; Hada, S.; Chechani, B.; Yadav, D.K.; Kumar, S.; Kumari, N. Madhuca indica: A Review on the Phytochemical and Pharmacological Aspects. Pharm. Chem. J. 2023, 57, 284–295. [Google Scholar] [CrossRef]
- Manousi, N.; Sarakatsianos, I.; Samanidou, V. Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In Engineering Tools in the Beverage Industry; Elsevier eBooks: Amsterdam, The Netherlands, 2019; pp. 283–314. [Google Scholar] [CrossRef]
- Yohannis, E.; Teka, T.A.; Adebo, J.A.; Urugo, M.M.; Hossain, A.; Astatkie, T. Phytochemical Constituents, Ethnomedicinal Uses, and Applications of Coffee (Coffea arabica) Leaves in Functional Beverages. J. Food Compos. Anal. 2024, 135, 106570. [Google Scholar] [CrossRef]
- Vičič, V.; Mikuš, R.P.; Ferjančič, B. Review of history and mechanisms of action of lactulose (4-O-β-D-Galactopyranosyl-β-D-fructofuranose): Present and future applications in food. J. Food Sci. Technol. 2024, 61, 2036–2045. [Google Scholar] [CrossRef]
- Messadi, N.; Mechmeche, M.; Setti, K.; Tizemmour, Z.; Hamdi, M.; Kachouri, F. Consumer perception of a new non-dairy functional beverage optimized made from lactic acid bacteria fermented date fruit extract. Int. J. Gastron. Food Sci. 2023, 34, 100831. [Google Scholar] [CrossRef]
- Ranneh, Y.; Akim, A.M.; Hamid, H.A.; Khazaai, H.; Fadel, A.; Zakaria, Z.A.; Albujja, M.; Bakar, M.F.A. Honey and its nutritional and anti-inflammatory value. BMC Complement. Med. Ther. 2021, 21, 30. [Google Scholar] [CrossRef]
- Saraiva, A.; Carrascosa, C.; Ramos, F.; Raheem, D.; Raposo, A. Agave syrup: Chemical analysis and nutritional profile, applications in the food industry and health impacts. Int. J. Environ. Res. Public Health 2022, 19, 7022. [Google Scholar] [CrossRef]
- Pérez-Marroquín, X.A.; Estrada-Fernández, A.G.; García-Ceja, A.; Aguirre-Álvarez, G.; León-López, A. Agro-Food waste as an ingredient in functional beverage processing: Sources, functionality, market and regulation. Foods 2023, 12, 1583. [Google Scholar] [CrossRef]
- Beverage Brands Need to Help Locked Down Consumers. Available online: https://www.mintel.com/insights/food-and-drink/drinks-to-address-post-covid-19-consumer-needs/ (accessed on 31 March 2025).
- Tireki, S. A review on packed non-alcoholic beverages: Ingredients, production, trends and future opportunities for functional product development. Trends Food Sci. Technol. 2021, 112, 442–454. [Google Scholar] [CrossRef]
- Singh, A.K.; Pal, P.; Pandey, B.; Goksen, G.; Sahoo, U.K.; Lorenzo, J.M.; Sarangi, P.K. Development of “Smart Foods” for health by nanoencapsulation: Novel technologies and challenges. Food Chem. X 2023, 20, 100910. [Google Scholar] [CrossRef]
- Stephen, J.; Manoharan, D.; Radhakrishnan, M. Immune boosting functional components of natural foods and its health benefits. Food Prod. Process. Nutr. 2023, 5, 61. [Google Scholar] [CrossRef]
- Verma, H.; Phian, S.; Lakra, P.; Kaur, J.; Subudhi, S.; Lal, R.; Rawat, C.D. Human Gut Microbiota and Mental Health: Advancements and Challenges in Microbe-Based Therapeutic Interventions. Indian J. Microbiol. 2020, 60, 405–419. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, H.; Sang, S.; McClements, D.J.; Jiang, L.; Wen, J.; Jin, Z.; Qiu, C. Research advances in origin, applications, and interactions of resistant starch: Utilization for creation of healthier functional food products. Trends Food Sci. Technol. 2024, 148, 104519. [Google Scholar] [CrossRef]
- Qin, Y.-Q.; Wang, L.-Y.; Yang, X.-Y.; Xu, Y.-J.; Fan, G.; Fan, Y.-G.; Ren, J.-N.; An, Q.; Li, X. Inulin: Properties and health benefits. Food Funct. 2023, 14, 2948–2968. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional foods: Product development, technological trends, efficacy testing, and safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Xu, Q.; Kong, Q.; Li, F.; Lu, L.; Xu, Y.; Wei, Y. Synthesis and functions of resistant starch. Adv. Nutr. 2023, 14, 1131–1144. [Google Scholar] [CrossRef]
- Emran, T.B.; Islam, F.; Mitra, S.; Paul, S.; Nath, N.; Khan, Z.; Das, R.; Chandran, D.; Sharma, R.; Lima, C.M.G.; et al. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022, 27, 7405. [Google Scholar] [CrossRef]
- P., N.P.V.; Joye, I.J. Dietary Fiber from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Mei, Z.; Yuan, J.; Li, D. Biological activity of galacto-oligosaccharides: A review. Front. Microbiol. 2022, 13, 993052. [Google Scholar] [CrossRef]
- Hughes, R.L.; Alvarado, D.A.; Swanson, K.S.; Holscher, H.D. The Prebiotic Potential of Inulin-Type fructans: A Systematic review. Adv. Nutr. 2021, 13, 492–529. [Google Scholar] [CrossRef]
- Liu, Q.; Xi, Y.; Wang, Q.; Liu, J.; Li, P.; Meng, X.; Liu, K.; Chen, W.; Liu, X.; Liu, Z. Mannan oligosaccharide attenuates cognitive and behavioral disorders in the 5xFAD Alzheimer’s disease mouse model via regulating the gut microbiota-brain axis. Brain Behav. Immun. 2021, 95, 330–343. [Google Scholar] [CrossRef]
- Aoe, S. Beta-Glucan in foods and health benefits. Nutrients 2021, 14, 96. [Google Scholar] [CrossRef]
- Maggonage, M.H.U.; Manjula, P.; Abeyrathne, E.D.N.S.; Shu, D.; Huang, X.; Ahn, D.U. Identifying the Potential of Ovalbumin and Its’ Hydrolysates to be Used in a Liquid Food System to Develop Functional Beverages. Poult. Sci. 2024, 104, 104515. [Google Scholar] [CrossRef] [PubMed]
- Vitamin and Mineral Supplement Fact Sheets. Available online: https://ods.od.nih.gov/factsheets/list-VitaminsMinerals/ (accessed on 10 April 2025).
- Deehan, E.C.; Mocanu, V.; Madsen, K.L. Effects of dietary fiber on metabolic health and obesity. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 301–318. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The health benefits of dietary fiber. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary fiber in gastrointestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J. Dietary fiber: Still alive. Food Chem. 2023, 439, 138076. [Google Scholar] [CrossRef]
- Fernandes, F.A.; Roriz, C.; Calhelha, R.C.; Rodrigues, P.; Pires, T.C.S.P.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L.; Heleno, S.A. Valorization of natural resources—development of a functional plant-based beverage. Food Chem. 2025, 472, 142813. [Google Scholar] [CrossRef]
- The Regulation (EC) No. 1924/2006 of the European Parliament and of the council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union 2006, 9–25. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1924 (accessed on 11 February 2025).
- Sharma, N.; Yeasmen, N.; Orsat, V. Green extraction of chickpea (Cicer arietinum)-based functional beverage: Assessment of nutritional quality and storage stability. Food Biosci. 2024, 59, 104237. [Google Scholar] [CrossRef]
- Zhao, J.; Kong, X.; Zhang, C.; Hua, Y.; Chen, Y.; Li, X. In vitro protein digestive properties and peptidomic characterization of five whole component plant protein beverages using a pepsin-pancreatin model. Food Res. Int. 2024, 196, 115076. [Google Scholar] [CrossRef]
- Bekkering, C.S.; Tian, L. Thinking outside of the cereal box: Breeding underutilized (Pseudo)Cereals for improved human nutrition. Front. Genet. 2019, 10, 1289. [Google Scholar] [CrossRef]
- Skřivan, P.; Chrpová, D.; Klitschová, B.; Švec, I.; Sluková, M. Buckwheat Flour (Fagopyrum esculentum Moench)—A Contemporary View on the Problems of Its Production for Human Nutrition. Foods 2023, 12, 3055. [Google Scholar] [CrossRef] [PubMed]
- NKFI. Gabonák, Álgabonák, Próbacipók. 2023. Available online: https://nkfih.gov.hu/hivatalrol/nyomtatott-sajto/gabonak-algabonak (accessed on 12 January 2025).
- Agarwal, A.; Rizwana, N.; Tripathi, A.D.; Kumar, T.; Sharma, K.P.; Patel, S.K.S. Nutritional and functional new perspectives and potential health benefits of quinoa and chia seeds. Antioxidants 2023, 12, 1413. [Google Scholar] [CrossRef] [PubMed]
- Xi, X.; Fan, G.; Xue, H.; Peng, S.; Huang, W.; Zhan, J. Harnessing the potential of quinoa: Nutritional profiling, bioactive components, and implications for health promotion. Antioxidants 2024, 13, 829. [Google Scholar] [CrossRef]
- Wu, L.; Wang, A.; Shen, R.; Qu, L. Effect of processing on the contents of amino acids and fatty acids, and glucose release from the starch of quinoa. Food Sci. Nutr. 2020, 8, 4877–4887. [Google Scholar] [CrossRef]
- Jha, R.; Zhang, K.; He, Y.; Mendler-Drienyovszki, N.; Magyar-Tábori, K.; Quinet, M.; Germ, M.; Kreft, I.; Meglič, V.; Ikeda, K.; et al. Global nutritional challenges and opportunities: Buckwheat, a potential bridge between nutrient deficiency and food security. Trends Food Sci. Technol. 2024, 145, 104365. [Google Scholar] [CrossRef]
- Chmelík, Z.; Šnejdrlová, M.; Vrablík, M. Amaranth as a potential dietary adjunct of lifestyle modification to improve cardiovascular risk profile. Nutr. Res. 2019, 72, 36–45. [Google Scholar] [CrossRef]
- Hadidi, M.; Aghababaei, F.; Mahfouzi, M.; Zhang, W.; McClements, D.J. Amaranth proteins: From extraction to application as nanoparticle-based delivery systems for bioactive compounds. Food Chem. 2023, 439, 138164. [Google Scholar] [CrossRef]
- Zhang, W.; Boateng, I.D.; Xu, J.; Zhang, Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024, 13, 1974. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Shams, R.; Dash, K.K.; Dar, A.H. A comprehensive review of pseudo-cereals: Nutritional profile, phytochemicals constituents and potential health promoting benefits. Appl. Food Res. 2023, 3, 100351. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion on the substantiation of health claims related to resistant starch and reduction of post-prandial glycaemic responses (ID 681), “digestive health benefits” (ID 682) and “favours a normal colon metabolism” (ID 783) pursuant to Article 13 of Regulation (EC) No 1924/2006. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J. 2011, 9, 2024–2041. [Google Scholar]
- Zhou, Y.; Zhao, S.; Jiang, Y.; Wei, Y.; Zhou, X. Regulatory Function of Buckwheat-Resistant Starch Supplementation on Lipid Profile and Gut Microbiota in Mice Fed with a High-Fat Diet. J. Food Sci. 2019, 84, 2674–2681. [Google Scholar] [CrossRef]
- Khan, J.; Gul, P.; Liu, K. Grains in a Modern Time: A comprehensive review of compositions and understanding their role in Type 2 diabetes and cancer. Foods 2024, 13, 2112. [Google Scholar] [CrossRef] [PubMed]
- Craine, E.B.; Murphy, K.M. Seed composition and amino acid profiles for quinoa grown in Washington state. Front. Nutr. 2020, 7, 126. [Google Scholar] [CrossRef]
- Burrieza, H.P.; Rizzo, A.J.; Vale, E.M.; Silveira, V.; Maldonado, S. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chem. 2019, 293, 299–306. [Google Scholar] [CrossRef]
- Malik, A.M.; Singh, A. Pseudo-cereals proteins- A comprehensive review on its isolation, composition and quality evaluation techniques. Food Chem. Adv. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Pirzadah, T.B.; Rehman, R.U. Journey of Buckwheat to functional food sector. In Buckwheat: Forgotten Crop for the Future; CRC Press eBooks: Boca Raton, FL, USA, 2021; pp. 31–58. [Google Scholar] [CrossRef]
- Fu, L.; Gao, S.; Li, B. Impact of processing methods on the in vitro protein digestibility and DIAAS of various foods produced by millet, Highland barley and buckwheat. Foods 2023, 12, 1714. [Google Scholar] [CrossRef]
- Serena-Romero, G.; Ignot-Gutiérrez, A.; Conde-Rivas, O.; Lima-Silva, M.Y.; Martínez, A.J.; Guajardo-Flores, D.; Cruz-Huerta, E. Impact of In Vitro Digestion on the Digestibility, Amino Acid Release, and Antioxidant Activity of Amaranth (Amaranthus cruentus L.) and Cañihua (Chenopodium pallidicaule Aellen) Proteins in Caco-2 and HepG2 Cells. Antioxidants 2023, 12, 2075. [Google Scholar] [CrossRef]
- Yang, X.; Fu, W.; Xiao, L.; Wei, Z.; Han, L. Nutrition, health benefits, and processing of sand rice (Agriophyllum squarrosum): Comparisons with quinoa and buckwheat. Food Sci. Nutr. 2024, 12, 7060–7074. [Google Scholar] [CrossRef]
- Haldkar, P.; Tiwari, V.K.; Rumandla, S.K.; Behera, K. Effect of puffing and cooking on phytochemical profile of psoudo-cereals: A review. J. Pharma Innov. 2022, SP-11(12), 511–514. [Google Scholar]
Natural Sources | Type of Natural Sources | Bioactive Compounds | Nutritional Benefits of Natural Sources | References |
---|---|---|---|---|
Water | Natural water | - | Hydration, changes taste of functional beverages or the proportion of microbial species | [3] |
Mineral-enriched water | Calcium | |||
Vegetables | Carrot | ß-carotene, pectin, vitamin C, flavones | Anti-inflammatory and anticancer effects, antibacterial effects, improve digestion and promote regular bowel movements, support healthy gut microbiota, help to regulate blood sugar and cholesterol levels, boost immunity, support antioxidant status, vision, and skin health | [1,27,28,29,30,31,32] |
Tomato | Lycopene, trans-lycopene, pectin, anthocyanins, | |||
Pepper | Capsaicin, pectin, flavones | |||
Beetroot | Anthocyanins, iron, nitrates | |||
Onion | Sulfur compounds, inulin | |||
Garlic | Sulfur compounds, flavonols, lignans | |||
Spinach | Vitamins A, C, and K, iron, calcium, zinc, magnesium, potassium, lutein | |||
Curly kale | Dietary fibers, chlorophyll, flavonols, iron, calcium, zinc, magnesium, potassium | |||
Chicory | Tannins | |||
Rhubarb | Tannins | |||
Pumpkin | ß-carotene, pectin, | |||
Broccoli | Quercetin, selenium | |||
Psyllium | Cellulose, hemicellulose, lignin | |||
Fruits | Red berries (raspberry, blueberry, blackcurrant, strawberry, blackberry, redcurrant) | Anthocyanins, dietary fiber (e.g., pectin), vitamin C, tannins | Favorable taste, support antioxidant status and immune function, anticancer and anti-inflammatory effects, protect against cardiovascular diseases and cognitive decline, improve digestion, support healthy gut microbiota | [1,3,9,15,27,33] |
Citruses (orange, lemon, lime, grapefruit) | Vitamin C, carotenoids, flavonoids | |||
Red grapes | Resveratrol, quercetin, tannins | |||
Kiwi | Prebiotic-compatible surfaces | |||
Acai | Antioxidants | |||
Cherry | Pectin | |||
Peach | Pectin, tannins | |||
Pomegranate | Anthocyanins, tannins | |||
Pineapple | Bromelain, carotenoids, vitamin C | |||
Cereals | Oat | Manganese, phosphorus, magnesium, iron, ß-glucan | Improve antioxidant status, lowers LDL cholesterol levels, promote digestive health, help regulate blood sugar levels, vital for bone health, enzyme function, and energy production, anti-inflammatory and anticancer properties, versatility in food technology | [1,3,22,34] |
Wheat bran | Vitamin B1, dietary fiber (e.g., cellulose, hemicellulose, lignin) | |||
Maize | Vitamin C, folic acid, cellulose | |||
Malt | - | |||
Pseudocereals | Quinoa | Vitamins B1, B2, B3, C, and E, flavonoids (e.g., kaempferol, quercetin, ferulic acid, rutin) | Nutritional density, favorable protein composition, gluten-free, beneficial effects on digestive, metabolic, and cardiovascular functions, promote gut health and satiety, positive effect on the lipid profile (reduces levels of total cholesterol, triglycerides, and LDL cholesterol and increases levels of HDL cholesterol), reduce the incidence of type 2 diabetes, cancer, and cardiovascular disease, support antioxidant activity, help blood sugar control | [11,12,16,35,36,37,38] |
Buckwheat | Vitamins C, E, and B, rutin, quercetin, orientin, isoorientin and isovitexin | |||
Amaranth | Vitamins C, E, and B, polyphenols, saponins, hemagglutinins, phytin, nitrates, oxalates, betacyanins (betanidine), rutin, isoquercetin, nicotiflorin | |||
Nuts and seeds | Flaxseed | Omega-3 fatty acid (alpha-linolenic-acid—ALA), vitamin E | Nutritional enrichment (protein), flavor and texture enhancers, play a role in lowering blood pressure, regulating cholesterol levels, supporting central nervous system health, improving memory, aiding digestion, promoting heart health, improving antioxidant activity, and helping blood sugar control | [1,22] |
Walnut | Omega-3 fatty acid (alpha-linolenic-acid—ALA), vitamin E | |||
Almond | Monounsaturated fatty acids (e.g., omega-9 fatty acids), vitamin E | |||
Cashew nut | Monounsaturated fatty acids (e.g., omega-9 fatty acids), vitamin E | |||
Brazil nut | Selenium, monounsaturated fatty acids (e.g., omega-9 fatty acids), vitamin E | |||
Sesame | Monounsaturated fatty acids (e.g., omega-9 fatty acids), vitamin E | |||
Sunflower seeds | Omega-6 fatty acids, vitamin E | |||
Legumes | Soybeans | Isoflavones | Nutritional enrichment (protein), lower LDL cholesterol levels, improve cardiovascular health, support skeletal muscle health, increase satiety and support weight management, help regulate blood sugar levels, maintain bone density, reduce the risk of breast and prostate cancers, anti-inflammatory and anticancer properties | [1,22] |
Peas | Iron, highly bioavailabile protein, fiber, low allergenicity | |||
Chickpeas | ||||
Dairy products | Yoghurt | Probiotics, calcium, vitamin D | Improve digestion, boost immune function, and maintain the balance of the gut microbiome, improve bone density, enhance bone health, and reduce the risk of osteoporosis, complete protein source, support cardiovascular and cognitive health, anti-hypertensive properties | [1,3] |
Probiotic dairy products | ||||
Non-probiotic milk-based drinks (enriched with micronutrients) | Omega-3 fatty acids, vitamin D, magnesium, phosphorus | |||
Whey protein isolate | Whey proteins | |||
Fresh milk | Casein | |||
Fermented milk | Probiotics | |||
Eggs | Egg yolk | Xanthophyll carotenoids (e.g., lutein, zeaxanthin) | Help muscle building, reduce the risk of cardiovascular disease, Alzheimer’s disease, and cancer, anti-hypertensive, antimicrobial, and antioxidant effects, contribute to immune protection, support eye, heart, and brain health | [1,39] |
Egg white | Ovalbumin | |||
Egg protein hydrolysates | Hydrolyzed ovalbumin, antioxidants | |||
Fish and seafood | Omega-3 fatty acid-rich oil (from tuna, salmon or mackerel) | Omega-3 fatty acids (e.g., EPA, DHA), bio-calcium | Contribute to cardiovascular and joint health, reduce the risk of Alzheimer’s disease, support bone density, anti-hypertensive, anti-inflammatory, and antioxidant properties, promote beneficial microbiota and supports digestion (seaweeds) | [1,3] |
Seaweed | Prebiotics | |||
Herbs and spices and other plant sources | Turmeric | Diarylheptanoids, curcumin, dimethoxycurcumin, bisdimethoxycurcumin | Enhance natural flavor, anti-inflammatory, antimicrobial, anticancer, anti-diabetic, antioxidant, and neuroprotective effects, support digestibility and weight management, boost immunity, reduce the risk of heart disease, elevate mood, relieve stress | [1,3,9,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
Ginger | Zingiberene, beta-bisabolene, alpha-farnesene, beta-sesquiphellandrene, gingerol, paradol, shogaol | |||
Fenugreek | Flavonoids, phenolic acids, coumarins, stilbenoids, tyrosol, pyrogallol, oleuropein, vanillic acid, ellagic acid, coumarin, quercetin, rutin, vitexin, isovitexin, and salicylates | |||
Lemon balm | Ursolic acid, oleanolic acid, rosmarinic acid, quercetin, myricetin, epigallocatechin, and rutin, luteolin, caffeic acid | |||
Peppermint | Terpene alcohol menthol, terpene ketone menthone, cineole, limonene, apigenin, luteolin, eriodictyol | |||
Sea buckthorn | Gallic acid, vanillic acid, caffeic acid, ferulic acid, coumaric acid | |||
Rosemary | Phenolic diterpenes, carnosic acid, carnosol, rosmarinic acid, rosmanol, epirosmanol, caffeic acid | |||
Lavender | Linalool, linalyl acetate, cineol | |||
Sage | Thujone, borneol, cineole, bornylesters, α-pinene, salvene, D-camphor phellandrene, ocimene, rosmarinic acid, carnosic acid, carnosol, rosmanol | |||
Mahua | Madhucic acid, erythrodiol, oleanolic acid, betulinic acid, quercetin | |||
Thyme | Thymol, carvacrol, linalool, L-borneol, geraniol, amyl alcohol, β-pinene, camphene, p-cymene, caryophyllene, 1,8-cineole, rosmarinic acid | |||
Rosehip | Vitamins C and E, vanillic acid, coumaric acid, vanillin, sinapic acid | |||
Fennel | Trans-anethole, fenchone, and estragole | |||
Lemon grass | Limonene, linalool, citronellal, isoneral, citronellol, neral, geraniol, geranyl acetate, geranial | |||
Green tea | Catechins (e.g., epigallocatechin gallate—EGCG) | |||
Cocoa | Carotenoids, catechins, anthocyanin, theobromine | |||
Coffee, coffee leaves | Theophylline, quercitrin, isoquercitrin, kaempferol, chlorogenic acids, mangiferin, iso-mangiferin, rutin, tannins, caffeic acid, caffeine, trigonelline, related glycosides | |||
Sweetening ingredients | Naturally sweetened | - | Provides a sweet taste, natural source of sugar, moderates blood sugar levels, supports digestion and gut health, anti-inflammatory effects, synergistic actions in beverages (improves their sensorial properties and stability) | [3,54,55,56,57,58] |
- | Mannitol | |||
- | Lactulose | |||
Dates, date syrup | Natural sugars, cellulose, pectin, antioxidants, phenolic compounds | |||
Honey | Polyphenols (flavonoids) | |||
Agave syrup | Fructose, sucrose, kestose, inositol, fructo-oligosaccharides, inulin |
Vitamins | Vitamin Sources |
---|---|
Vitamin A | Green leafy, orange, and yellow vegetables, such as carrots and spinach |
Vitamin B1 | Whole grains, meat, and fish |
Vitamin B2 | Eggs, organ meats, lean meats, and milk |
Vitamin B3 | Meat, poultry, fish, fortified and whole grains, mushrooms, potatoes |
Vitamin B12 | From animals but not plants (e.g., dairy product, eggs) |
Folic acid | Grain-based products |
Vitamin C | Citrus fruits (e.g., oranges, grapefruit) and their juices, red and green pepper, kiwifruit, broccoli, strawberries, baked potatoes, tomatoes |
Vitamin D | Fish oil-fortified foods (e.g., milk) |
Vitamin E | Vegetable oils (such as wheat germ, sunflower, and safflower oils), nuts (such as almonds), seeds (such as sunflower seeds), and green vegetables (such as spinach and broccoli) |
Vitamin K | Green leafy vegetables, berries |
Minerals | Mineral Sources |
Calcium | Milk, cheese, and yogurt; vegetables, like kale, broccoli, and Chinese cabbage; canned sardines and salmon with soft bones, nuts and seeds, legumes, tap water, mineral water |
Iron | Lean meat, seafood, poultry, beans |
Magnesium | Legumes, nuts and seeds, whole-wheat bread, dairy products |
Phosphorus | Dairy products, milk |
Zinc | Red meat, poultry, oysters and other seafood, cereals, beans, nuts, whole grains, and dairy products |
Physiological Effect | Disease | Reference |
---|---|---|
Provides the mass of the feces and improves intestinal motility | Constipation and other gastrointestinal disorders, colorectal cancer | [79] |
Delays the emptying of the stomach | Obesity | |
Improves the intestinal absorption of glucose | Type 2 diabetes | |
Increases the excretion of fats | Cardiovascular diseases | |
Reduces the degree of dysbiosis | Cardiometabolic diseases, colorectal cancer, mental health, immune health | |
Ensures the continued integrity of the intestinal lining | Metabolic alterations, immune health | |
Regulates enteroendocrine function | Obesity, type 2 diabetes | |
Improves gene expression | Cardiovascular diseases | |
Modulates amino acid metabolic signatures | Type 2 diabetes |
Nutrients | Quinoa | Buckwheat | Amaranth | References |
---|---|---|---|---|
Carbohydrate (% of dry basis) | 48.5–77.0% | 63.1–82.1% | 63.1–75.0% | [12,93,97] |
Starch | 52.2–69.2% | 54.5–57.4% | 65.0–75.0% | [10,12,97] |
Amylose (% of total starch) | 11.0–12.0% | 18.3–47% | 7.8–34.3% | |
Resistant starch (% of total starch) | - | 27.0–33.5% | - | |
Simple carbohydrate (mono- and disaccharides) | 3.0–5.0% | 0.8% | 3.0–5.0% | |
Dietary fiber (% of dry basis) | 2.5–26.5% | 8.0–17.8% | 2.7–17.3% | [10,12,93,94,97] |
Water-soluble dietary fiber | 22.0% | 16.0% | 14.0–22.0% | [10,12,97] |
Pectin | - | 1.8% | - | |
Xyloglucan | 30.0% | - | - | |
Water-insoluble dietary fiber | 78.0% | 70.3% | 78.0–86.0% | |
Hemicellulose | - | 39.0% | - | |
Lignin | - | 20.0% | - | |
Protein (% of dry basis) | 9.1–19.0% | 5.7–25.3% | 11.7–22.0% | [12,93,94,97] |
Essential amino acids (g/100 g of total protein) | ||||
Histidine | 0.41–5.4 | 0.29–4.9 | 0.34–3.8 | [10,12,81,97] |
Isoleucine | 0.50–7.4 | 0.49–4.1 | 0.58–4.2 | [10,12,81,97] |
Leucine | 0.84–9.4 | 0.83–7.6 | 0.88–6.9 | [10,12,81,97] |
Lysine | 0.77–7.8 | 0.67–8.6 | 0.75–8.0 | [10,12,81,97] |
Methionine | 0.31–9.1 | 0.17–2.5 | 0.23–4.6 | [10,12,81,97] |
Phenylalanine | 0.59–4.7 | 0.52–7.2 | 0.54–4.7 | [10,12,81,97] |
Threonine | 0.42–8.9 | 0.51–4.0 | 0.56–5.0 | [10,12,81,97] |
Tryptophan | 0.17–1.9 | 0.19–1.83 | 0.18–1.8 | [10,12,81,97] |
Valine | 0.59–6.1 | 0.68–6.1 | 0.68–5.0 | [10,12,81,97] |
Non-essential amino acids (g/100 g of total protein) | ||||
Alanine | 0.58–5.7 | 0.75–9.6 | 0.78–6.2 | [10,12,81,97] |
Arginine | 0.03–13.6 | 0.98–11.3 | 1.06–15.6 | [10,12,81,97] |
Asparagine | 0.35 | - | - | [98] |
Aspartic acid | 1.13–8.0 | 1.13–16.6 | 1.26–10.0 | [10,12,81,97] |
Cysteine | 0.19–2.7 | 0.23–3.5 | 0.19–3.6 | [10,12,81,97] |
Glutamine | 0.68 | - | - | [98] |
Glutamic acid | 1.86–13.2 | 2.05–24.4 | 2.26–17.7 | [10,12,81,97] |
Glycine | 0.30–6.1 | 1.03–13.2 | 1.64–15.2 | [10,12,81,97] |
Proline | 0.77–5.5 | 0.5–8.8 | 0.69–4.6 | [10,12,81,97] |
Serine | 0.47–5.7 | 0.68–8.6 | 1.15–9.3 | [10,12,81,97] |
Tyrosine | 0.27–3.7 | 0.24–4.9 | 0.33–3.7 | [10,12,81,97] |
Fat (% of dry basis) | 4.0–7.6% | 0.75–7.4% | 5.0–10.9% | [10,12] |
Unsaturated fatty acids (% of total total lipid) | 80.1–80.9% | 70.0–89.4% | 61.0–87.3% | [10,12] |
Monounsaturated fatty acids (g/100 g of total fat) | 1.610 | 1.040 | 1.680 | [10] |
Palmitoleic acid (C16:1) (% of total lipid) | - | 0.15–0.20% | - | [12] |
Oleic acid (C18:1–9c) (% of total lipid) | 15.7–31.1% | 35.7–47.9% | 18.7–38.9% | [10,12] |
Vaccenic acid (C18:1–11c) (% of total lipid) | 1.3–1.7% | - | 1.4–2.00% | [12] |
Gondoic acid (C20:1) (% of total lipid) | 0.6–1.6% | 1.8–3.1% | 0.2–0.3% | [12] |
Erucic acid (C22:1) (% of total lipid) | 1.5% | 0.2–0.5% | 0.1% | [12] |
Polyunsaturated fatty acids (g/100 g of total fat) | 3.290 | 1.040 | 2.780 | [10] |
Linoleic acid (C18:2) (% of total lipid) | 38.9–58.6% | 31.4–44.6% | 33.0–55.9% | [10,12] |
α-Linolenic acid (C18:3) (% of total lipid) | 3.0–11.1% | 0.0–5.3% | 0.2–1.97% | [10,12] |
Saturated fatty acids (% of total lipid) | 15.5–29.0% | 18.8–19.5% | 20.1–30.9% | [10,12] |
Lauric acid (C12:0) | - | 0.02–0.04% | - | [12] |
Myristic acid (C14:0) | - | 0.07–0.1% | - | [12] |
Pentadecylic acid (C15:0) | - | 0.05–0.06% | - | [12] |
Palmitic acid (C16:0) | 9.3–10.7% | 13.2–18.5% | 18.8–20.2% | [12] |
Margaric acid (C17:0) | - | 0.05–0.06% | - | [12] |
Stearic acid (C18:0) | 0.7–1.1% | 1.4–6.3% | 3.7–4.2% | [12] |
Arachidic acid (C20:0) | - | 1.1–1.2% | - | [12] |
Behenic acid (C22:0) | - | 1.1–1.3% | - | [12] |
Lignoceric acid (C24:0) | - | 0.7–0.8% | - | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vajdovich, D.K.; Csajbókné Csobod, É.; Benedek, C. Pseudocereal-Based Functional Beverages: Main Properties and Nutritional Evaluation with an Emphasis on Amino Acid Content: A Review. Foods 2025, 14, 2080. https://doi.org/10.3390/foods14122080
Vajdovich DK, Csajbókné Csobod É, Benedek C. Pseudocereal-Based Functional Beverages: Main Properties and Nutritional Evaluation with an Emphasis on Amino Acid Content: A Review. Foods. 2025; 14(12):2080. https://doi.org/10.3390/foods14122080
Chicago/Turabian StyleVajdovich, Dorottya Krisztina, Éva Csajbókné Csobod, and Csilla Benedek. 2025. "Pseudocereal-Based Functional Beverages: Main Properties and Nutritional Evaluation with an Emphasis on Amino Acid Content: A Review" Foods 14, no. 12: 2080. https://doi.org/10.3390/foods14122080
APA StyleVajdovich, D. K., Csajbókné Csobod, É., & Benedek, C. (2025). Pseudocereal-Based Functional Beverages: Main Properties and Nutritional Evaluation with an Emphasis on Amino Acid Content: A Review. Foods, 14(12), 2080. https://doi.org/10.3390/foods14122080