Highland Barley Tartary Buckwheat Coarse Grain Biscuits Ameliorated High-Fat Diet-Induced Hyperlipidaemia in Mice Through Gut Microbiota Modulation and Enhanced Short-Chain Fatty Acid Secretion Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Animals and Experimental Design
2.3. General Indicator Observations
2.4. Measurement of Organ and Fat Indices in Mice
2.5. Serum Tests and Liver Homogenate Analyses
2.6. Detection of Serum IL-6, TNF-α, LEP, and ADP
2.7. Histological Analysis
2.8. Analysis of Cecal Short-Chain Fatty Acid Composition
2.9. Analysis of the Fecal Microflora
2.10. Statistical Analysis
3. Results
3.1. Determination of Model Evaluation Index in Hyperlipidemic Mice
3.2. Effects of Biscuits on Weight Gain, Food Intake, Caloric Intake, and Fasting Blood Glucose in Hyperlipidemic Mice
3.3. Effects of Biscuits on Organ Index and Fat Indices in Hyperlipidemic Mice
3.4. Effects of Biscuits on Serum Index in Hyperlipidemic Mice
3.5. Effects of Biscuits on Oxidative Stress in the Livers of Hyperlipidemic Mice
3.6. Effects of Biscuits on Inflammation-Related Factors in Hyperlipidemic Mice
3.7. Effects of Biscuits on Histopathology in Hyperlipidemic Mice
3.8. Effects of Biscuits on Short-Chain Fatty Acids in the Cecal Contents
3.9. Effects of Biscuits on Intestinal Flora in Mice
3.10. Correlation Between Biochemical Indices Related to Hyperlipidemic Intestinal Microflora and Short-Chain Fatty Acids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FBS | fasting blood-glucose |
TG | triglyceride |
TC | total cholesterol |
LDL-C | low-density lipoprotein cholesterol |
HDL-C | high density lipoprotein cholesterol |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
GSH-Px | glutathione peroxidase |
MDA | malondialdehyde |
SOD | superoxide dismutase |
CAT | catalase |
IL-6 | interleukin 6 |
TNF- | tumor necrosis factor alpha |
LEP | leptin |
ADP | adiponectin |
SCFAs | short-chain fatty acids |
References
- Nelson, R.H. Hyperlipidaemia as a Risk Factor for Cardiovascular Disease. Prim. Care 2013, 40, 195–211. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Broeders, E.N.; Knoops, C.; Abramowicz, D. Drug treatment of lipid disorders. N. Engl. J. Med. 1999, 341, 2020. [Google Scholar] [PubMed]
- Liu, A.; Wu, Q.; Guo, J.; Ares, I.; Rodríguez, J.L.; Martínez-Larrañaga, M.R.; Yuan, Z.; Anadón, A.; Wang, X.; Martínez, M.A. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol. Ther. 2019, 195, 54–84. [Google Scholar] [CrossRef]
- Okopien, B.; Buldak, L.; Boldys, A. Current and future trends in the lipid lowering therapy. Pharmacol. Rep. 2016, 68, 737–747. [Google Scholar] [CrossRef]
- Dehnavi, S.; Sohrabi, N.; Sadeghi, M.; Lansberg, P.; Banach, M.; Al-Rasadi, K.; Johnston, T.P.; Sahebkar, A. Statins and autoimmunity: State-of-the-art. Pharmacol. Ther. 2020, 214, 107614. [Google Scholar] [CrossRef]
- Cote, D.J.; Rosner, B.A.; Smtth-warner, S.A.; Egan, K.M.; Stampfer, M.J. Statin use, hyperlipidaemia, and risk of glioma. Eur. J. Epidemiol. 2019, 34, 997–1011. [Google Scholar] [CrossRef]
- Wang, J. Correlation Analysis of Serum PPAR γ/ANGPTL Receptor Ligand Levels with HDL and LDL Subtypes in Sputum Turbidity Syndrome Patients with Hyperlipidaemia; China Academy of Chinese Medical Sciences: Beijing, China, 2019. [Google Scholar]
- Deng, Y.; Cui, J.; Jiang, Y.; Zhang, J.; Jiang, J.; Zhang, Q.; Hu, Y. Exploring the Nutraceutical Potential of a Food–Medicine Compound for Metabolic-Associated Fatty Liver Disease via Lipidomics and Network Pharmacology. Foods 2025, 14, 1257. [Google Scholar] [CrossRef]
- Feng, J. Screening of Natural Polysaccharides for Their Lipid-Lowering Effect; Fourth Military Medical University: Xi’an, China, 2007. [Google Scholar]
- Beijing Hypertension Prevention and Treatment Association. Practice Guide for Comprehensive Management of Cardiovascular Diseases at the Grassroots Level 2020. Chin. J. Med. Front. (Electron. Ed.) 2020, 1208, 1–73. [Google Scholar]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Liu, H.; Chen, T.; Xie, X.; Wang, X.; Luo, Y.; Xu, N.; Sa, Z.; Zhang, M.; Chen, Z.; Hu, X.; et al. Hepatic Lipidomics Analysis Reveals the Ameliorative Effects of Highland Barley β-Glucan on Western Diet-Induced Nonalcoholic Fatty Liver Disease Mice. J. Agric. Food Chem. 2021, 69, 9287–9298. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Yan, D.; Cheng, P.Z.; Li, W. Black rice regulates lipid metabolism, liver injury, oxidative stress and adipose accumulation in high-fat/cholesterol diet mice based on gut microbiota and untargeted metabonomics. J. Nutr. Biochem. 2023, 117, 109320. [Google Scholar]
- Hou, Z.D.; Zhao, Q.; Yousaf, L.; Khan, J.; Xue, Y.; Shen, Q. Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J. Funct. Foods 2020, 64, 103687. [Google Scholar] [CrossRef]
- Li, S.; Yu, W.; Guan, X.; Huang, K.; Liu, J.; Liu, D.; Duan, R. Effects of millet whole grain supplementation on the lipid profile and gut bacteria in rats fed with high-fat diet. J. Funct. Foods 2019, 59, 49–59. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, H.; Zhao, S.; Yan, B.; Wang, H.; Zhou, X.; Xiao, Y. The beneficial effects of Tartary buckwheat (Fagopyrum tataricum Gaertn.) on diet-induced obesity in mice are related to the modulation of gut microbiota composition. Food Sci. Hum. Wellness 2023, 12, 1323–1330. [Google Scholar] [CrossRef]
- Tosh, S.M.; Bordenave, N. Emerging science on benefits of whole grain oat and barley and their soluble dietary fibers for heart health, glycemic response, and gut microbiota. Nutr. Rev. 2020, 78, 13–20. [Google Scholar] [CrossRef]
- Liu, S.; Yin, X.; Hou, C.; Liu, X.; Ma, H.; Zhang, X.; Xu, M.; Xie, Y.; Li, Y.; Wang, J. As a Staple Food Substitute, Oat and Buckwheat Compound Has Health-Promoting Effects for Diabetic Rats. Front. Nutr. 2021, 8, 762277. [Google Scholar] [CrossRef]
- Li, Y.; Qin, C.; Dong, L.; Zhang, X.; Wu, Z.; Liu, L.; Yang, J.; Liu, L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidaemia via gut microbiota in high-fat-diet mice. Food Funct. 2022, 13, 12686–12696. [Google Scholar] [CrossRef]
- Han, Y.; Xiao, H. Whole food-based approaches to modulating gut microbiota and associated diseases. Annu. Rev. Food Sci. Technol. 2020, 11, 119–143. [Google Scholar] [CrossRef]
- Ross, A.B.; Pere-Trepat, E.; Montoliu, I.; Martin, F.P.J.; Collino, S.; Moco, S.; Godin, J.P.; Cleroux, M.; Guy, P.A.; Breton, I.; et al. A Whole-Grain-Rich Diet Reduces Urinary Excretion of Markers of Protein Catabolism and Gut Microbiota Metabolism in Healthy Men after One Week. J. Nutr. 2013, 143, 766–773. [Google Scholar] [CrossRef]
- Martinez, I.; Lattimer, J.M.; Hubach, K.L.; Case, J.A.; Yang, J.Y.; Weber, C.G.; Louk, J.A.; Rose, D.J.; Kyureghian, G.; Peterson, D.A.; et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013, 7, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.F.; Zhang, S.Y.; Lei, Z.J.; Li, L.F.; Yang, X.Q. Research on the nutritional quality of barley and buckwheat biscuits. Food Ind. 2024, 4511, 70–77. [Google Scholar]
- Kennedy, A.J.; Ellacott, K.L.J.; King, V.L.; Hasty, A.H. Mouse models of the metabolic syndrome. Dis. Models Mech. 2010, 3, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L. Research on the Preventive Effect of Yam and Hawthorn Yogurt on Hyperlipidaemia in Mice; Shanxi Agricultural University: Jinzhong, China, 2021. [Google Scholar]
- Hu, J.L.; Nie, S.P.; Min, F.F. Polysaccharide from seeds of Plantago asiatica L. increases short-chain fatty acid production and fecal moisture along with lowering pH in mouse colon. J. Agric. Food Chem. 2012, 6046, 11525–11532. [Google Scholar] [CrossRef]
- Kotsis, V.; Antza, C.; Doundoulakis, G.; Stabouli, S. Obesity, Hypertension, and Dyslipidemia. In Obesity. Endocrinology; Springer: Cham, Switzerland, 2017; pp. 227–241. [Google Scholar] [CrossRef]
- Millward, D.J. Energy balance and obesity: A UK perspective on the gluttony v. sloth debate. Nutr. Res. Rev. 2013, 262, 89–109. [Google Scholar] [CrossRef]
- Matsuzawa-Nagata, N.; Takamura, T.; Ando, H.; Nakamura, S.; Kurita, S.; Misu, H.; Ota, T.; Yokoyama, M.; Honda, M.; Miyamoto, K.I.; et al. Increased oxidative stress precedes the onset of high-fat diet-induced insulin resistance and obesity. Metabolism 2008, 578, 1071–1077. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 2011, 125, 3117–3132. [Google Scholar] [CrossRef]
- Peairs, A.D.; Rankin, J.W.; Lee, Y.W. Effects of acute ingestion of different fats on oxidative stress and inflammation in overweight and obese adults. Nutr. J. 2011, 101, 122. [Google Scholar] [CrossRef]
- Nasri, R.; Abdelhedi, O.; Jemil, I.; Amor, I.B.; Elfeki, A.; Gargouri, J.; Boualga, A.; Karra-Châabouni, M.; Nasri, M. Preventive effect of goby fish protein hydrolysates on hyperlipidaemia and cardiovascular disease in Wistar rats fed a high-fat/fructose diet. Rsc Adv. 2018, 817, 9383–9393. [Google Scholar] [CrossRef]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Emoto, T.; Yamashita, T.; Sasaki, N.; Hirota, Y.; Hayashi, T.; So, A.; Kasahara, K.; Yodoi, K.; Matsumoto, T.; Mizoguchi, T.; et al. Analysis of gut microbiota in coronary artery disease patients: A possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb. 2016, 238, 908–921. [Google Scholar] [CrossRef] [PubMed]
- Gkolfakis, P.; Dimitriadis, G.; Triantafyllou, K. Gut microbiota and non-alcoholic fatty liver disease. Hepatobiliary Pancreat. Dis. Int. 2015, 146, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Soh, J.; Iqbal, J.; Queiroz, J.; Fernandez-Hernando, C.; Hussain, M.M. MicroRNA-30c reduces hyperlipidaemia and atherosclerosis in miceby decreasing lipid synthesis and lipoprotein secretion. Nat. Med. 2013, 197, 892. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, Z.; Guo, H.; He, D.; Zhao, H.; Wang, Z. The modulatory effect of infusions of green tea, oolong tea, and black tea on gut microbiota in high fatinduced obese mice. Food Funct. 2016, 7, 4869–4879. [Google Scholar] [CrossRef]
- Kilua, A.; Chihiro, H.; Han, K.H.; Homma, K.; Fukuma, N.; Kamitani, T.; Suzuki, T.; Fukushima, M. Whole kidney bean (Phaseolus vulgaris) and bean hull reduce the total serum cholesterol, modulate the gut microbiota and affect the caecal fermentation in rats.Bioact. Carbohydr. Diet. Fibre 2020, 24, 100232. [Google Scholar] [CrossRef]
- Lai, Y.S.; Chen, W.C.; Kuo, T.C.; Ho, C.T.; Kuo, C.H.; Tseng, Y.J.; Lu, K.H.; Lin, S.H.; Panyod, S.; Sheen, L.Y. Mass-spectrom- etry-based serum metabolomics of a C57BL/6J mouse model of high-fat-di- et-induced non-alcoholic fatty liver disease development. J. Agric. Food Chem. 2015, 63, 7873–7884. [Google Scholar] [CrossRef]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Abbate, M.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; et al. Oxidative stress and pro-inflammatory status in patients with non-alcoholic fattyliver disease. Antioxidants 2020, 98, 759. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Laudisio, D.; Di Somma, C.; Salzano, C.; Pugliese, G.; De Alteriis, G.; Colao, A.; Savastano, S. Phase angle: A possible biomarker to quantify inflammation in subjects with obesity and 25(OH)D deficiency. Nutrients 2019, 11, 1747. [Google Scholar] [CrossRef]
- Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 2019, 11, 1238. [Google Scholar] [CrossRef]
- Chrysafi, P.; Perakakis, N.; Farr, O.M.; Stefanakis, K.; Peradze, N.; Sala-Vila, A.; Mantzoros, C.S. Leptin alters energy intake and fat mass but not energy expenditure in lean subjects. Nat. Commun. 2020, 11, 5145. [Google Scholar] [CrossRef]
- Friedman, J. Leptin and the endocrine control of energy balance. Nat. Metab. 2019, 18, 754–764. [Google Scholar] [CrossRef]
- Dobrzyn, P.; Dobrzyn, A.; Miyazaki, M.; Cohen, P.; Asilmaz, E.; Hardie, D.G.; Friedman, J.M.; Ntambi, J.M. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. J. PNAS 2004, 101, 6409–6414. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kishi, M.; Fushimi, T.; Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 2009, 5713, 5982–5986. [Google Scholar] [CrossRef]
- Roelofsen, H.; Priebe, M.G.; Vonk, R.J. The interaction of short-chain fatty acids with adipose tissue: Relevance for prevention of type 2 diabetes. J. Benefits Mircobes 2010, 1, 433–437. [Google Scholar] [CrossRef]
- Xin, F.; Huimin, G.; Cong, T.; Xiu, S.Y.; Peiyou, Q.; Richel, A.; Zhang, L.; Blecker, C.; Ren, G. Supplementation of quinoa peptides alleviates colorectal cancer and restores gut microbiota in AOM/DSS-treated mice. Food Chem. 2023, 408, 135196. [Google Scholar]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.L.; Wang, T.X.; Zheng, F.; Wang, H.; Wang, C. Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters. Food Funct. 2019, 102, 775–785. [Google Scholar] [CrossRef]
- Resta, S.C. Effects of probiotics and commensals on intestinal epithelial physiolvygy: Implications fornutrient handling. J. Physiol. 2009, 5871, 4169–4174. [Google Scholar] [CrossRef]
- De, L.A.; Serre, C.B.; Ellis, C.L.; Lee, I. Propensity to high-at diet-induced obesity ir rats is associated with changes in the gut microbiota and gut inflammation. Am. J. Physiol.-Giastrointest. Liver Physiol. 2010, 2992, G440–G448. [Google Scholar]
- Zhang, X.; Wu, Q.; Zhao, Y.; Yang, X. Decaisnea insignis seed oil inhibits trimethylamine-N-oxide formation and remodels intestinal microbiota to alleviate liver dysfunction in l-carnitine feeding mice. J. Agric. Food Chem. 2019, 6747, 13082–13092. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, S.; Ji, X.; Shen, X.; You, J.; Liang, X.; Yin, H.; Zhao, L. Current innovations in nutraceuticals and functional foods for intervention of non-alcoholic fatty liver disease. Pharmacol. Res. 2021, 166, 105517. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Tang, J.; Feng, Q.; Niu, Z.; Shen, Q.; Wang, L.; Zhou, S. Gamma-aminobutyric acid (GABA): A comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications. Crit. Rev. Food Sci. Nutr. 2023, 64, 8852–8874. [Google Scholar] [CrossRef]
- Gong, L.; Wang, H.; Wang, T.; Liu, Y.; Wang, J.; Sun, B. Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. J. Funct. Foods 2019, 60, 103453. [Google Scholar] [CrossRef]
- Ferrere, G.; Wrzosek, L.; Cailleux, F.; Turpin, W.; Puchois, V.; Spatz, M.; Ciocan, D.; Rainteau, D.; Humbert, L.; Hugot, C.; et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J. Hepatol. 2017, 66, 806–815. [Google Scholar] [CrossRef]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef]
- Nian, F.L.; Wu, L.Y.; Xia, Q.Y.; Tian, P.Y.; Ding, C.M.; Lu, X.L. Akkermansia muciniphila and bifidobacterium bifidum prevent nafld by regulating fxr expression and gut microbiota. J. Clin. Transl. Hepatol. 2023, 11, 763–776. [Google Scholar] [CrossRef]
- Duan, R.; Guan, X.; Huang, K.; Zhang, Y.; Li, S.; Xia, J.A.; Shen, M. Flavonoids from whole-grain oat alleviated high-fat diet-induced hyperlipidaemia via regulating bile acid metabolism and gut microbiota in mice. J. Agric. Food Chem. 2021, 69, 7629–7640. [Google Scholar] [CrossRef]
- Qian, M.; Lyu, Q.; Liu, Y.; Hu, H.; Wang, S.; Pan, C.; Duan, X.; Gao, Y.; Qi, L.W.; Liu, W.; et al. Chitosan oligosaccharide ameliorates nonalcoholic fatty liver disease (nafld) in diet-induced obese mice. Mar. Drugs 2019, 17, 391. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Le, Q.; Wei, Y.; Yang, L.; Cai, B.; Liu, Y.; Hong, B. Effect of piperine on the mitigation of obesity associated with gut microbiota alteration. Curr. Res. Food Sci. 2022, 5, 1422–1432. [Google Scholar] [CrossRef]
- Ren, G.; Fan, X.; Teng, C.; Li, Y.; Everaert, N.; Blecker, C. The Beneficial Effect of Coarse Cereals on Chronic Diseases through Regulating Gut Microbiota. Foods 2021, 10, 2891. [Google Scholar] [CrossRef]
Group | Cardiac Index | Liver Index | Spleen Index | Pulmonary Index | Renal Index | Epididymal Adipose Index |
---|---|---|---|---|---|---|
NC | 5.94 ± 0.31 a | 30.20 ± 1.37 e | 2.60 ± 0.36 a | 6.19 ± 0.20 ab | 12.97 ± 0.39 ab | 11.87 ± 0.39 e |
MC | 5.85 ± 0.12 ab | 40.30 ± 2.26 a | 2.40 ± 0.18 ab | 6.35 ± 0.27 a | 13.43 ± 0.33 a | 23.76 ± 1.11 a |
PC | 5.45 ± 0.23 c | 33.13 ± 1.23 cd | 2.37 ± 0.16 ab | 6.21 ± 0.17 ab | 13.10 ± 0.37 ab | 14.57 ± 0.61 d |
LD | 5.64 ± 0.26 bc | 35.09 ± 1.28 b | 2.39 ± 0.14 ab | 6.41 ± 0.23 a | 13.08 ± 0.61 ab | 20.15 ± 0.78 b |
MD | 5.84 ± 0.32 ab | 34.59 ± 1.36 bc | 2.39 ± 0.13 ab | 6.44 ± 0.19 a | 12.91 ± 0.16 ab | 18.55 ± 0.32 c |
HD | 5.64 ± 0.38 bc | 32.20 ± 1.31 d | 2.38 ± 0.10 ab | 6.47 ± 0.18 a | 12.89 ± 0.12 b | 14.13 ± 1.26 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Kang, X.; Li, L.; Zhang, S. Highland Barley Tartary Buckwheat Coarse Grain Biscuits Ameliorated High-Fat Diet-Induced Hyperlipidaemia in Mice Through Gut Microbiota Modulation and Enhanced Short-Chain Fatty Acid Secretion Mice. Foods 2025, 14, 2079. https://doi.org/10.3390/foods14122079
Yang X, Kang X, Li L, Zhang S. Highland Barley Tartary Buckwheat Coarse Grain Biscuits Ameliorated High-Fat Diet-Induced Hyperlipidaemia in Mice Through Gut Microbiota Modulation and Enhanced Short-Chain Fatty Acid Secretion Mice. Foods. 2025; 14(12):2079. https://doi.org/10.3390/foods14122079
Chicago/Turabian StyleYang, Xiuqing, Xiongfei Kang, Linfang Li, and Shaoyu Zhang. 2025. "Highland Barley Tartary Buckwheat Coarse Grain Biscuits Ameliorated High-Fat Diet-Induced Hyperlipidaemia in Mice Through Gut Microbiota Modulation and Enhanced Short-Chain Fatty Acid Secretion Mice" Foods 14, no. 12: 2079. https://doi.org/10.3390/foods14122079
APA StyleYang, X., Kang, X., Li, L., & Zhang, S. (2025). Highland Barley Tartary Buckwheat Coarse Grain Biscuits Ameliorated High-Fat Diet-Induced Hyperlipidaemia in Mice Through Gut Microbiota Modulation and Enhanced Short-Chain Fatty Acid Secretion Mice. Foods, 14(12), 2079. https://doi.org/10.3390/foods14122079