Inhibitory Mechanisms of Vine Tea Extract and Dihydromyricetin Against Escherichia coli: A Multidimensional Analysis from Cell Membrane to Protein Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Protein Mass Spectrometry
2.4. Determination of Lipid Content
2.5. RNA Extraction and Quantification Real-Time Fluorescence Quantitative PCR
2.6. Bioinformatics Analysis
2.7. Molecular Docking Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Identification of DEPs
3.2. Functional Annotation and Pathway Enrichment
3.3. Effects on E. coli Cell Membranes
3.3.1. DEPs Associated with Cationic Antimicrobial Peptide Resistance
3.3.2. DEPs Associated with Fatty Acid Metabolism
3.4. Lipidome Profiling Overview
3.5. Effects on E. coli Proteins
3.5.1. DEPs Related to Amino Acid Biosynthesis and Metabolism
3.5.2. DEPs Associated with Ribosome Assembly and Function
3.6. DEPs Associated with Nucleotide Metabolism
3.7. Effect of VTE on the Biosynthesis of E. coli Secondary Metabolites
3.8. Protein–Protein Interaction (PPI) Analysis
3.9. Evaluation of Selected Proteins by RT-qPCR
3.10. Molecular Docking Analysis of DMY Target Proteins in E. coli
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameters | Numerical Setting |
---|---|
Mass range | 50–1200 M/Z |
Capillary voltage | 3200 V(+)/2500 V(−) |
Resolution | >40,000 FWHM |
Ionization mode | ESI dual mode switching |
Sampling cone voltage | 35 V |
Desolvation temperature | 400 °C |
Desolvation gas flow | 800 L/H |
Cone gas flow | 50 L/H |
Source temperature | 120 °C |
Target Gene | Primer | Primer Sequence (5′−3′) |
---|---|---|
16 S rRNA | 16 S rRNA-F | GCTGCCCTTTGTATTGTC |
16 S rRNA-R | AGATGTTGGGTTAAGTCCC | |
ompA | ompA-F | TCCAGAGCAGCCTGACCTTC |
ompA-R | GCTGAGCCTGGGTGTTTCCT | |
yafC | yafC-F | AGTGAATTCAAGGAGATATACCA |
yafC-R | AGTAAGCTTTTAAGCCTCTCT | |
rpsC | rpsC-F | AGGAACTGGCTAAAGCGTCCG |
rpsC-R | CGACCTTCGCGGTACCATTCG | |
arnB | arnB-F | GCCTTCCCTGACCTGGGTTTC |
arnB-R | ATACGTACCGACGGCATGGGC | |
acrA | acrA-F | GAGTACGATCAGGCTCTGGCTG |
acrA-R | GCGTGCCATTCGCCAGTTCC | |
bamC | bamc-F | TGCTGGTGGAAAATGGTCGTGG |
bamc-R | TCCGTGCTGTAACGCTGCATG | |
hpt | hpt-F | CGACTTTATGACCGCCTCCAGC |
hpt-R | GGCAGATGACGGTAACGCTGTG | |
nrdA | nrdA-F | CCAGACAGCGGTGAAATCCTG |
nrdA-R | TTCCTGATCGGCGAAGAACGC |
References
- Zhang, S.Q.; Muhammad, A.; Mujeeb, U.R.; Wang, M.S.; Jia, R.Y.; Chen, S.; Liu, M.F.; Zhu, D.K.; Zhao, X.X.; Gao, Q.; et al. Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Sci. Total Environ. 2021, 799, 149280. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, P.; Dhakal, S.; Dozois, C.M. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef] [PubMed]
- Iwu, C.D.; Iwu-Jaja, C.J.; Okoh, A.I.; Otim, M.E.; Al Marzouqi, A.M. Estimating the Risk of Acute Gastrointestinal Disease Attributed to E. coli O157:H7 in Irrigation Water and Agricultural Soil: A Quantitative Microbial Risk Assessment. Sustainability 2022, 14, 1878. [Google Scholar] [CrossRef]
- Liu, C.; Sun, S.; Sun, Y.; Li, X.; Gu, W.; Luo, Y.; Wang, Q. Antibiotic resistance of Escherichia coli isolated from food and clinical environment in China from 2001 to 2020. Sci. Total Environ. 2024, 939, 173498. [Google Scholar] [CrossRef]
- Carneiro, R.C.V.; Ye, L.; Baek, N.; Teixeira, G.H.A.; O’Keefe, S.F. Vine tea (Ampelopsis grossedentata): A review of chemical composition, functional properties, and potential food applications. J. Funct. Foods 2021, 76, 104842. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Zhao, Y.F.; Zhang, M.Y.; Zhang, Y.L.; Ji, H.F.; Shen, L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J. Pharm. Anal. 2021, 11, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, S.S.; Yang, S.W.; Chen, C.; Yang, Y.T.; Lin, M.Y.; Liu, C.; Wang, W.M.; Zhou, X.D.; Ai, Q.D.; et al. Mechanism of Dihydromyricetin on Inflammatory Diseases. Front. Pharmacol. 2022, 12, 794563. [Google Scholar] [CrossRef]
- Ran, W.Y.; Yue, Y.X.; Long, F.W.; Zhong, K.; Bai, J.R.; Xiao, Y.; Bu, Q.; Huang, Y.N.; Wu, Y.P.; Gao, H. Antibacterial Mechanism of 2R,3R-Dihydromyricetin Against Staphylococcus aureus: Deciphering Inhibitory Effect on Biofilm and Virulence Based on Transcriptomic and Proteomic Analyses. Foodborne Pathog. Dis. 2023, 20, 90–99. [Google Scholar] [CrossRef]
- Wu, J.J.; Xiao, Z.W.; Li, H.F.; Zhu, N.; Gu, J.; Wang, W.M.; Liu, C.; Wang, W.; Qin, L. Present Status, Challenges, and Prospects of Dihydromyricetin in the Battle against Cancer. Cancers 2022, 14, 3487. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Y.N.; Gu, J.; He, P.; Ai, Q.D.; Zhou, X.D.; Wang, W.; Qin, L. Mechanisms of dihydromyricetin against hepatocellular carcinoma elucidated by network pharmacology combined with experimental validation. Pharm. Biol. 2023, 61, 1108–1119. [Google Scholar] [CrossRef]
- Pan, D.J.; Tang, Z.Z.; Zhang, Z.B.; Li, Q.X. Action Mechanisms and Pharmacokinetics of Dihydromyricetin against Obesity. ACS Food Sci. Technol. 2022, 3, 539–545. [Google Scholar] [CrossRef]
- Zou, D.; Chen, K.; Liu, P.; Chang, H.; Zhu, J.D.; Mi, M.T. Dihydromyricetin Improves Physical Performance under Simulated High Altitude. Med. Sci. Sports Exerc. 2014, 46, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Pang, W.; Ding, L.; Sun, J. An insight into the inhibitory activity of dihydromyricetin against Vibrio parahaemolyticus. Food Control 2016, 67, 25–30. [Google Scholar] [CrossRef]
- Xiao, X.N.; Wang, J.N.; Tan, X.X.; Hu, J.X.; Yi, X. Antibacterial activity and influential factors of dihydromyricetin. J. Chin. Inst. Food Sci. Technol. 2016, 16, 124–129. [Google Scholar] [CrossRef]
- Cui, S.M.; Li, T.; Liang, H.Y.; He, K.K.; Zheng, Y.M.; Tang, M.; Ke, C.R.; Song, L.Y. Antibacterial activities and mechanisms of vine tea extract and 2R, 3R-Dihydromyricetin on Escherichia coli. LWT-Food Sci. Technol. 2021, 146, 111393. [Google Scholar] [CrossRef]
- Han, X.L.; Gross, R.W. The foundations and development of lipidomics. J. Lipid Res. 2022, 63, 100164. [Google Scholar] [CrossRef]
- Raetz, C.R.; Dowhan, W. Discovery of new biosynthetic pathways: The lipid A story. J. Lipid Res. 2009, 50, S103–S108. [Google Scholar] [CrossRef]
- Flavien, D.; Capucine, P.; Maryam, D.; Tatiana, K.; Xavier, W.; Edyta, C.; Eugenie, J.; Alexey, N.; Jerome, K.; Martine, C. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int. J. Mol. Sci. 2024, 25, 3927. [Google Scholar] [CrossRef]
- Han, W.; Ma, X.L.; Balibar, C.J.; Rath, C.M.B.; Benton, B.; Bermingham, A.; Casey, F.; Chie-Leon, B.; Cho, M.K.; Frank, A.O.; et al. Two Distinct Mechanisms of Inhibition of LpxA Acyltransferase Essential for Lipopolysaccharide Biosynthesis. J. Am. Chem. Soc. 2020, 142, 4445–4455. [Google Scholar] [CrossRef]
- Scarbrough, B.A.; Eade, C.R.; Reid, A.J.; Williams, T.C.; Troutman, J.M. Lipopolysaccharide Is a 4-Aminoarabinose Donor to Exogenous Polyisoprenyl Phosphates through the Reverse Reaction of the Enzyme ArnT. ACS Omega 2021, 6, 25729–25741. [Google Scholar] [CrossRef]
- Trent, M.S.; Ribeiro, A.A.; Lin, S.H.; Cotter, R.J.; Raetz, C.R.H. An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-L-arabinose to lipid A-Induction in polymyxin-resistant mutants and role of a novel lipid-linked donor. J. Biol. Chem. 2001, 276, 43122–43131. [Google Scholar] [CrossRef] [PubMed]
- Rowley, G.; Spector, M.; Kormanec, J.; Roberts, M. Pushing the envelope: Extracytoplasmic stress responses in bacterial pathogens. Nat. Rev. Microbiol. 2006, 4, 383–394. [Google Scholar] [CrossRef]
- Delhaye, A.; Laloux, G.; Collet, J.F. The Lipoprotein NlpE Is a Cpx Sensor That Serves as a Sentinel for Protein Sorting and Folding Defects in the Escherichia coli Envelope. J. Bacteriol. 2019, 201, e00611–e00618. [Google Scholar] [CrossRef]
- Pogliano, J.; Lynch, A.S.; Belin, D.; Lin, E.C.; Beckwith, J. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 1997, 11, 1169–1182. [Google Scholar] [CrossRef]
- Justice, S.S.; Hunstad, D.A.; Harper, J.R.; Duguay, A.R.; Pinkner, J.S.; Bann, J.; Frieden, C.; Silhavy, T.J.; Hultgren, S.J. Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J. Bacteriol. 2005, 187, 7680–7686. [Google Scholar] [CrossRef]
- Seiji, Y.; Tomohiro, Y.; Sota, I.; Mitsuko, H.N.; Kunihiko, N. Investigating multidrug efflux pumps associated with fatty acid salt resistance in Escherichia coli. Front. Microbiol. 2023, 14, 954304. [Google Scholar] [CrossRef]
- Ashtiani, E.E.; Gholizadeh, S.Z.; Mirpour, M.; Soltani, B.M. RND pump inhibition: In-silico and in-vitro study by Eugenol on clinical strain of E. coli and P. aeruginosa. Silico Pharmacol. 2023, 11, 22. [Google Scholar] [CrossRef]
- Brock, M.; Maerker, C.; Schütz, A.; Völker, U.; Buckel, W. Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. Eur. J. Biochem. 2002, 269, 6184–6194. [Google Scholar] [CrossRef] [PubMed]
- Dolan, S.K.; Wijaya, A.; Kohlstedt, M.; Gläser, L.; Brear, P.; Silva-Rocha, R.; Wittmann, C.; Welch, M. Systems-Wide Dissection of Organic Acid Assimilation in Pseudomonas aeruginosa Reveals a Novel Path To Underground Metabolism. Mbio 2022, 13, e0254122. [Google Scholar] [CrossRef]
- Audrey, N.R.; Brent, W.S.; Gregory, B.; Trent, M.S. PlsX and PlsY: Additional roles beyond glycerophospholipid synthesis in Gram-negative bacteria. Mbio 2024, 15, e0296924. [Google Scholar] [CrossRef]
- Thomas, J.; Cronan, J.E. The enigmatic acyl carrier protein phosphodiesterase of Escherichia coli: Genetic and enzymological characterization. J. Biol. Chem. 2005, 280, 34675–34683. [Google Scholar] [CrossRef] [PubMed]
- Neha, S.; Harinder, S.; Deepti, A. Overview of the cellular stress responses involved in fatty acid overproduction in E. coli. Overview of the cellular stress responses involved in fatty acid overproduction in E. coli. Mol. Biotechnol. 2022, 64, 373–387. [Google Scholar] [CrossRef]
- Pramanik, A.; Pawar, S.; Antonian, E.; Schulz, H. Five different enzymatic activities are associated with the multienzyme complex of fatty acid oxidation from Escherichia coli. J. Bacteriol. 1979, 137, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.W.; Morgan-Kiss, R.M.; Cronan, J.E. A new Escherichia coli metabolic competency: Growth on fatty acids by a novel anaerobic beta-oxidation pathway. Mol. Microbiol. 2003, 47, 793–805. [Google Scholar] [CrossRef]
- Agrawal, S.; Jaswal, K.; Shiver, A.L.; Balecha, H.; Patra, T.; Chaba, R. A genome-wide screen in Escherichia coli reveals that ubiquinone is a key antioxidant for metabolism of long-chain fatty acids. J. Biol. Chem. 2017, 292, 20086–20099. [Google Scholar] [CrossRef]
- Jaswal, K.; Shrivastava, M.; Chaba, R. Revisiting long-chain fatty acid metabolism in Escherichia coli: Integration with stress responses. Curr. Genet. 2021, 67, 573–582. [Google Scholar] [CrossRef]
- Raetz, C.R.; Dowhan, W. Biosynthesis and function of phospholipids in Escherichia coli. J. Biol. Chem. 1990, 265, 1235–1238. [Google Scholar] [CrossRef]
- Hines, K.M.; Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chem. Phys. Lipids 2019, 219, 15–22. [Google Scholar] [CrossRef]
- Zamani, E.; Johnson, T.J.; Chatterjee, S.; Immethun, C.; Sarella, A.; Saha, R.; Dishari, S.K. Cationic π-Conjugated Polyelectrolyte Shows Antimicrobial Activity by Causing Lipid Loss and Lowering Elastic Modulus of Bacteria. Acs Appl. Mater. Interfaces 2020, 12, 49346–49361. [Google Scholar] [CrossRef]
- Willdigg, J.R.; Helmann, J.D. Mini Review: Bacterial Membrane Composition and Its Modulation in Response to Stress. Front. Mol. Biosci. 2021, 8, 634438. [Google Scholar] [CrossRef]
- Oursel, D.; Loutelier-Bourhis, C.; Orange, N.; Chevalier, S.; Lange, C.M. Identification and relative quantification of fatty acids in Escherichia coli membranes by gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 3229–3233. [Google Scholar] [CrossRef] [PubMed]
- He, T.F.; Zhang, Z.H.; Zeng, X.A.; Wang, L.H.; Brennan, C.S. Determination of membrane disruption and genomic DNA binding of cinnamaldehyde to Escherichia coli by use of microbiological and spectroscopic techniques. J. Photochem. Photobiol. B-Biol. 2018, 178, 623–630. [Google Scholar] [CrossRef]
- Suzuki, A.; Knaff, D.B. Glutamate synthase: Structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynth. Res. 2005, 83, 191–217. [Google Scholar] [CrossRef] [PubMed]
- Reitzer, L. Nitrogen assimilation and global regulation in Escherichia coli. Annu. Rev. Microbiol. 2003, 57, 155–176. [Google Scholar] [CrossRef]
- Freddi, L.; Damiano, M.A.; Chaloin, L.; Pennacchietti, E.; Al Dahouk, S.; Kohler, S.; De Biase, D.; Occhialini, A. The Glutaminase-Dependent System Confers Extreme Acid Resistance to New Species and Atypical Strains of Brucella. Front. Microbiol. 2017, 8, 2236. [Google Scholar] [CrossRef]
- Meister, A. Mechanism and regulation of the glutamine-dependent carbamyl phosphate synthetase of Escherichia coli. Adv. Enzymol. Relat. Areas Mol. Biol. 1989, 62, 315–374. [Google Scholar] [CrossRef]
- Boehlein, S.K.; Richards, N.G.; Schuster, S.M. Glutamine-dependent nitrogen transfer in Escherichia coli asparagine synthetase B. Searching for the catalytic triad. J. Biol. Chem. 1994, 269, 7450–7457. [Google Scholar] [CrossRef]
- Klem, T.J.; Davisson, V.J. Imidazole glycerol phosphate synthase: The glutamine amidotransferase in histidine biosynthesis. Biochemistry 1993, 32, 5177–5186. [Google Scholar] [CrossRef] [PubMed]
- Gil, F.; Ramón-Maiques, S.; Marina, A.; Fita, I.; Rubio, V. N-Acetyl-L-glutamate kinase from Escherichia coli: Cloning of the gene, purification and crystallization of the recombinant enzyme and preliminary X-ray analysis of the free and ligand-bound forms. Acta Crystallogr. D Biol. Crystallogr 1999, 55, 1350–1352. [Google Scholar] [CrossRef]
- Legrain, C.; Stalon, V.; Glansdorff, N. Escherichia coli ornithine carbamolytransferase isoenzymes: Evolutionary significance and the isolation of lambdaargF and lambdaargI transducing bacteriophages. J. Bacteriol. 1976, 128, 35–38. [Google Scholar] [CrossRef]
- Diedrich, G.; Spahn, C.M.; Stelzl, U.; Schäfer, M.A.; Wooten, T.; Bochkariov, D.E.; Cooperman, B.S.; Traut, R.R.; Nierhaus, K.H. Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer. Embo J. 2000, 19, 5241–5250. [Google Scholar] [CrossRef] [PubMed]
- Zengel, J.M.; Jerauld, A.; Walker, A.; Wahl, M.C.; Lindahl, L. The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control. Rna 2003, 9, 1188–1197. [Google Scholar] [CrossRef]
- Chittum, H.S.; Champney, W.S. Erythromycin inhibits the assembly of the large ribosomal subunit in growing Escherichia coli cells. Curr. Microbiol. 1995, 30, 273–279. [Google Scholar] [CrossRef]
- Takyar, S.; Hickerson, R.P.; Noller, H.F. mRNA helicase activity of the ribosome. Cell 2005, 120, 49–58. [Google Scholar] [CrossRef]
- Nowotny, V.; Nierhaus, K.H. Assembly of the 30S subunit from Escherichia coli ribosomes occurs via two assembly domains which are initiated by S4 and S7. Biochemistry 1988, 27, 7051–7055. [Google Scholar] [CrossRef]
- Hoang, L.; Fredrick, K.; Noller, H.F. Creating ribosomes with an all-RNA 30S subunit P site. Proc. Natl. Acad. Sci. USA 2004, 101, 12439–12443. [Google Scholar] [CrossRef]
- Marquardt, O.; Roth, H.E.; Wystup, G.; Nierhaus, K.H. Binding of Escherichia coli ribosomal proteins to 23S RNA under reconstitution conditions for the 50S subunit. Nucleic Acids Res. 1979, 6, 3641–3650. [Google Scholar] [CrossRef] [PubMed]
- Sévin, D.C.; Fuhrer, T.; Zamboni, N.; Sauer, U. Nontargeted in vitro metabolomics for high-throughput identification of novel enzymes in Escherichia coli. Nat. Methods 2017, 14, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.D.; Sun, Q.; Fan, X.Y.; Zhong, Y.; Yao, Y.F.; Zhao, G.P. Mycobacterial MazG is a novel NTP pyrophosphohydrolase involved in oxidative stress response. J. Biol. Chem. 2010, 285, 28076–28085. [Google Scholar] [CrossRef]
- Reichard, P. Enzymatic synthesis of deoxyribonucleotides. I. Formation of deoxycytidine diphosphate from cytidine diphosphate with enzymes from Escherichia coli. J. Biol. Chem. 1962, 237, 3513–3519. [Google Scholar] [CrossRef]
- Imamura, R.; Yamanaka, K.; Ogura, T.; Hiraga, S.; Fujita, N.; Ishihama, A.; Niki, H. Identification of the cpdA gene encoding cyclic 3′,5′-adenosine monophosphate phosphodiesterase in Escherichia coli. J. Biol. Chem. 1996, 271, 25423–25429. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.H.; Park, H.Y.; Lee, J.H.; Jang, Y. Identification of the dITP- and XTP-hydrolyzing protein from Escherichia coli. J. Biochem. Mol. Biol. 2002, 35, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Savchenko, A.; Proudfoot, M.; Skarina, T.; Singer, A.; Litvinova, O.; Sanishvili, R.; Brown, G.; Chirgadze, N.; Yakunin, A.F. Molecular basis of the antimutagenic activity of the house-cleaning inosine triphosphate pyrophosphatase RdgB from Escherichia coli. J. Mol. Biol. 2007, 374, 1091–1103. [Google Scholar] [CrossRef]
- Burgis, N.E.; Cunningham, R.P. Substrate specificity of RdgB protein, a deoxyribonucleoside triphosphate pyrophosphohydrolase. J. Biol. Chem. 2007, 282, 3531–3538. [Google Scholar] [CrossRef]
- Guddat, L.W.; Vos, S.; Martin, J.L.; Keough, D.T.; de Jersey, J. Crystal structures of free, IMP-, and GMP-bound Escherichia coli hypoxanthine phosphoribosyltransferase. Protein Sci. 2002, 11, 1626–1638. [Google Scholar] [CrossRef]
- Cicchillo, R.M.; Baker, M.A.; Schnitzer, E.J.; Newman, E.B.; Krebs, C.; Booker, S.J. Escherichia coli L-serine deaminase requires a [4Fe-4S] cluster in catalysis. J. Biol. Chem. 2004, 279, 32418–32425. [Google Scholar] [CrossRef] [PubMed]
- Stover, P.; Zamora, M.; Shostak, K.; Gautam-Basak, M.; Schirch, V. Escherichia coli serine hydroxymethyltransferase. The role of histidine 228 in determining reaction specificity. J. Biol. Chem. 1992, 267, 17679–17687. [Google Scholar] [CrossRef]
- Nasir, N.; Anant, A.; Vyas, R.; Biswal, B.K. Crystal structures of Mycobacterium tuberculosis HspAT and ArAT reveal structural basis of their distinct substrate specificities. Sci. Rep. 2016, 6, 18880. [Google Scholar] [CrossRef]
- Teresa, P.M.; Felisa, N.M.; Aguilar, J.; Badia, J.; Baldoma, L. Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J. Bacteriol. 2003, 185, 5815–5821. [Google Scholar] [CrossRef]
- Freiberg, C.; Brunner, N.A.; Schiffer, G.; Lampe, T.; Pohlmann, J.; Brands, M.; Raabe, M.; Häbich, D.; Ziegelbauer, K. Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J. Biol. Chem. 2004, 279, 26066–26073. [Google Scholar] [CrossRef]
- Zhao, Q.; Wu, Y.; Li, B.; He, L.; Sun, J.; Pang, X.; Gu, S.; Li, X. OmpA is Involved in the Early Response of Escherichia coli to Antibiotics as a Hub Outer Membrane Protein. Appl. Biochem. Microbiol. 2023, 59, 608–621. [Google Scholar] [CrossRef]
- Chen, R.; Schmidmayr, W.; Krämer, C.; Chen-Schmeisser, U.; Henning, U. Primary structure of major outer membrane protein II (ompA protein) of Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 1980, 77, 4592–4596. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.T.; Chen, S.H.; Wood, E.A.; Cabot, E.L.; Cox, M.M. Escherichia coli genes and pathways involved in surviving extreme exposure to ionizing radiation. J. Bacteriol. 2014, 196, 3534–3545. [Google Scholar] [CrossRef]
E. coli Key Protein Targets | Binding Energy (kcal/mol) | Number of Hydrogen Bonds | Hydrogen Bonding Residues of the Enzyme |
---|---|---|---|
OmpA | –2.99 | 2 | VAL-121, GLU-93 |
RplB | –4.85 | 4 | TYR-83,GLY-27;VAL-19;LYS-26 |
RplV | –3.96 | 3 | ILE-4;ASN-6;LYS-6 |
RpsD | –3.26 | 1 | LEU-48 |
RpsC | –3.59 | 1 | AGR-169 |
AcrA | –2.21 | 2 | ARG-64; ILE-279 |
ArnB | –2.91 | 2 | PRO-284; LEU-287 |
LpxA | –4.16 | 3 | VAL-14 |
YafC | –4.68 | 3 | HIS-188, HIS-212, LYS-215 |
NrdA | –1.91 | 1 | ALA-646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Liang, H.; He, K.; Li, T.; Hui, Q.; Zhang, Y.; Dong, Y.; Jia, Y.; Song, L. Inhibitory Mechanisms of Vine Tea Extract and Dihydromyricetin Against Escherichia coli: A Multidimensional Analysis from Cell Membrane to Protein Synthesis. Foods 2025, 14, 2011. https://doi.org/10.3390/foods14122011
Ma W, Liang H, He K, Li T, Hui Q, Zhang Y, Dong Y, Jia Y, Song L. Inhibitory Mechanisms of Vine Tea Extract and Dihydromyricetin Against Escherichia coli: A Multidimensional Analysis from Cell Membrane to Protein Synthesis. Foods. 2025; 14(12):2011. https://doi.org/10.3390/foods14122011
Chicago/Turabian StyleMa, Wei, Haiyun Liang, Keke He, Ting Li, Qiaoni Hui, Yao Zhang, Yuxuan Dong, Yan Jia, and Liya Song. 2025. "Inhibitory Mechanisms of Vine Tea Extract and Dihydromyricetin Against Escherichia coli: A Multidimensional Analysis from Cell Membrane to Protein Synthesis" Foods 14, no. 12: 2011. https://doi.org/10.3390/foods14122011
APA StyleMa, W., Liang, H., He, K., Li, T., Hui, Q., Zhang, Y., Dong, Y., Jia, Y., & Song, L. (2025). Inhibitory Mechanisms of Vine Tea Extract and Dihydromyricetin Against Escherichia coli: A Multidimensional Analysis from Cell Membrane to Protein Synthesis. Foods, 14(12), 2011. https://doi.org/10.3390/foods14122011