Nanozyme-Powered Multimodal Sensing for Pesticide Detection
Abstract
1. Introduction
2. X-Based Nanozymes
2.1. Carbon-Based Nanozymes
2.1.1. Pure Carbon-Based Nanozymes
2.1.2. Carbon-Based Nanozymes Doped with Other Atoms
2.2. Metal-Based Nanozymes
2.2.1. Single-Metal-Based Nanozyme
2.2.2. Multi-Metal-Based Nanozyme
2.3. Metal-Oxide-Based Nanozymes
2.4. MOF-Based Nanozymes
2.5. Fluorescence-Based Nanozymes
2.6. Other X-Based Nanozymes
3. Multimodal Sensing Technology
3.1. Colorimetric/Fluorescence Sensing
Multimodal Sensors | Nanozyme | Detected Pesticides | Sample | Sensors | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|---|---|---|
Colorimetric/Fluorescence | CPNs(Ⅳ) | Malathion | Unhulled Rice Cucumber | Colorimetric | 0.06–3 μg mL−1 | 0.032 μg mL−1 | [190] |
Fluorescence | 0.062–15.46 μg mL−1 | 0.046 μg mL−1 | |||||
Fe3O4/GONRs | Thiophanate-methyl | Apple Water Rice Cabbages | Colorimetric | 0.05–8 μg mL−1 | 28.1 ng mL−1 | [191] | |
Fluorescence | 0.02–10 μg mL−1 | 8.81 ng mL−1 | |||||
AuNCs-MnO2 | Carbaryl | Water, Soil Rice, Apple | Colorimetric | / | 12.5 μg mL−1 | [192] | |
Fluorescence | 0.125–750 μg L−1 | 0.125 μg L−1 | |||||
h-BN QDs | Atrazine Simazine Chlorpyrifos | Cucumbers Tomatoes Grapes Mangoes | Colorimetric | 0–400 µM | 2.47 µM | [193] | |
Fluorescence | 0–600 µM | 8.08 µM | |||||
Fluorescence/Photothermal | PDA NPs | Dimethoate | Water | Fluorescence | 1–100 μM | 0.1 μM | [194] |
Photothermal | 1–2000 μM | 0.1 μM | |||||
MnO2NSs | Dichlorvos Chlorpyrifos | Tea Brown Rice | Fluorescence | 0.1–8000 ng mL−1 | 0.86 ng mL−1 | [195] | |
Photothermal | 10–10,000 ng mL−1 | 1.01 ng mL−1 | |||||
MnO2NSs | Isocarbophos | Apple Cowpea Water | Fluorescence | 0.24–7.81 ng mL−1 | 0.21 pg mL−1 | [196] | |
Photothermal | 41.15–10,000 ng mL−1 | 2.62 pg mL−1 | |||||
ZIF-Co-Cys | Dimethyl Dichloroviny Phosphate | Tea Brown Rice Wheat Flour | Fluorescence | 2–100 ng mL−1 | 1.64 ng mL−1 | [197] | |
Photothermal | 10–10,000 ng mL−1 | 0.084 ng mL−1 | |||||
Photothermal/Colorimetric | PCN-224-Mn | Glyphosate | Tea Brown Rice Wheat Flour | Photothermal | 5–10,000 ng mL−1 | 2.00 ng mL−1 | [198] |
Colorimetric | 5–10,000 ng mL−1 | 1.47 ng mL−1 | |||||
2D-ZHM | Glyphosate Omethoate | Water Apple Pear | Photothermal | 0.04–2 nM | 0.02 nM | [199] | |
Colorimetric | 0.01–1 nM | 0.004 nM | |||||
ZrFc@CPN | Glyphosate | Rice Millet Soybean | Photothermal | 0.039–20.16 μg mL−1 | 0.0289 μg mL−1 | [200] | |
Colorimetric | 0.039–20.49 μg mL−1 | 0.0326 μg mL−1 | |||||
Other multimodal sensors | ACC-HNFs | Paraoxon | Water Rice Apple | Colorimetric | 0.01–100 ng mL−1 | 10 pg mL−1 | [201] |
Electrochemical | 6.0 × 10−6–0.6 ng mL−1 | 6 fg mL−1 | |||||
COF/MB@MnO2 | Chlorpyrifos | Water Cabbages Chinese Chives Apples | Photothermal | 0–8000 ng mL−1 | 0.108 ng mL−1 | [202] | |
Electrochemical | 0.5–200 ng mL−1 | 0.0632 ng mL−1 | |||||
MO@FHO | Malathion | Spinach | Colorimetric | 0.001–50 μmol/L | 0.26 ng mL−1 | [203] | |
Photoelectrochemical | 0.0001–0.5 μmol/L | 0.017 ng mL−1 | |||||
N-CDs/FMOF-Zr | Glyphosate | Rice Millet Soybean | Colorimetric | 0.039–3.19 µg mL−1 | 0.0131 µg mL−1 | [164] | |
Fluorescence | 0.0088–3.98 µg mL−1 | 0.0015 µg mL−1 | |||||
Photothermal | 0.016–3.98 µg mL−1 | 0.0115 µg mL−1 |
3.2. Fluorescence/Photothermal Sensing
3.3. Photothermal/Colorimetric Sensing
3.4. Other Multimodal Sensing
4. AI in Nanozymes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D-VONz | Two-dimensional V2O5 nanosheets |
2D-ZHM | Two-dimensional hemin-bridged MOF nanozyme |
AA | Ascorbic acid |
AAP | Ascorbic acid-2-phosphate |
ACC-HNFs | All-in-one enzyme–inorganic hybrid nanoflowers |
AChE | Acetylcholinesterase |
ACP | Acid phosphatase |
ACQ | Aggregation-induced quenching |
ALP | Alkaline phosphatase |
Apt | Aptamers |
APTES | 3-aminopropyl triethoxysilane |
AR | Amplex Red |
Asp | L-aspartic acid |
ASP-Cu | L-aspartic acid–copper |
AuNCs | Gold nanoclusters |
aZIF-8 | Amorphous zeolite imidazole framework-8 |
BNPP | Bis(4-nitrophenyl) phosphate |
BPY-Cu | 4,4′-bipyridine–copper |
BSA | Bovine serum albumin |
C60 | Fullerene |
Ce (OAc)3 | Cerium acetate |
CH-BC | Chlorella biochar |
CHOx | Choline oxidase |
Clx-pNC | Cl and O dual-doped nitrogen-doped porous carbon nanoezymes |
CNN | Convolutional neural network |
COF/MB@MnO2 | A novel COF/methylene blue@MnO2 composite nanozyme |
CPNs | Copper peroxide nanodots |
CPNs(IV) | Cerium-based coordination polymer nanoparticles |
Cu@NC | Copper-doped carbon-based nanozyme |
CuCl | Cuprous chloride |
CuNCs | Glutathione-capped copper nanoclusters |
CuNFs | DNA-Cu nanoflowers |
DA | Dopamine |
DAP | 2,3-diaminophenazine |
DFQ | 3-(1,2-dihydroxyethyl) furan [3,4-b] quinoline-1(3H) |
DICY | Dimethylglyoxime |
EP-BC | Enteromorpha biochar |
FDP | Fluorescein diphosphate |
FMOF-Zr | Zr-based ferrocene metal–organic framework |
FRET | Förster resonance energy transfer |
GMP | Guanosine monophosphate |
GMP-Cu | Guanosine 5′-monophosphate–copper |
GO | Graphene oxide |
GQDs | Graphene quantum dots |
H2BDC | 2,5-dihydroxybenzoic acid |
h-BN QDs | Hydroxyl-functionalized hexagonal boron nitride quantum dots |
HCA | Hierarchical clustering analysis |
His | Histidine |
ICP | Infinite coordination polymer |
IFE | Internal filter effect |
K2HPO4 | Dipotassium hydrogen phosphate |
LAC | Laccase-like |
LDA | Linear discriminant analysis |
LOD | Limit of detection |
MB | Methylene blue |
MIECL | Molecular imprinting electrochemiluminescence |
MIZ-Cu | 2-methylimidazole–copper |
Mn@NC | Manganese–nitrogen-co-doped carbon-based nanoenzymes |
MnCu NFs | Manganese–copper nanoflowers |
MnNS | MnO2 nanosheets |
MO@FHO | Ultrathin FeOOH-coated MnO2 nanozyme |
MOF | Metal–organic framework |
MRLs | Maximum residue limits |
N-CDs | Nitrogen-doped carbon dots |
NG | Nitrogen-doped graphene |
NH2-BDC | 2-aminoterephthalic acid |
N-Pdene | Pd metalene nanoenzyme |
NPs | Nanoparticles |
NSG | Nitrogen- and sulfur-co-doped graphene |
OPD | O-phenylenediamine |
OPH | Organophosphorus hydrolase |
OPs | Organophosphorus pesticides |
PCA | Principal component analysis |
PCN-224-Mn | Manganese-modified porphyrin metal–organic framework |
PDA | Polydopamine |
PEG | Polyethylene glycol |
POCNS | Phosphorus–oxygen-co-doped carbon nanosheet |
POD | Peroxidase-like |
POMS | Peroxymonosulfate |
PPs | Pyrethroid pesticides |
Pt NPs | Platinum-based nanoparticles |
Pt-Ni NPs | Platinum–nickel bimetallic nanoparticles |
PVP | Polyvinylpyrrolidone |
RASFF | Rapid Alert System for Food and Feed |
RF | Random Forest |
ROS | Reactive oxygen species |
SA-CoN3 | Cobalt single-atom nanoenzymes with unsaturated coordination structure |
SDBS | Sodium dodecyl benzene sulfonate |
SOD | Superoxide dismutase-like |
SP-BC | Spirulina biochar |
SPCE | Screen-printed carbon electrode |
SPE | Solid-Phase Extraction |
SUs | Sulfonylurea pesticides |
SVM | Support Vector Machine |
TEOS | Tetraethyl orthosilicate |
TM | Thiophanate-methyl |
TMB | 3,3′,5,5′-tetramethylbenzidine |
TPPO | Triphenylphosphine oxide |
ZIFs | Zeolite imidazolate framework |
References
- Ni, B.; Xiao, L.; Lin, D.; Zhang, T.-L.; Zhang, Q.; Liu, Y.; Chen, Q.; Zhu, D.; Qian, H.; Rillig, M.C.; et al. Increasing pesticide diversity impairs soil microbial functions. Proc. Natl. Acad. Sci. USA 2025, 122, e2419917122. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Saran, R.K.; Srivastava, S.; Rensing, C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. Sci. Total Environ. 2024, 935, 173026. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Parks, C.G.; Hofmann, J.N.; Freeman, L.E.B.; Sandler, D.P. Pesticide use and inflammatory bowel disease in licensed pesticide applicators and spouses in the Agricultural Health Study. Environ. Res. 2024, 249, 118464. [Google Scholar] [CrossRef] [PubMed]
- Alehashem, M.; Alcaraz, A.J.; Hogan, N.; Weber, L.; Siciliano, S.D.; Hecker, M. Linking pesticide exposure to neurodegenerative diseases: An in vitro investigation with human neuroblastoma cells. Sci. Total Environ. 2024, 933, 173041. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Kamalesh, R.; Karishma, S.; Saravanan, A. Progress in environmental monitoring and mitigation strategies for herbicides and insecticides: A comprehensive review. Chemosphere 2024, 352, 141421. [Google Scholar] [CrossRef]
- Liu, N.; Huang, J.; Liu, X.; Wu, J.; Huang, M. Pesticide-induced metabolic disruptions in crops: A global perspective at the molecular level. Sci. Total Environ. 2024, 957, 177665. [Google Scholar] [CrossRef]
- Munir, S.; Azeem, A.; Zaman, M.S.; Ul Haq, M.Z. From field to table: Ensuring food safety by reducing pesticide residues in food. Sci. Total Environ. 2024, 922, 171382. [Google Scholar] [CrossRef]
- Marimuthu, M.; Xu, K.; Song, W.; Chen, Q.; Wen, H. Safeguarding food safety: Nanomaterials-based fluorescent sensors for pesticide tracing. Food Chem. 2025, 463, 141288. [Google Scholar] [CrossRef]
- Chen, C.; Teng, G.; Shen, W.; Lu, Y.; Jin, Y.; Yuan, X.; Chen, K.; Yuan, Y.; Wu, Z.; Zhang, J. Green Carbon Dots/CaCO3/Abamectin Colloidal Pesticide Formulation for Safer and More Effective Pest Management. ACS Nano 2024, 19, 1007–1025. [Google Scholar] [CrossRef] [PubMed]
- Abad, A.; Barzinpour, F.; Pishvaee, M.S. Toward agri-food supply chain viability under pest spread risk. J. Ind. Inf. Integr. 2025, 45, 31. [Google Scholar] [CrossRef]
- Grewal, D.; Guha, A.; Noble, S.M.; Bentley, K. The food production-consumption chain: Fighting food insecurity, loss, and waste with technology. J. Acad. Mark. Sci. 2024, 52, 1412–1430. [Google Scholar] [CrossRef]
- Izma, G.; Raby, M.; Prosser, R.; Rooney, R. Urban-use pesticides in stormwater ponds and their accumulation in biofilms. Sci. Total Environ. 2024, 918, 170534. [Google Scholar] [CrossRef]
- Rowley, J.J.L.; Symons, A.; Doyle, C.; Hall, J.; Rose, K.; Stapp, L.; Lettoof, D.C. Broad-scale pesticide screening finds anticoagulant rodenticide and legacy pesticides in Australian frogs. Sci. Total Environ. 2024, 930, 172526. [Google Scholar] [CrossRef]
- Chen, S.; Bo, X.; Xu, Z. Mapping pesticide residues in soil for China: Characteristics and risks. J. Hazard. Mater. 2024, 479, 135696. [Google Scholar] [CrossRef]
- Fei-Baffoe, B.; Dankwah, K.A.; Sangber-Dery, A.; Amuah, E.E.Y.; Sackey, L.N.-A. Evaluation and implications of organophosphate pesticide residues in cabbage (Brassica oleracea). Heliyon 2024, 10, e34279. [Google Scholar] [CrossRef]
- Hakme, E.; Hajeb, P.; Herrmann, S.S.; Poulsen, M.E. Processing factors of pesticide residues in cereal grain fractions. Food Control. 2024, 161, 110369. [Google Scholar] [CrossRef]
- Miao, S.; Wei, Y.; Pan, Y.; Wang, Y.; Wei, X. Detection methods, migration patterns, and health effects of pesticide residues in tea. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2945–2976. [Google Scholar] [CrossRef]
- Sindhu, S.; Manickavasagan, A. Nondestructive testing methods for pesticide residue in food commodities: A review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1226–1256. [Google Scholar] [CrossRef]
- Sharma, T.; Natesh, N.S.; Pothuraju, R.; Batra, S.K.; Rachagani, S. Gut microbiota: A non-target victim of pesticide-induced toxicity. Gut Microbes 2023, 15, 2187578. [Google Scholar] [CrossRef] [PubMed]
- Parks, C.G.; Leyzarovich, D.; Love, S.-A.; Long, S.; Hofmann, J.N.; Freeman, L.E.B.; Sandler, D.P. High pesticide exposures events, pesticide poisoning, and shingles: A medicare-linked study of pesticide applicators in the agricultural health study. Environ. Int. 2023, 181, 108251. [Google Scholar] [CrossRef] [PubMed]
- Straw, E.A. Landscapes of pesticide risk. Nat. Ecol. Evol. 2023, 7, 495–496. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, R.; Gunnigle, E.; Geissen, V.; Clarke, G.; Nagpal, J.; Cryan, J.F. Pesticide exposure and the microbiota-gut-brain axis. ISME J. 2023, 17, 1153–1166. [Google Scholar] [CrossRef]
- Richardson, J.R.; Fitsanakis, V.; Westerink, R.H.S.; Kanthasamy, A.G. Neurotoxicity of pesticides. Acta Neuropathol. 2019, 138, 343–362. [Google Scholar] [CrossRef]
- Bakian, A.V.; VanDerslice, J.A. Pesticides and autism. Br. Med. J. 2019, 364, l1149. [Google Scholar] [CrossRef]
- Lopez, L.; Kogut, K.; Rauch, S.; Gunier, R.B.; Wong, M.P.; Harris, E.; Deardorff, J.; Eskenazi, B.; Harley, K.G. Organophosphate pesticide exposure and risk of SARS-CoV-2 infection. Environ. Res. 2024, 255, 119214. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, H.; Chang, Q.; Fan, C. PRIAS: An Intelligent Analysis System for Pesticide Residue Detection Data and Its Application in Food Safety Supervision. Foods 2022, 11, 780. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhuang, Y.; Guo, S.; Sohan, A.S.M.M.F.; Yin, B. Advances in Microfluidics Techniques for Rapid Detection of Pesticide Residues in Food. Foods 2023, 12, 2868. [Google Scholar] [CrossRef]
- Sojithamporn, P.; Leksakul, K.; Sawangrat, C.; Charoenchai, N.; Boonyawan, D. Degradation of Pesticide Residues in Water, Soil, and Food Products via Cold Plasma Technology. Foods 2023, 12, 4386. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; Li, C.; Qian, H.; Yao, W.; Guo, Y. The present situation of pesticide residues in China and their removal and transformation during food processing. Food Chem. 2021, 354, 129552. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, J.; Wu, C.; Liu, H.; Zhao, M.; Shi, H.; Zhang, Y.; Wang, T. Smartphone-assisted colorimetric biosensor for the determination of organophosphorus pesticides on the peel of fruits. Food Chem. 2024, 443, 138459. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, F.; Yuan, R.; Zhong, X.; Zhuo, Y. Electrochemiluminescence covalent organic framework coupling with CRISPR/Cas12a-mediated biosensor for pesticide residue detection. Food Chem. 2022, 389, 133049. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Li, Y.; Du, T.; Qi, Y. Recent advances in integrated dual-mode optical sensors for food safety detection. Trends Food Sci. Technol. 2023, 135, 14–31. [Google Scholar] [CrossRef]
- Zeng, S.; Sun, X.; Wan, X.; Qian, C.; Yue, W.; Sohan, A.S.M.M.F.; Lin, X.; Yin, B. A cascade Fermat spiral microfluidic mixer chip for accurate detection and logic discrimination of cancer cells. Analyst 2022, 147, 3424–3433. [Google Scholar] [CrossRef]
- Baiz, C.R.; Blasiak, B.; Bredenbeck, J.; Cho, M.; Choi, J.-H.; Corcelli, S.A.; Dijkstra, A.G.; Feng, C.-J.; Garrett-Roe, S.; Ge, N.-H.; et al. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem. Rev. 2020, 120, 7152–7218. [Google Scholar] [CrossRef]
- Kharbach, M.; Alaoui Mansouri, M.; Taabouz, M.; Yu, H. Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches. Foods 2023, 12, 2753. [Google Scholar] [CrossRef]
- Ju, F.Y.; Wang, Y.J.; Yin, B.F.; Zhao, M.Y.; Zhang, Y.P.; Gong, Y.Y.; Jiao, C.G. Microfluidic Wearable Devices for Sports Applications. Micromachines 2023, 14, 1792. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Zhang, Y.-X.; Wang, W.-L.; Sun, D.-M.; Li, P.-Y.; Feng, X.-S.; Tan, Y. Pretreatment and analysis techniques development of TKIs in biological samples for pharmacokinetic studies and therapeutic drug monitoring. J. Pharm. Anal. 2024, 14, 100899. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Camara, J.S. QuEChERS—Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Lu, J.; Liu, J.; Li, F.; Wang, N.; Lei, H.; Shen, X. Optimization of a QuEChERS-LC-MS/MS method for 51 pesticide residues followed by determination of the residue levels and dietary intake risk assessment in foodstuffs. Food Chem. 2024, 434, 137467. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiao, B.; Zhao, Q.; Wang, C.; Chen, A.; Cui, Y.; He, Y.; Li, J. Determination, temporal variation and potential health risk assessment of pesticide residues in grapes from South and Southwest China. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2024, 41, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Zhang, Y.; Zhang, M.; Qi, J.; Zhao, W.; Gu, J.; Guo, W.; Li, Y. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA. Food Chem. 2022, 387, 132932. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Xiang, Y.; Cao, H.; Li, Y. Simultaneous Determination of Trace Matrine and Oxymatrine Pesticide Residues in Tea by Magnetic Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Test. 2024, 8, 245–250. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, X.; Li, X.; Liu, J.; Jiang, G. Simultaneous determination of 19 bromophenols by gas chromatography-mass spectrometry (GC-MS) after derivatization. Talanta 2024, 274, 126015. [Google Scholar] [CrossRef]
- Yin, B.; Wan, X.; Qian, C.; Sohan, A.S.M.M.F.; Zhou, T.; Yue, W. Enzyme Method-Based Microfluidic Chip for the Rapid Detection of Copper Ions. Micromachines 2021, 12, 1380. [Google Scholar] [CrossRef]
- Ma, S.; Luo, Y.; Sui, B.; Chai, G.; Zhang, Y.; Ouyang, G.; Zhang, S.; Zhang, Q.; Zhao, W. Acoustic Levitation-Controlled Droplets for Contactless Enrichment and Sensitive Detection of Volatile Organic Substances Integrated with GC-MS. Anal. Chem. 2024, 96, 13944–13952. [Google Scholar] [CrossRef]
- Yin, B.-F.; Wan, X.-H.; Yang, M.-Z.; Qian, C.-C.; Sohan, A.S.M.M.F. Wave-shaped microfluidic chip assisted point-of-care testing for accurate and rapid diagnosis of infections. Mil. Med. Res. 2022, 9, 8. [Google Scholar] [CrossRef]
- Shan, Q.; Wan, Y.; Liang, J.; He, W.; Zeng, J.; Liang, W.; Xiong, S.; Zhang, M.; Wang, B.; Zou, X.; et al. HS-SPME combined with GC-MS and GC-O for characterization of key aroma-active compounds in fruity and grassy peppers (Capsicum chinense Jacq.). Food Chem.-X 2024, 24, 101944. [Google Scholar] [CrossRef]
- Qu, G.; Chen, B.; Liu, S.; Zhang, Q.; Yang, Y.; Fu, Q. A Modified QuEChERS-DART-MS/MS Technique for High-Throughput Detection of Organophosphate Nerve Agent Hydrolysis Products in Environmental Samples. J. Anal. Test. 2023, 7, 163–171. [Google Scholar] [CrossRef]
- Pang, Z.; Xu, L.; Viau, C.; Lu, Y.; Salavati, R.; Basu, N.; Xia, J. MetaboAnalystR 4.0: A unified LC-MS workflow for global metabolomics. Nat. Commun. 2024, 15, 3675. [Google Scholar] [CrossRef] [PubMed]
- Budagova, G.; Buyukunal, S.K.; Muratoglu, K. Determination of mycotoxins in breakfast cereals by LC-MS/MS. Food Control 2025, 168, 110971. [Google Scholar] [CrossRef]
- Yin, B.; Qian, C.; Wan, X.; Sohan, A.S.M.M.F.; Lin, X. Tape integrated self-designed microfluidic chip for point-of-care immunoassays simultaneous detection of disease biomarkers with tunable detection range. Biosens. Bioelectron. 2022, 212, 114429. [Google Scholar] [CrossRef]
- Luo, J.; Liu, R.; Zhao, S.; Gao, Y. Bimetallic Fe-Co Nanoalloy Confined in Porous Carbon Skeleton with Enhanced Peroxidase Mimetic Activity for Multiple Biomarkers Monitoring. J. Anal. Test. 2023, 7, 53–68. [Google Scholar] [CrossRef]
- Shi, Z.; Wu, Y.; Ruan, X.; Zhai, W.; Li, Z.; Zhai, L.; Zhang, A.; Zhang, H. Perspectives on phase engineering of nanomaterials. Natl. Sci. Rev. 2024, 11, nwae289. [Google Scholar] [CrossRef]
- Zou, G.; Sow, C.H.; Wang, Z.; Chen, X.; Gao, H. Mechanomaterials and Nanomechanics: Toward Proactive Design of Material Properties and Functionalities. Acs Nano 2024, 18, 11492–11502. [Google Scholar] [CrossRef]
- Diao, Q.; Chen, X.; Tang, Z.; Li, S.; Tian, Q.; Bu, Z.; Liu, H.; Liu, J.; Niu, X. Nanozymes: Powerful catalytic materials for environmental pollutant detection and degradation. Environ. Sci.-Nano 2024, 11, 766–796. [Google Scholar] [CrossRef]
- Qin, J.; Guo, N.; Yang, J.; Wei, J. Recent advances in metal oxide nanozyme-based optical biosensors for food safety assays. Food Chem. 2024, 447, 139019. [Google Scholar] [CrossRef]
- Shen, Z.; Xu, D.; Wang, G.; Geng, L.; Xu, R.; Wang, G.; Guo, Y.; Sun, X. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. J. Hazard. Mater. 2022, 440, 129707. [Google Scholar] [CrossRef]
- Rao, H.; Xue, X.; Luo, M.; Liu, H.; Xue, Z. Recent advances in the development of colorimetric analysis and testing based on aggregation-induced nanozymes. Chin. Chem. Lett. 2021, 32, 25–32. [Google Scholar] [CrossRef]
- Prasad, S.N.; Bansal, V.; Ramanathan, R. Detection of pesticides using nanozymes: Trends, challenges and outlook. Trac-Trends Anal. Chem. 2021, 144, 116429. [Google Scholar] [CrossRef]
- Lorusso, C.; Calisi, A.; Sanchez-Hernandez, J.C.; Varodi, C.; Pogacean, F.; Pruneanu, S.; Dondero, F. Carbon nanomaterial functionalization with pesticide-detoxifying carboxylesterase. Chemosphere 2022, 309, 136594. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yu, M.; Sun, Z.; Pan, S.; Wang, Y.; Li, F.; Guo, X.; Zhao, R.; Xu, Y.; Wu, X. Biomass-Based, Dual Enzyme-Responsive Nanopesticides: Eco-friendly and Efficient Control of Pine Wood Nematode Disease. Acs Nano 2024, 18, 13781–13793. [Google Scholar] [CrossRef]
- Zhu, D.; Li, N.; Zhang, M.; Wang, Y.; Li, F.; Hou, T. Hydrolysis enabled specific colorimetric assay of carbosulfan with sensitivity manipulation via metal-doped or metal-free carbon nanozyme. Biosens. Bioelectron. 2024, 243, 115786. [Google Scholar] [CrossRef]
- Boruah, P.K.; Darabdhara, G.; Das, M.R. Polydopamine functionalized graphene sheets decorated with magnetic metal oxide nanoparticles as efficient nanozyme for the detection and degradation of harmful triazine pesticides. Chemosphere 2021, 268, 129328. [Google Scholar] [CrossRef]
- Liang, X.; Han, L. White Peroxidase-Mimicking Nanozymes: Colorimetric Pesticide Assay without Interferences of O2 and Color. Adv. Funct. Mater. 2020, 30, 2001933. [Google Scholar] [CrossRef]
- Liu, S.G.; Wang, H.; Zhao, Q.; Gao, W.; Shi, X.; Liu, Z. A portable colorimetric sensing platform for rapid and sensitive quantification of dichlorvos pesticide based on Fe-Mn bimetallic oxide nanozyme-participated highly efficient chromogenic catalysis. Anal. Chim. Acta 2024, 1292, 342243. [Google Scholar] [CrossRef]
- Liu, J.; Ye, L.Y.; Mo, Y.Y.; Yang, H. Highly sensitive fluorescent quantification of acid phosphatase activity and its inhibitor pesticide Dufulin by a functional metal-organic framework nanosensor for environment assessment and food safety. Food Chem. 2022, 370, 131034. [Google Scholar] [CrossRef]
- Liu, J.; Mo, Y.Y.; Zhang, H.; Tang, J.; Bao, H.; Wei, L.; Yang, H. Target-Responsive Metal-Organic Framework Nanosystem with Synergetic Sensitive Detection and Controllable Degradation against the Pesticide Triazophos in Contaminated Samples for Environment Assessment and Food Safety. Acs Appl. Mater. Interfaces 2023, 15, 23783–23791. [Google Scholar] [CrossRef]
- Liu, S.; Nie, C.; He, F.; Wu, G.; Wang, H.; Li, S.; Du, C.; Zheng, Z.; Cheng, J.; Shen, Y.; et al. Oxidase-like nanozymes-driven colorimetric, fluorescence and electrochemiluminescence assays for pesticide residues. Trends Food Sci. Technol. 2024, 150, 104597. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, X.; Chen, H.; Wei, Y.; Yang, H.; Gu, Y. Ultrathin C3N4 nanosheets-based oxidase-like 2D fluorescence nanozyme for dual-mode detection of organophosphorus pesticides. J. Hazard. Mater. 2023, 451, 131171. [Google Scholar] [CrossRef] [PubMed]
- Boruah, P.K.; Das, M.R. Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. J. Hazard. Mater. 2020, 385, 121516. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, L.F.; Thesing, A.; Demingos, P.; de Albuquerque, C.D.L.; Rodrigues, R.S.B.; Brolo, A.G.; Santos, J.F.L. Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sens. Actuator B-Chem. 2021, 339, 129875. [Google Scholar] [CrossRef]
- Chen, J.; Hao, M.; Xin, Y.; Zhu, R.; Gu, Z.; Zhang, L.; Guo, X. A novel phosphotriesterase hybrid nanoflower-hydrogel sensor equipped with a smartphone detector for real-time on-site monitoring of organophosphorus pesticides. Int. J. Biol. Macromol. 2024, 276, 133979. [Google Scholar] [CrossRef]
- Li, Y.; Chai, H.; Yuan, Z.; Huang, C.; Wang, S.; Sun, Y.; Zhang, X.; Zhang, G. Metal-organic framework-engineered enzyme/nanozyme composites: Preparation, functionality, and sensing mechanisms. Chem. Eng. J. 2024, 496, 153884. [Google Scholar] [CrossRef]
- Patil, P.D.; Karvekar, A.; Salokhe, S.; Tiwari, M.S.; Nadar, S.S. When nanozymes meet enzyme: Unlocking the dual-activity potential of integrated biocomposites. Int. J. Biol. Macromol. 2024, 271, 132357. [Google Scholar] [CrossRef]
- Rani, M.; Keshu; Shanker, U. Green construction of biochar@NiFe2O4 nanocomposite for highly efficient photocatalytic remediation of pesticides from agriculture wastewater. Chemosphere 2024, 352, 141337. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, T.; Liu, Y.; Zhang, X.; Chen, L.; Zhang, Z.; Lu, N. Nanozyme Sensor Based on Au Nanoparticles/N-Doped Porous Carbon Composites for Biosensing. Acs Appl. Nano Mater. 2024, 7, 3645–3655. [Google Scholar] [CrossRef]
- Yin, B.; Zhu, H.; Zeng, S.; Sohan, A.S.M.M.F.; Wan, X.; Liu, J.; Zhang, P.; Lin, X. Chip-based automated equipment for dual-mode point-of-care testing foodborne pathogens. Biosens. Bioelectron. 2024, 257, 116338. [Google Scholar] [CrossRef]
- Zeng, S.; Zhu, H.; Sohan, A.S.M.M.F.; Liu, J.; Wan, X.; Lin, X.; Yin, B. A remote-controlled portable workstation for highly sensitive and real-time chemiluminescent detection of cadmium. Food Chem. 2024, 452, 139549. [Google Scholar] [CrossRef] [PubMed]
- Yin, B.; Wan, X.; Yue, W.; Zhou, T.; Shi, L.; Wang, S.; Lin, X. A portable automated chip for simultaneous rapid point-of-care testing of multiple β-agonists. Biosens. Bioelectron. 2023, 239, 115586. [Google Scholar] [CrossRef] [PubMed]
- Karthik, V.; Kumar, P.S.; Vo, D.-V.N.; Selvakumar, P.; Gokulakrishnan, M.; Keerthana, P.; Audilakshmi, V.; Jeyanthi, J. Enzyme-loaded nanoparticles for the degradation of wastewater contaminants: A review. Environ. Chem. Lett. 2021, 19, 2331–2350. [Google Scholar] [CrossRef]
- Ye, M.-L.; Zhu, Y.; Lu, Y.; Gan, L.; Zhang, Y.; Zhao, Y.-G. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021, 230, 122299. [Google Scholar] [CrossRef]
- Zhai, R.; Chen, G.; Liu, G.; Huang, X.; Xu, X.; Li, L.; Zhang, Y.; Wang, J.; Jin, M.; Xu, D.; et al. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. J. Adv. Res. 2022, 37, 61–74. [Google Scholar] [CrossRef]
- Liang, J.; Dong, Z.; Xu, N.; Chen, T.; Liang, J.; Xia, M.; Wang, F. A Comprehensive Review of Multifunctional Nanozymes for Degradation and Detection of Organophosphorus Pesticides in the Environment. Toxics 2024, 12, 926. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, L.; Li, M.; Wang, M.; Liu, G.; Ping, J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. Trac-Trends Anal. Chem. 2023, 165, 117152. [Google Scholar] [CrossRef]
- Ge, J.; Yang, L.; Li, Z.; Wan, Y.; Mao, D.; Deng, R.; Zhou, Q.; Yang, Y.; Tan, W. A colorimetric smartphone-based platform for pesticides detection using Fe-N/C single-atom nanozyme as oxidase mimetics. J. Hazard. Mater. 2022, 436, 129199. [Google Scholar] [CrossRef]
- Wang, J.A.; Wang, X.Y.; Wang, M.; Bian, Q.H.; Zhong, J.C. Novel Ce-based coordination polymer nanoparticles with excellent oxidase mimic activity applied for colorimetric assay to organophosphorus pesticides. Food Chem. 2022, 397, 133810. [Google Scholar] [CrossRef]
- Song, G.; Zhang, J.; Huang, H.; Wang, X.; He, X.; Luo, Y.; Li, J.-c.; Huang, K.; Cheng, N. Single-atom Ce-N-C nanozyme bioactive paper with a 3D-printed platform for rapid detection of organophosphorus and carbamate pesticide residues. Food Chem. 2022, 387, 132896. [Google Scholar] [CrossRef]
- Yang, Y.; Hao, S.; Lei, X.; Chen, J.; Fang, G.; Liu, J.; Wang, S.; He, X. Design of metalloenzyme mimics based on self-assembled peptides for organophosphorus pesticides detection. J. Hazard. Mater. 2022, 428, 128262. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xu, L.; Hu, P.; Liu, B.; Wang, M.; Yin, X.; Pan, J.; Niu, X. Smartphone-assisted bioenzyme-nanozyme-chromogen all-in-one test strip with enhanced cascade signal amplification for convenient paraoxon sensing. Biosens. Bioelectron. 2022, 215, 114583. [Google Scholar] [CrossRef] [PubMed]
- Sahub, C.; Tuntulani, T.; Nhujak, T.; Tomapatanaget, B. Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sens. Actuator B-Chem. 2018, 258, 88–97. [Google Scholar] [CrossRef]
- Li, H.X.; Yan, X.; Lu, G.Y.; Su, X.G. Carbon dot-based bioplatform for dual colorimetric and fluorometric sensing of organophosphate pesticides. Sens. Actuator B-Chem. 2018, 260, 563–570. [Google Scholar] [CrossRef]
- Yue, N.; Wu, J.J.X.; Qi, W.; Su, R.X. Algae-derived biochar nanozyme array for discrimination and detection of multiple pesticides in soil, water and food. Food Chem. 2024, 438, 9. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wu, J.J.X.; Han, L.J.; Wang, X.Y.; Li, W.; Guo, H.C.; Wei, H. Nanozyme Sensor Arrays Based on Heteroatom-Doped Graphene for Detecting Pesticides. Anal. Chem. 2020, 92, 7444–7452. [Google Scholar] [CrossRef]
- Dang, X.; Zhang, H.; Chen, X.; Zhao, H. Enhanced mimic peroxidase activity of carbon nanozyme by simultaneous phosphorus, oxygen dual-heteroatom doping and nanosheet structure construction. Sep. Purif. Technol. 2024, 330, 125312. [Google Scholar] [CrossRef]
- Tao, C.Y.; Liu, W.D.; Zhang, J.Q.; Yan, J.H.; Jiang, Y.Y.; Lu, Y.Z. Electronic structure engineering of N-doped carbon nanozyme via incorporating Cl and spa-hybridized defected carbon for organophosphorus pesticides assay. J. Colloid Interface Sci. 2025, 678, 427–435. [Google Scholar] [CrossRef]
- Wang, X.; Zang, X.; Wang, X.; Zhang, W.; Fang, Y.; Cui, B. Molecularly imprinted electrochemiluminescence-colorimetric dual-mode sensor based on Mn@NC nanozyme amplification for the detection of phoxim. Chem. Eng. J. 2024, 500, 156817. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Li, N.; Zhu, D.; Li, F. Specific detection of fungicide thiophanate-methyl: A smartphone colorimetric sensor based on target-regulated oxidase-like activity of copper-doped carbon nanozyme. Biosens. Bioelectron. 2023, 237, 115554. [Google Scholar] [CrossRef]
- Liu, F.; Li, Z.; Wei, H.; Xu, P.; Kang, G.; Zhu, S.; Wang, T.; He, R.; Chen, C.; Lu, Y. Coordinatively unsaturated cobalt single-atom nanozymes for visual pesticides detection by smartphone-based platform. Nano Res. 2024, 17, 2298–2307. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, X.; Shen, Z.; Gu, Y.; He, L.; Zhang, M.; Lu, N. Single-atom Fe nanozymes coupling with atomic clusters as superior oxidase mimics for ratiometric fluorescence detection. Chem. Eng. J. 2023, 469, 143923. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.B.; Jiao, L.; Xu, W.Q.; Wang, H.J.; Wei, X.Q.; Gu, W.L.; Ren, G.X.; Zhang, N.A.; Zhang, Q.H.; et al. Cascade Reaction System Integrating Single-Atom Nanozymes with Abundant Cu Sites for Enhanced Biosensing. Anal. Chem. 2020, 92, 3373–3379. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Tian, T.; Yang, X.; Wang, L.; Sun, Y.; Li, Y.; Huang, H. Smartphone-assisted sensor array constructed by copper-based laccase-like nanozymes for specific identification and discrimination of organophosphorus pesticides. Food Chem. 2023, 424, 136477. [Google Scholar] [CrossRef]
- Li, F.; Jiang, J.M.; Peng, H.; Li, C.X.; Li, B.; He, J.B. Platinum nanozyme catalyzed multichannel colorimetric sensor array for identification and detection of pesticides. Sens. Actuator B-Chem. 2022, 369, 132334. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Qu, G.X.; Leung, C.H.; Han, L.; Lu, L.H. Highly Active Single-Atom Nanozymes with High-Loading Iridium for Sensitive Detection of Pesticides. Anal. Chem. 2023, 95, 11960–11968. [Google Scholar] [CrossRef]
- Sehrish, A.; Manzoor, R.; Wang, J.; Lu, Y.Z. N-intercalated Pd metallenezymes for colorimetric and paper-based smartphone analysis. Microchem. J. 2024, 198, 10. [Google Scholar] [CrossRef]
- Chen, G.; Liu, G.; Jia, H.; Cui, X.; Wang, Y.; Li, D.; Zheng, W.; She, Y.; Xu, D.; Huang, X.; et al. A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chem. 2021, 362, 130118. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, M.; Fu, Q.; Ouyang, H.; Wen, W.; Song, Y.; Zhu, C.; Lin, Y.; Du, D. A Nanozyme- and Ambient Light-Based Smartphone Platform for Simultaneous Detection of Dual Biomarkers from Exposure to Organophosphorus Pesticides. Anal. Chem. 2018, 90, 7391–7398. [Google Scholar] [CrossRef]
- Jiang, W.Q.; Feng, Y.Y.; Jiang, C.; Li, H.; Wang, Z.; Xiao, Y.Q.; Lan, W.; Liu, Y.N. Platinum-nickel nanoparticle-based oxidase-like nanozyme for colorimetric/photothermal dual-mode detection of organophosphorus pesticides. Sens. Actuator B-Chem. 2024, 412, 135861. [Google Scholar] [CrossRef]
- Li, H.; Zhao, S.; Wang, Z.; Li, F. Controllable Preparation of 2D V2O5 Peroxidase-Mimetic Nanozyme to Develop Portable Paper-Based Analytical Device for Intelligent Pesticide Assay. Small 2023, 19, 2206465. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Yang, Q.T.; Li, Q.; Li, H.Y.; Li, F. Two-Dimensional MnO2 Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H2O2 and Color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.R.; Cao, X.T.; Ma, X.Y.; Wang, Y.C.; Zhang, M.; Qiu, J.F.; Chen, J.X.; Xue, H.J. Bioinspired Cerium Nanozyme Microenvironment Regulation for Efficient Dephosphorylation and Detection of Organophosphorus Pesticides. Small 2025, 21, 2411212. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Qiang, S.; Jia, Z.; Shi, Q.H.; Meng, X.; Yu, M.; Ma, H.; Zhao, K.; Dai, Y. Smartphone-integrated nanozymes sensor array for high throughput recognition of organophosphorus pesticides. Sens. Actuator B-Chem. 2023, 389, 133857. [Google Scholar] [CrossRef]
- Huang, Y.S.; Gong, L.C.; Xie, C.L.; Qin, W.L.; Wang, M.; Hu, L.Z.; Xia, Z.N. Anchoring biomimetic Zn site in metal-organic framework nanozyme to enhance phosphatase-like catalytic activity for discrimination of organophosphorus pesticides. Chem. Eng. J. 2025, 506, 160046. [Google Scholar] [CrossRef]
- Bai, Y.J.; Nie, S.; Gao, W.Q.; Li, N.Q.; Zhu, P.H.; Zhang, L.A.; Yu, J.H. Enzyme-Nanozyme Cascade Flow Reactor Synergy with Deep Learning for Differentiation and Point-of-Care Testing of Multiple Organophosphorus Pesticides. Adv. Funct. Mater. 2024, 13, 2419499. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Yuan, X.; Xiong, J.; Zong, M.-H.; Wu, X.; Lou, W.-Y. A dual-mode sensing platform based on metal-organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem. 2024, 432, 137272. [Google Scholar] [CrossRef]
- Yue, N.; Lai, Y.F.; Wu, J.J.X.; Zhang, Q.C.; Qi, W.; Su, R.X. Optimization of metal-organic framework nanozyme activity via histidine modification for simultaneous pesticide detection. Chem. Eng. J. 2024, 493, 152630. [Google Scholar] [CrossRef]
- Song, D.; Tian, T.; Wang, L.; Zou, Y.; Zhao, L.; Xiao, J.; Huang, H.; Li, Y. Multi-signal sensor array based on a fluorescent nanozyme for broad-spectrum screening of pesticides. Chem. Eng. J. 2024, 482, 148784. [Google Scholar] [CrossRef]
- Ma, X.; Ou, Q.; Yuan, J.; Yang, J.; Xu, S.; Zhang, X. Multifunctional Fe-doped carbon dots and metal-organic frameworks nanoreactor for cascade degradation and detection of organophosphorus pesticides. Chem. Eng. J. 2023, 464, 142480. [Google Scholar] [CrossRef]
- Yang, F.; Li, S.; Ma, J.; Jia, Q. Confinement of CuNCs with aZIF-8 via one-pot encapsulation: Construction of an enzyme-free sensor toward fluorescence and smartphone detection of chlorpyrifos based on the inner filter effect. J. Food Compos. Anal. 2024, 135, 106685. [Google Scholar] [CrossRef]
- Yan, Z.; Liao, Z.; Xiao, Z.; Zhang, Y.; Peng, H.; Zhong, J.; Li, Z.; Xu, P.; Qiu, P. Dual-mode sensors based on double enzyme-mimicking MnCu nanoflowers as fluorescence probe for the detection of organophosphorus pesticides and 2,4-dichlorophenol. Colloids Surf. B-Biointerfaces 2025, 251, 114608. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Xu, M.; Liu, C.; Shi, G.; Deng, J.; Zhou, T. Stimulus Response of GQD-Sensitized Tb/GMP ICP Nanoparticles with Dual-Responsive Ratiometric Fluorescence: Toward Point-of-Use Analysis of Acetylcholinesterase and Organophosphorus Pesticide Poisoning with Acetylcholinesterase as a Biomarker. Acs Appl. Mater. Interfaces 2020, 12, 42119–42128. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, Q.; Zou, R.; Zhang, M.; Liu, X.; Ye, H.; Sun, C.; Yan, X. A DNA tweezer-actuated nanozyme-enzyme hybrid nanoreactor for pesticide detection. Biosens. Bioelectron. 2025, 271, 117064. [Google Scholar] [CrossRef]
- Li, H.; Zou, R.; Su, C.; Zhang, N.; Wang, Q.; Zhang, Y.; Zhang, T.; Sun, C.; Yan, X. Ratiometric fluorescent hydrogel for point-of-care monitoring of organophosphorus pesticide degradation. J. Hazard. Mater. 2022, 432, 128660. [Google Scholar] [CrossRef]
- Wu, X.; Wang, P.; Hou, S.; Wu, P.; Xue, J. Fluorescence sensor for facile and visual detection of organophosphorus pesticides using AIE fluorogens-SiO2-MnO2 sandwich nanocomposites. Talanta 2019, 198, 8–14. [Google Scholar] [CrossRef]
- Song, D.; Lei, L.; Tian, T.; Yang, X.; Wang, L.; Li, Y.; Huang, H. A novel strategy for identification of pesticides in different categories by concentration-independent model based on a nanozyme with multienzyme-like activities. Biosens. Bioelectron. 2023, 237, 115458. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, P.; Xu, L.; Wang, M.; Pan, J.; Niu, X. Emulsion-templated construction of enzyme-nanozyme integrated hierarchically porous hydrogels for smartphone-assisted pesticide biosensing. Chem. Eng. J. 2022, 433, 133669. [Google Scholar] [CrossRef]
- Deng, K.; Hu, H.; Li, Y.; Li, X.; Deng, H.; Chen, Y.; Yang, X.; Wang, L.; Chen, X. Mechanistic investigation and dual-mode colorimetric-chemiluminescent detection of glyphosate based on the specific inhibition of Fe3O4@Cu nanozyme peroxidase-like activity. Food Chem. 2024, 443, 138501. [Google Scholar] [CrossRef]
- Feng, S.; Xiao, Y.; Lu, J.; Chen, Z.; Jiang, Z.; Xu, Q.; Gu, W.; Wang, S.; Zhao, Q. Tumor microenvironment sensitization via dual-catalysis of carbon-based nanoenzyme for enhanced photodynamic therapy. J. Colloid Interface Sci. 2024, 663, 577–590. [Google Scholar] [CrossRef]
- Han, Z.; Fu, Q.; Lv, Y.; Wang, N.; Su, X. A two-dimensional iron-doped carbon-based nanoenzyme with catalase-like activity for the detection of alkaline phosphatase and ascorbate oxidase. Talanta 2024, 272, 125704. [Google Scholar] [CrossRef] [PubMed]
- Thamaraiselvan, C.; Wang, J.; James, D.K.; Narkhede, P.; Singh, S.P.; Jassby, D.; Tour, J.M.; Arnusch, C.J. Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Mater. Today 2020, 34, 115–131. [Google Scholar] [CrossRef]
- Xu, X.; Sun, Q.; Ma, Y.; Jiang, X.; Niu, N.; Chen, L. Synthesis of KCl-doped lignin carbon dots nanoenzymes for colorimetric sensing glutathione in human serum. Sens. Actuator B-Chem. 2022, 364, 131881. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Guan, L.; Chen, H.; Li, D.; Zhang, L.; Huang, S. Preparation of a Novel Green Fluorescent Carbon Quantum Dots and Application in Fe3+-Specific Detection in Biological System. J. Anal. Test. 2024, 8, 40–51. [Google Scholar] [CrossRef]
- Innocenzi, P.; Stagi, L. Carbon-based antiviral nanomaterials: Graphene, C-dots, and fullerenes. A perspective. Chem. Sci. 2020, 11, 6606–6622. [Google Scholar] [CrossRef]
- Pachpatil, P.K.; Kanojia, S.V.; Raut, V.; Potnis, A.; Goswami, D. N-rich carbon nanosphere as fluorescent nanoprobe for intracellular iron. Talanta 2024, 278, 126454. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Y.; Chen, Q.; Tang, L.; Liu, J.; Sun, Y.; Liu, Q.; Zhang, Y.; Zhang, G.-j.; Chen, S. Pt,P-codoped carbon nitride nanoenzymes for fluorescence and colorimetric dual-mode detection of cholesterol. Anal. Chim. Acta 2024, 1297, 342351. [Google Scholar] [CrossRef]
- Zhong, S.; Zhang, Z.; Zhao, Y.; Wang, S.; Hu, Q.; Li, L. Bismuth nanoclusters on nitrogen-doped porous carbon nanoenzyme for cancer therapy. Nanoscale 2023, 15, 16619–16625. [Google Scholar] [CrossRef]
- Li, C.; Liu, C.; Liu, R.; Wang, Y.; Li, A.; Tian, S.; Cheng, W.; Ding, S.; Li, W.; Zhao, M.; et al. A novel CRISPR/Cas14a-based electrochemical biosensor for ultrasensitive detection of Burkholderia pseudomallei with PtPd@PCN-224 nanoenzymes for signal amplification. Biosens. Bioelectron. 2023, 225, 115098. [Google Scholar] [CrossRef]
- Cai, M.; Yao, H.; Li, M.; Yan, Y.; Cao, Y.; Li, J.; Su, H.; Zhang, W.; Zhu, H.; Cui, F. Copper ferrite nanoparticles anchored laser-induced graphene as novel nanoenzyme for the electrochemical catalyzing and sensing of β-estradiol in serum. Chem. Eng. J. 2024, 492, 152148. [Google Scholar] [CrossRef]
- Serrano-Aroca, A.; Takayama, K.; Mishra, Y.K.; de la Fuente-Nunez, C. Carbon-Based Nanomaterials for Antiviral Applications. Adv. Funct. Mater. 2024, 34, 2402023. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Li, F.; Zou, J.; Xiang, K.; Wang, H.; Li, Y.; Li, X. Emerging carbon-based quantum dots for sustainable photocatalysis. Green Chem. 2023, 25, 32–58. [Google Scholar] [CrossRef]
- Li, K.M.; Ni, X.P.; Wu, Q.Q.; Yuan, C.S.; Li, C.L.; Li, D.; Chen, H.F.; Lv, Y.G.; Ju, A.Q. Carbon-Based Fibers: Fabrication, Characterization and Application. Adv. Fiber Mater. 2022, 4, 631–682. [Google Scholar] [CrossRef]
- Li, Y.; Javed, R.; Li, R.; Zhang, Y.; Lang, Z.; Zhao, H.; Liu, X.; Cao, H.; Ye, D. A colorimetric smartphone-based sensor for on-site AA detection in tropical fruits using Fe-P/N-C single-atom nanoenzyme. Food Chem. 2023, 406, 135017. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, A.; Wang, R.; Zhang, Q.; Cui, D. A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Lett. 2021, 13, 154. [Google Scholar] [CrossRef]
- Gao, B.; Ye, Q.; Ding, Y.; Wu, Y.; Zhao, X.; Deng, M.; Zhang, J.; Chen, M.; Zhang, Y.; Wei, X.; et al. Metal-based nanomaterials with enzyme-like characteristics for bacterial rapid detection and control. Coord. Chem. Rev. 2024, 510, 215799. [Google Scholar] [CrossRef]
- Li, D.; Dai, D.; Xiong, G.; Lan, S.; Zhang, C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. Small 2023, 19, 2205870. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Pan, Y.; Zhang, Y.; Le, T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 2025, 286, 127450. [Google Scholar] [CrossRef]
- Dai, P.; Li, J.; Sun, T.; Chen, C. Rhodium-Based Nanozymes: Recent Advances and Challenges. Chem. Rec. 2023, 23, e202300034. [Google Scholar] [CrossRef]
- Pietrzak, M.; Ivanova, P. Bimetallic and multimetallic nanoparticles as nanozymes. Sens. Actuator B-Chem. 2021, 336, 129736. [Google Scholar] [CrossRef]
- Yusuf, B.A.; Yaseen, W.; Xie, J.; Babangida, A.A.; Muhammad, A.I.; Xie, M.; Xu, Y. Rational design of noble metal-based multimetallic nanomaterials: A review. Nano Energy 2022, 104, 107959. [Google Scholar] [CrossRef]
- Lv, H.; Xu, D.; Sun, L.; Henzie, J.; Lopes, A.; Gu, Q.; Yamauchi, Y.; Liu, B. Asymmetric Multimetallic Mesoporous Nanospheres. Nano Lett. 2019, 19, 3379–3385. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yoo, T.Y.; Bootharaju, M.S.; Kim, J.H.; Chung, D.Y.; Hyeon, T. Noble Metal-Based Multimetallic Nanoparticles for Electrocatalytic Applications. Adv. Sci. 2022, 9, 2104054. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Kim, D.; Hong, S.; Kim, T.-S.; Kim, K.-J.; Park, J.Y. Bimetallic Synergy from a Reaction-Driven Metal Oxide-Metal Interface of Pt-Co Bimetallic Nanoparticles. Acs Catal. 2023, 13, 13777–13785. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Zhao, Y.; Yan, W.; Hu, J.; Ma, J.; Zhang, K.; Yang, W. Decoration of CeO2 nanoparticles on Cu/Co bimetallic oxide and their catalytic performance. Mater. Today Chem. 2024, 42, 102368. [Google Scholar] [CrossRef]
- Gong, F.; Yang, N.; Wang, Y.; Zhuo, M.; Zhao, Q.; Wang, S.; Li, Y.; Liu, Z.; Chen, Q.; Cheng, L. Oxygen-Deficient Bimetallic Oxide FeWOX Nanosheets as Peroxidase-Like Nanozyme for Sensing Cancer via Photoacoustic Imaging. Small 2020, 16, 2003496. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, M.; Yang, S.; Fa, H.; Wang, Y.; Huo, D.; Hou, C.; Yang, M. Development of a novel ternary MOF nanozyme-based smartphone-integrated colorimetric and microfluidic paper-based analytical device for trace glyphosate detection. Food Chem. 2025, 464, 141780. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Yuan, Z.; Wu, L.; Ma, J.; Tan, W.; Sun, Y.; Zhang, G.; Chai, H. MOF nanozymes: Active sites and sensing applications. Inorg. Chem. Front. 2025, 12, 400–429. [Google Scholar] [CrossRef]
- Shan, J.; Du, L.; Wang, X.; Zhang, S.; Li, Y.; Xue, S.; Tang, Q.; Liu, P. Ultrasound Trigger Ce-Based MOF Nanoenzyme For Efficient Thrombolytic Therapy. Adv. Sci. 2024, 11, 2304441. [Google Scholar] [CrossRef]
- Yang, J.; Qin, G.; Liu, Z.; Zhang, H.; Du, X.; Ren, J.; Qu, X. A Nanozyme-Boosted MOF-CRISPR Platform for Treatment of Alzheimer’s Disease. Nano Lett. 2024, 24, 9906–9915. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, B.; An, X.; Guo, Z.; Liu, X.; Lu, H.; Hu, F.; Chen, Z.; Guo, C.; Li, C.M. MOFs-Based Magnetic Nanozyme to Boost Cascade ROS Accumulation for Augmented Tumor Ferroptosis. Adv. Healthc. Mater. 2024, 13, 2304591. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Pu, H.; Sun, D.-W. Developing a magnetic SERS nanosensor utilizing aminated Fe-Based MOF for ultrasensitive trace detection of organophosphorus pesticides in apple juice. Food Chem. 2024, 446, 138846. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fu, Z.; Xie, J.; Ding, Z. Portable sensing of hydrogen peroxide using MOF-based nanozymes. Food Res. Int. 2024, 197, 115272. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Huang, G.; Bai, C.; Wang, C.; Yu, Y.; Tan, Y.; Tang, C.; Kong, J.; Huang, J.; Li, Z. A versatile platform for colorimetric, fluorescence and photothermal multi-mode glyphosate sensing by carbon dots anchoring ferrocene metal-organic framework nanosheet. J. Hazard. Mater. 2023, 443, 130277. [Google Scholar] [CrossRef]
- Chen, Z.-J.; Wu, H.-L.; Shen, Y.-D.; Wang, H.; Zhang, Y.-F.; Hammock, B.; Li, Z.-F.; Luo, L.; Lei, H.-T.; Xu, Z.-L. Phosphate-triggered ratiometric fluoroimmunoassay based on nanobody-alkaline phosphatase fusion for sensitive detection of 1-naphthol for the exposure assessment of pesticide carbaryl. J. Hazard. Mater. 2022, 424, 127411. [Google Scholar] [CrossRef]
- Su, D.; Li, H.; Yan, X.; Lin, Y.; Lu, G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trac-Trends Anal. Chem. 2021, 134, 116126. [Google Scholar] [CrossRef]
- Tian, Q.; Liu, J.; Long, Y.; Liang, H.; Wu, K.; Chen, X.; Bai, Q.; Niu, X. Catalytic preference-enabled exclusive bimodal detection of methyl-paraoxon in complex food matrices using double site-synergized organophosphorus hydrolase-mimetic fluorescent nanozymes. Food Chem. 2025, 481, 144023. [Google Scholar] [CrossRef]
- Tong, F.; Yang, Z.; Wang, Z.; Liu, W.; Jiang, W.; Zhu, L.; Wang, L.; Zheng, M.; Hou, R.; Zhou, Y.; et al. Enzyme-mediated Ru@UiO-66@MnO2 NSs/thiamine-based ratiometric fluorescence sensor for visual detection of organophosphorus pesticide residues. Food Chem. 2023, 429, 136945. [Google Scholar] [CrossRef]
- Lv, T.; Wang, B.; Xu, N.; Shang, B.; Liu, N.; Su, C.; Yang, C.; Li, H.; Xu, Z.; Sun, C. Gold nanoclusters-manganese dioxide composite-based fluorescence immunoassay for sensitive monitoring of fenitrothion degradation in Chinese cabbage. Food Chem. 2023, 412, 135551. [Google Scholar] [CrossRef]
- Hu, P.; Zhou, Y.; Qileng, A.; Liang, H.; Kong, B.; Liu, W.; Liu, Y. The cohesion of cascade enzyme reaction with metal-organic framework composite for the sensitive detection of malathion and in-situ imaging of vegetables. Sens. Actuator B-Chem. 2023, 383, 133591. [Google Scholar] [CrossRef]
- Li, J.; Gao, M.; Xia, X.; Cen, Y.; Wei, F.; Yang, J.; Wang, L.; Hu, Q.; Xu, G. Spherical Hydrogel Sensor Based on PB@Fe-COF@Au Nanoparticles with Triplet Peroxidase-like Activity and Multiple Capture Sites for Effective Detection of Organophosphorus Pesticides. Acs Appl. Mater. Interfaces 2023, 15, 18545–18554. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Li, S.; Wang, Y.; Ran, Q.; Tan, Q.; Gou, S.; Du, H.; Xu, S. Cu-C3N4 nanoenzyme-based freezing-dried bioactive capsule integrated with 3D-printed smartphone platform for visual detection of organophosphorus pesticides paraoxon in scallion. Sens. Actuator B-Chem. 2024, 398, 134584. [Google Scholar] [CrossRef]
- Zhao, H.; You, Q.; Zhu, W.; Li, J.; Deng, H.; Li, M.-B.; Zhao, Y.; Wu, Z. Nanoclusterzyme for Dual Colorimetric Sensings: A Case Study on [Au14(Dppp)5I4]2. Small 2023, 19, 2207936. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Huang, L.; Liu, Y.; Chen, Q.; Zheng, X.; Fan, M.; Gong, Z. Metal-organic framework-derived Fe/C/Bi2O3 as peroxidase-like nanozymes for the detection of organophosphorus pesticides. Sens. Actuator B-Chem. 2023, 393, 134121. [Google Scholar] [CrossRef]
- Lin, X.; Wu, H.; Zeng, S.; Peng, T.; Zhang, P.; Wan, X.; Lang, Y.; Zhang, B.; Jia, Y.; Shen, R.; et al. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples. Biosens. Bioelectron. 2023, 230, 115283. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, S.; Zhu, H.; Wan, X.; Sohan, A.S.M.M.F.; Yin, B. A Portable Automated Microfluidic Platform for Point-of-Care Testing for Multiple Mycotoxins in Wine. Foods 2024, 13, 2066. [Google Scholar] [CrossRef]
- Zheng, S.; Xia, X.; Tian, B.; Xu, C.; Zhang, T.; Wang, S.; Wang, C.; Gu, B. Dual-color MoS2@QD nanosheets mediated dual-mode lateral flow immunoassay for flexible and ultrasensitive detection of multiple drug residues. Sens. Actuator B-Chem. 2024, 403, 135142. [Google Scholar] [CrossRef]
- Wu, F.; Guo, H.; Wang, B.; Kang, K.; Wang, L.; Wang, Y.; Ji, X. Dual signal amplification strategy-based electrochemical aptasensor utilizing redox molecule/MOF composites for multi-pesticide detection. Sens. Actuator B-Chem. 2025, 423, 136757. [Google Scholar] [CrossRef]
- Li, B.; Zhou, M.; Zhao, C.; Xiao, L.; Qi, T.; Xu, H.; Guo, L.; Ning, G.; Lu, X.; Zhu, K.; et al. Dual-Mode Colorimetric and Fluorescent Detection of Tumor Cells Based on Gold Nanoparticles-Loaded Phosphine Covalent Organic Frameworks. J. Anal. Test. 2025, 9, 21–31. [Google Scholar] [CrossRef]
- Yuan, H.; Yu, S.; Kim, M.; Lee, J.-E.; Kang, H.; Jang, D.; Ramasamy, M.S.; Kim, D.H. Dopamine-mediated self-assembled anisotropic Au nanoworms conjugated with MoS2 nanosheets for SERS-based sensing. Sens. Actuator B-Chem. 2022, 371, 132453. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, N.; Mehra, R.; Kumar, H.; Singh, V.P. Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends Environ. Anal. Chem. 2020, 26, e00086. [Google Scholar] [CrossRef]
- Watthaisong, P.; Kamutira, P.; Kesornpun, C.; Pongsupasa, V.; Phonbuppha, J.; Tinikul, R.; Maenpuen, S.; Wongnate, T.; Nishihara, R.; Ohmiya, Y.; et al. Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angew. Chem.-Int. Ed. 2022, 61, e202116908. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Long, Z.; Li, Y.; Qiu, H. Colorimetric Detection of Acid Phosphatase and Malathion Using NiCo2O4 Nanosheets as Peroxidase-Mimicking Activity. J. Anal. Test. 2024, 8, 170–179. [Google Scholar] [CrossRef]
- Narasimhan, A.; Jain, H.; Muniandy, K.; Chinnappan, R.; Mani, N.K. Bio-analysis of Saliva Using Paper Devices and Colorimetric Assays. J. Anal. Test. 2024, 8, 114–132. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, J.; Wang, H.; Luan, Y.; Zhang, Z. Porphyrin-based covalent organic framework as oxidase mimic for highly sensitive colorimetric detection of pesticides. Microchim. Acta 2024, 191, 296. [Google Scholar] [CrossRef]
- Yin, B.; Yue, W.; Sohan, A.S.M.M.F.; Wan, X.; Zhou, T.; Shi, L.; Qian, C.; Lin, X. Construction of a desirable hyperbolic microfluidic chip for ultrasensitive determination of PCT based on chemiluminescence. J. Mater. Chem. B 2023, 11, 1978–1986. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Xu, X.; Zhou, L. Applications and Challenges of Fluorescent Probes for the Detection of Pesticide Residues in Food. J. Agric. Food Chem. 2025, 73, 4982–4997. [Google Scholar] [CrossRef]
- Li, P.R.; Shi, L.Y.; Zhao, J.C.; Liu, B.; Yan, H.; Deng, Y.B.; Yin, B.F.; Zhou, T.; Zhu, Y.G. Topology optimization design of a passive two-dimensional micromixer. Chem. Phys. Lett. 2023, 821, 140445. [Google Scholar] [CrossRef]
- Che, S.; Peng, X.; Zhuge, Y.; Chen, X.; Zhou, C.; Fu, H.; She, Y. Fluorescent and Colorimetric Ionic Probe Based on Fluorescein for the Rapid and On-Site Detection of Paraquat in Vegetables and the Environment. J. Agric. Food Chem. 2022, 70, 15390–15400. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, M.; Zhu, H.; Zhang, M.; Li, X.; Wang, M.; Liu, B.; Pan, J.; Niu, X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. J. Hazard. Mater. 2022, 423, 127077. [Google Scholar] [CrossRef]
- Tai, S.; Cao, H.; Cui, Y.; Peng, C.; Xu, J.; Wang, Z. Sensitive colorimetric and fluorescence dual-mode detection of thiophanate-methyl based on spherical Fe3O4/GONRs composite nanozyme. Food Chem. 2024, 450, 139258. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Kong, D.; Jin, R.; Zhao, X.; Li, H.; Liu, F.; Lin, Y.; Lu, G. Fluorometric and colorimetric analysis of carbamate pesticide via enzyme-triggered decomposition of Gold nanoclusters-anchored MnO2 nanocomposite. Sens. Actuator B-Chem. 2019, 290, 640–647. [Google Scholar] [CrossRef]
- Hazarika, C.; Neog, G.; Roy, E.; Gogoi, D.; Das, M.R.; Sarmah, K.; Guha, A.K.; Konwar, R.; Matsagar, B.M.; Wu, K.C.W. Hydroxyl functionalized hexagonal boron nitride quantum dots as nanozyme for pesticides sensing through dual colorimetric and fluorometric platform: A combined experimental and theoretical study. Chem. Eng. J. 2024, 500, 156365. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Yang, X.; Wang, Q.; Zou, L.; Mei, W.; Zheng, Y.; Wang, K. Photothermal and fluorescent dual-mode assay based on the formation of polydopamine nanoparticles for accurate determination of organophosphate pesticides. Microchim. Acta 2020, 187, 652. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, Z.; Tong, F.; Zhang, S.; Zhu, L.; Wang, L.; Huang, L.; Liu, K.; Zheng, M.; Zhou, Y.; et al. Two birds with one stone: An enzyme-regulated ratiometric fluorescent and photothermal dual-mode probe for organophosphorus pesticide detection. Biosens. Bioelectron. 2023, 224, 115074. [Google Scholar] [CrossRef]
- Liu, J.; Deng, H.; Jia, B.-Z.; Lin, Z.-S.; Wang, Y.; Wang, H.; Xu, Z.-L.; Luo, L. Ratiometric fluorescence and photothermal dual-mode immunosensor based on MnO2 nanosheets for the detection of isocarbophos. Chem. Eng. J. 2024, 502, 157951. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Z.; Feng, Y.; Jiang, C.; Li, H.; Yu, Z.; Xiao, Y.; Hou, R.; Wan, X.; Liu, Y. A novel fluorescent and photothermal probe based on nanozyme-mediated cascade reaction for detecting organophosphorus pesticide residues. Talanta 2024, 279, 126620. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Jiang, C.; Liu, W.; Zhang, S.; Zhou, Y.; Liu, K.; Xiao, Y.; Hou, R.; Wan, X.; et al. Mn-modified porphyrin metal-organic framework mediated colorimetric and photothermal dual-channel probe for sensitive detection of organophosphorus pesticides. J. Colloid Interface Sci. 2024, 661, 1060–1069. [Google Scholar] [CrossRef]
- Shen, H.; Tang, Y.; Ma, H. Multifunctional 2D hemin-bridged MOF for the efficient removal and dual-mode detection of organophosphorus pesticides. Microchim. Acta 2024, 191, 319. [Google Scholar] [CrossRef]
- Luo, X.L.; Yan, Y.F.; Zhang, F.Y.; Huang, G.L.; Li, Z.H.; Huang, J.H. Interface engineered self-induced and cascading nanozyme for colorimetric and photothermal dual-mode pesticide sensing. Mater. Today Chem. 2024, 40, 102202. [Google Scholar] [CrossRef]
- Jin, R.; Kong, D.; Zhao, X.; Li, H.; Yan, X.; Liu, F.; Sun, P.; Du, D.; Lin, Y.; Lu, G. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide. Biosens. Bioelectron. 2019, 141, 111473. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.-H.; Zhang, H.; Yu, S.; Ma, J.; Zhu, J.-J.; Zhou, Y. Complementary Homogeneous Electrochemical and Photothermal Dual-Modal Sensor for Highly Sensitive Detection of Organophosphorus Pesticides via Stimuli-Responsive COF/Methylene Blue@MnO2 Composite. Anal. Chem. 2023, 95, 14914–14924. [Google Scholar] [CrossRef] [PubMed]
- Zuo, M.; Yang, Y.; Jiang, S.; Zhu, C.; Han, Y.; Hu, J.; Ren, K.; Cui, L.; Zhang, C.Y. Ultrathin-FeOOH-coated MnO2 nanozyme with enhanced catalase-like and oxidase-like activities for photoelectrochemical and colorimetric detection of organophosphorus pesticides. Food Chem. 2024, 445, 138716. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Jamunkar, R.; Sinha, D.; Monisha; Patle, T.K.; Kant, T.; Dewangan, K.; Shrivas, K. Recent development in nanomaterials fabricated paper-based colorimetric and fluorescent sensors: A review. Trends Environ. Anal. Chem. 2021, 31, e00136. [Google Scholar] [CrossRef]
- Huang, D.; Li, Y.; Asikar, A.; Deng, W.; Wang, Y.; Li, D. Photothermal modulated hotspot for accurate and sensitive SERS detection of pesticides in complicated media. Chem. Eng. J. 2024, 500, 156701. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Wang, Z.; Xu, J.; Zhao, J.; Gao, Z.-D.; Song, Y.-Y. Photothermal effect-enhanced peroxidase-like performance for sensitive detection of organophosphorus pesticides on a visual test strip. Chem. Eng. J. 2023, 476, 146329. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Li, K.; Yuan, X.; Zhang, M. Morphological regulation of gold nanorods via enzyme inhibition for quantitative colorimetric and photothermal detection of methyl parathion by a 3D-printed device. Microchem. J. 2025, 209, 112823. [Google Scholar] [CrossRef]
- Lin, X.D.; Cao, Z.Y.; Zeng, S.Y.; Zhu, H.Y.; Zhai, K.R.; Yin, B.F.; Zhang, C.; Peng, T.; Cheng, T.; Zhang, B. Portable dual-mode microfluidic sensor for rapid and sensitive detection of DPA on chip. Adv. Compos. Hybrid Mater. 2025, 8, 240. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Ma, G.; Zhao, W.; Lian, G.; Zhang, S.; Zhang, D.; Liu, W. Fluorescence and photothermal dual-readout phthalocyanine-fluorescein conjugate for detection and photothermal sterilization of anaerobic bacteria. Sens. Actuator B-Chem. 2023, 392, 134042. [Google Scholar] [CrossRef]
- Li, Y.; Hu, C.; Qin, H.; Zhao, J.; Zhai, X.; Li, P.; Li, Z.; Zhu, J.; Wu, L. Polydopamine (PDA) Functionalized Eutectic Gallium-Indium (EGaIn) Nanoparticles as a Distortable Fluorescent Sensor for Pb2+ Detection. J. Anal. Test. 2025, 9, 160–164. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Lu, C.; Yang, Z.; Wu, W.; Wang, X. Novel colorimetric, photothermal and up-conversion fluorescence triple-signal sensor for rosmarinic acid detection. Chin. Chem. Lett. 2023, 34, 108099. [Google Scholar] [CrossRef]
- Ding, N.; Dong, S.; Zhang, Y.; Lu, D.; Lin, J.; Zhao, Q.; Shi, X. Portable silver-doped prussian blue nanoparticle hydrogels for colorimetric and photothermal monitoring of shrimp and fish freshness. Sens. Actuator B-Chem. 2022, 363, 131811. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Liu, Z.; Bai, M.; Wang, J.; Wang, Y. Nanobody-based immunochromatographic biosensor for colorimetric and photothermal dual-mode detection of foodborne pathogens. Sens. Actuator B-Chem. 2022, 369, 132371. [Google Scholar] [CrossRef]
- Ding, L.; Guo, J.; Chen, S.; Wang, Y. Electrochemical sensing mechanisms of neonicotinoid pesticides and recent progress in utilizing functional materials for electrochemical detection platforms. Talanta 2024, 273, 125937. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, H.; Liu, R.; Shi, F.; Ren, C.; Li, J.; Zhao, J.; Chen, X.; Yang, Z. Mesoporous SiO2 Sphere-Based Electrochemical Impedance Immunosensor for Ultrasensitive Detection of Bovine Interferon-γ. J. Anal. Test. 2023, 7, 295–303. [Google Scholar] [CrossRef]
- Sunon, P.; Rattanaumpa, T.; Phakhunthod, K.; Kaewket, K.; Sawatmuenwai, P.; Wannapaiboon, S.; Siritanon, T.; Ngamchuea, K. Copper Nitroprusside-Based Electrochemical Sensor for Detection of Tryptophan. J. Anal. Test. 2023, 7, 405–415. [Google Scholar] [CrossRef]
- Li, H.; Sheng, W.; Haruna, S.A.; Bei, Q.; Wei, W.; Hassan, M.M.; Chen, Q. Recent progress in photoelectrochemical sensors to quantify pesticides in foods: Theory, photoactive substrate selection, recognition elements and applications. Trac-Trends Anal. Chem. 2023, 164, 117108. [Google Scholar] [CrossRef]
- Tian, T.; Song, D.; Zhen, L.; Bi, Z.; Zhang, L.; Huang, H.; Li, Y. Colorimetric—Fluorescence—Photothermal tri-mode sensor array combining the machine learning method for the selective identification of sulfonylurea pesticides. Biosens. Bioelectron. 2025, 277, 117286. [Google Scholar] [CrossRef]
- Banerjee, D.; Adhikary, S.; Bhattacharya, S.; Chakraborty, A.; Dutta, S.; Chatterjee, S.; Ganguly, A.; Nanda, S.; Rajak, P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. Environ. Res. 2024, 241, 117601. [Google Scholar] [CrossRef]
- Cui, R.; Tang, H.; Huang, Q.; Ye, T.; Chen, J.; Huang, Y.; Hou, C.; Wang, S.; Ramadan, S.; Li, B.; et al. AI-assisted smartphone-based colorimetric biosensor for visualized, rapid and sensitive detection of pathogenic bacteria. Biosens. Bioelectron. 2024, 259, 116369. [Google Scholar] [CrossRef]
- Lilly, C.M.; Soni, A.V.; Dunlap, D.; Hafer, N.; Picard, M.A.; Buchholz, B.; McManus, D.D. Advancing Point-of-Care Testing by Application of Machine Learning Techniques and Artificial Intelligence. Chest 2025, 167, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Mishra, A.; Tabassum, N.; Kim, Y.-M.; Khan, F. Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review. Foods 2024, 13, 3339. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Ma, Z.; Xu, Y.; Feng, Y.; Shi, Y.; Li, H.; Xing, F.; Wang, G.; Zhang, Z.; Yi, W.; et al. Monitoring of veterinary drug residues in mutton based on hyperspectral combined with explainable AI: A case study of OFX. Food Chem. 2025, 474, 143087. [Google Scholar] [CrossRef] [PubMed]
- Kavianpour, B.; Piadeh, F.; Gheibi, M.; Ardakanian, A.; Behzadian, K.; Campos, L.C. Applications of artificial intelligence for chemical analysis and monitoring of pharmaceutical and personal care products in water and wastewater: A review. Chemosphere 2024, 368, 143692. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.Z.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Kecili, R.; Hussain, C.M. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends Environ. Anal. Chem. 2022, 34, e00160. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, N.; Singh, N. Colorimetric Nanozyme Sensor Array Based on Metal Nanoparticle-Decorated CNTs for Quantification of Pesticides in Real Water and Soil Samples. ACS Sustain. Chem. Eng. 2024, 12, 728–736. [Google Scholar] [CrossRef]
- Song, D.; Zou, Y.; Tian, T.; Ma, Y.; Huang, H.; Li, Y. Machine learning-assisted melamine-Cu nanozyme and cholinesterase integrated array for multi-category pesticide intelligent recognition. Biosens. Bioelectron. 2024, 266, 116747. [Google Scholar] [CrossRef]
- Wu, G.; Du, C.; Peng, C.; Qiu, Z.; Li, S.; Chen, W.; Qiu, H.; Zheng, Z.; Lu, Z.; Shen, Y. Machine learning-assisted laccase-like activity nanozyme for intelligently onsite real-time and dynamic analysis of pyrethroid pesticides. J. Hazard. Mater. 2024, 480, 136015. [Google Scholar] [CrossRef]
X-Based | Nanozyme | Detected Pesticides | Linear Range | Detection Limit | Sample | Ref. |
---|---|---|---|---|---|---|
Carbon-based | GQDs | Dichlorvos | 0.45–45.25 μM | 0.778 μM | Water | [93] |
CDs | Paraoxon | 0.001–1.0 μg mL−1 | 0.4 ng mL−1 | Water, Rice, Cabbage | [94] | |
SP-BC CH-BC EP-BC | Diafenthiuron, Fomesafen Bensulfuron Methyl Lactofen, Starane | 1–500 μM | 1 μM | Soil, Water, Seawater Apples, Cucumbers Peaches, Tomatoes, Cabbages | [95] | |
NG/NSG/GO | Lactofen, Fomesafen Fluroxypyr-meptyl Bensulfuron-methyl Diafenthiuron | 5–500 μM | / | Soil | [96] | |
POCNS | Chlorpyrifos | 1–200 μg L−1 | 0.31 μg L−1 | Peach, Apple | [97] | |
Clx-pNC | Glyphosate | 0.25–7 μM | 0.07 μM | Apple | [98] | |
Mn@NC | Phoxim | 0.05–5000 ng mL−1 | 0.011 ng mL−1 | Fruit, Vegetable | [99] | |
Cu@NC | Thiophanate-methyl | 0.2–15 µg mL−1 | 0.04 µg mL−1 | Water, Soil | [100] | |
SA-CoN3 | Glyphosate | 0–40 μM | 0.66 μM | Water, Apples, Pears Peaches, Grapes | [101] | |
FeAC/FeSA-NC | OPs | 0.005–50 ng mL−1 | 1.9 pg mL−1 | Water | [102] | |
Cu-N-C | Paraoxon-ethyl | 1–300 ng mL−1 | 0.60 ng mL−1 | Water | [103] | |
Metal-based | GMP-Cu BPY-Cu MIZ-Cu ASP-Cu | Glyphosate, Glufosinate Phosmet, Malathion Fenitrothion, Isocarbophos | 0.1–20 μg mL−1 | 10 µg mL−1 | Apple, Pear, Celery Nectarine, Tomato Cabbage | [104] |
Pt NPs | Dursban, Glyphosate, Malathion Dimethoate, 3-ketocarbofuran | 0.5–9 μg mL−1 | 0.15 µg mL−1 | Apple skin | [105] | |
Ir(III)/GO | Pirimicarb | 10–300 nM | 2.81 nM | Pakchoi | [106] | |
N-Pdene | Glyphosate | 0.1–50 µM | 0.27 µM | Fruits | [107] | |
Au@Pt | Parathion, Triazophos Chlorpyrifos | / | 1.47 ng kg−1 | Cabbage, Apple Pear, Rice | [108] | |
PtPd NPs | Ethyl paraoxon | 0.05–6.4 nM | 0.025 nM | Human plasma | [109] | |
Pt-Ni NPs | Chlorpyrifos | 0.005–3.0 μg mL−1 | 1.2 ng mL−1 | Wine | [110] | |
Metal-oxide-based | 2D-VONz | Glyphosate | 0.1–6 μM | 0.026 μM | Water | [111] |
MnNS | Paraoxon | 0.1–20 ng mL−1 | 0.025 ng mL−1 | Pakchoi | [112] | |
Ce2O2CN2/NC | Paraoxon | 0.1–144 μM | 0.135 μM | Water | [113] | |
Ag2O | Phoxim, Dimethoate, Chlorpyrifos, Triazophos Parathion-methyl Trichlorphon | 10–500 ng mL−1 | 10 ng mL−1 | Vegetable melon | [114] | |
MOF-based | 66-IS-Zn | Glyphosate, Phoxim, Diazinon Glufosinate, Profenofos Methyl Parathion | 30–120 μg mL−1 | 30 μg mL−1 | Cherry tomatoes | [115] |
C60@MOF-545-Fe | Glyphosate, Omethoate Paraoxon | 0.5–800 ng·mL−1 | 0.16 ng·mL−1 | Soybean, Apple Rice | [116] | |
NH2-CuBDC | Chlorpyrifos | 1.8–180 ng·mL−1 | 1.57 ng mL−1 | Apple | [117] | |
His-MIL-101(Fe)-X | Diafenthiuron, Lactofen Fluoroxypyr-meptyl Bensulfuron Methyl Fomesafen | 2–100 μM | 2 μM | Soil Water Apple | [118] | |
Fluorescence-based | Cu-BDC-NH2 | Malathion, Glyphosate Dimethoate, Phosmet m-tolylmethylcarbamate Dicofol, Fenvalerate Pirimicarb, Etoxazole Metsulfuron-methyl | 1–100 μg·mL−1 | 1 μg·mL−1 | Chilli, Pear Celery, Tomato Cherry, Nectarine | [119] |
Fe-CDs/MOF-808 Fe-CDs@MOF-808 | Paraoxon Parathion | 0.001–360 μM | 0.3 nM | Water Pakchoi | [120] | |
aZIF-8@CuNCs | Chlorpyrifos | 0–50 μg·mL−1 | 0.43 μg·mL−1 | White Radishes Cherry Tomatoes, Planting Soil | [121] | |
NH-MnCu NFs | 2,4-dichlorophenol Methyl parathion | 1–125 ng·mL−1 | 0.36 ng·mL−1 | Apple, Leek Water | [122] | |
GQD@Tb/GMP ICP | Parathion | 0.1–100 ng·mL−1 | 0.037 ng·mL−1 | / | [123] | |
Other X-based | CuNFs-Apt-AChE | Metolcarb | 1–1000 ng mL−1 | 0.19 ng mL−1 | Water, Apple Juice | [124] |
AuNCs@MnO2 | Paraoxon | 5–500 ng mL−1 | 5.0 ng mL−1 | Water, Milk, Orange Juice | [125] | |
BSPOTPE-SiO-MnO2 | Paraoxon | 1–100 μg L−1 | 1 μg L−1 | Water | [126] | |
Asp-Cu | Glyphosate, Phosmet Isocarbophos, Carbaryl Pentachloronitrobenzene Metsulfuron-methyl, Etoxazole 2-methyl-4-chlorophenoxyac-etic Acid | 0.1–100 μg mL−1 | 0.1 μg mL−1 | Broccoli Cabbage Tomato | [127] | |
AChE-MnO2@HPH | Fenthion | 4–400 ng mL−1 | 0.63 ng mL−1 | Rice, Wheat | [128] | |
Fe3O4@Cu | Glyphosate | 0.05–0.17 μg mL−1 | 0.019 µg mL−1 | Peas, Oranges, Water | [129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, B.; Jiang, Z.; Muhammad, R.; Liu, J.; Wang, J. Nanozyme-Powered Multimodal Sensing for Pesticide Detection. Foods 2025, 14, 1957. https://doi.org/10.3390/foods14111957
Yin B, Jiang Z, Muhammad R, Liu J, Wang J. Nanozyme-Powered Multimodal Sensing for Pesticide Detection. Foods. 2025; 14(11):1957. https://doi.org/10.3390/foods14111957
Chicago/Turabian StyleYin, Binfeng, Zhuoao Jiang, Rashid Muhammad, Jun Liu, and Junjie Wang. 2025. "Nanozyme-Powered Multimodal Sensing for Pesticide Detection" Foods 14, no. 11: 1957. https://doi.org/10.3390/foods14111957
APA StyleYin, B., Jiang, Z., Muhammad, R., Liu, J., & Wang, J. (2025). Nanozyme-Powered Multimodal Sensing for Pesticide Detection. Foods, 14(11), 1957. https://doi.org/10.3390/foods14111957