Effect of Pulsed Electric Field Pretreatment on the Texture and Flavor of Air-Dried Duck Meat
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Determination of Color
2.4. Determination of Textural Profile
2.5. Determination of Moisture Content
2.6. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.7. Scanning Electron Microscopy (SEM)
2.8. Protease Extraction and Activity Determination
2.8.1. Extraction of Crude Enzyme Solutions
2.8.2. Determination of Cathepsin-B, Cathepsin-B+L, and Calpain Activities
2.9. Determination of Volatile Flavor Compounds
2.10. Determination of Free Amino Acids (FAAs) and Taste Activity Value (TAV)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Color Analysis
3.2. Texture Profile Analysis
3.3. Moisture Content Analysis
3.4. Moisture Distribution
3.5. SEM Analysis
3.6. Cathepsin-B, Cathepsin-L, and Calpain Activities Analysis
3.7. Volatile Flavor Compounds
3.8. FAA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.; Fan, X.; Shi, Z.; Sun, Y.; Wu, Z.; Huang, M.; Pan, D. Effect of ultrasonic pretreatment with synergistic microbial fermentation on tenderness and flavor of air-dried duck under low nitrite process. Food Chem. X 2024, 24, 101946. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Bi, S.; Lan, L.; Liu, M.; Xiang, W.; Wan, J.; Zhou, Y.; Liu, Y.; Zhu, Q. Regulation of endogenous enzyme activity and quality of dry-cured pork loin at ripening stage by electrical stimulation. LWT 2025, 217, 117400. [Google Scholar] [CrossRef]
- Guo, Y.; Gao, J.; Bai, Y.; Wang, X.; Xu, X.; Lu, X.; Yue, J.; Han, M. Effect of pulsed electric field (PEF) on NaCl diffusion in beef and consequence on meat quality. Meat Sci. 2024, 213, 109507. [Google Scholar] [CrossRef]
- Baldi, G.; D’Elia, F.; Soglia, F.; Tappi, S.; Petracci, M.; Rocculi, P. Exploring the Effect of Pulsed Electric Fields on the Technological Properties of Chicken Meat. Foods 2021, 10, 241. [Google Scholar] [CrossRef]
- Ohshima, T.; Tanino, T.; Kameda, T.; Harashima, H. Engineering of operation condition in milk pasteurization with PEF treatment. Food Control 2016, 68, 297–302. [Google Scholar] [CrossRef]
- Timmermans, R.A.H.; Mastwijk, H.C.; Berendsen, L.B.J.M.; Nederhoff, A.L.; Matser, A.M.; Van Boekel, M.A.J.S.; Nierop Groot, M.N. Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. Int. J. Food Microbiol. 2019, 298, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Xu, Y.; Zhang, Y.; Han, M.; Wang, P.; Xu, X.; Zhou, G. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: Effects of pulsed electric field (PEF). Innov. Food Sci. Emerg. Technol. 2020, 59, 102277. [Google Scholar] [CrossRef]
- Brito, I.P.C.; Silva, E.K. Pulsed electric field technology in vegetable and fruit juice processing: A review. Food Res. Int. 2024, 184, 114207. [Google Scholar] [CrossRef] [PubMed]
- Abad, V.; Alejandre, M.; Hernández-Fernández, E.; Raso, J.; Cebrián, G.; Álvarez-Lanzarote, I. Evaluation of Pulsed Electric Fields (PEF) Parameters in the Inactivation of Anisakis Larvae in Saline Solution and Hake Meat. Foods 2023, 12, 264. [Google Scholar] [CrossRef]
- Mungure, T.E.; Farouk, M.M.; Birch, E.J.; Carne, A.; Staincliffe, M.; Stewart, I.; Bekhit, A.E.-D.A. Effect of PEF treatment on meat quality attributes, ultrastructure and metabolite profiles of wet and dry aged venison Longissimus dorsi muscle. Innov. Food Sci. Emerg. Technol. 2020, 65, 102457. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Wen, Q.-H.; Rahaman, A.; Zeng, X.-A. Effects of pulsed electric field pretreatment on mass transfer and quality of beef during marination process. Innov. Food Sci. Emerg. Technol. 2022, 80, 103061. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Pulsed electric field improved protein digestion of beef during in-vitro gastrointestinal simulation. LWT 2019, 102, 45–51. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Shen, Q.; Xu, T.; Dong, Z.; Lou, A. Optimization of pulsed electric fields-assisted thawing process conditions and its effect on the quality of Zhijiang duck meat. Food Chem. X 2024, 24, 101812. [Google Scholar] [CrossRef]
- Pematilleke, N.; Kaur, M.; Adhikari, B.; Torley, P.J. Relationship between instrumental and sensory texture profile of beef muscles with different textures. J. Texture Stud. 2022, 53, 232–241. [Google Scholar] [CrossRef]
- Guo, L.; Xu, X.; Zhang, X.; Chen, Z.; He, R.; Ma, H. Application of simultaneous ultrasonic curing on pork (Longissimus dorsi): Mass transport of NaCl, physical characteristics, and microstructure. Ultrason. Sonochem. 2023, 92, 106267. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Wang, J.; Li, X.; Li, J.; Cui, F.; Yi, S.; Xu, Y.; Zhu, W.; Mi, H. Effects of ultrasound–assisted freezing on the quality of large yellow croaker (Pseudosciaena crocea) subjected to multiple freeze–thaw cycles. Food Chem. 2023, 404, 134530. [Google Scholar] [CrossRef]
- Roobab, U.; Chen, B.-R.; Madni, G.M.; Guo, S.-M.; Zeng, X.-A.; Abdi, G.; Aadil, R.M. Enhancing chicken breast meat quality through ultrasonication: Physicochemical, palatability, and amino acid profiles. Ultrason. Sonochem. 2024, 104, 106824. [Google Scholar] [CrossRef]
- Zhang, X.; Bi, S.; Li, M.; Yue, X.; Wan, J.; Zhou, Y.; Liu, Y.; Zhu, Q. Study on activation strategy and effect of protease activity during the post-processing stage of dry-cured meat based on electrical stimulation. Food Control 2024, 161, 110363. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Wang, Y.; Pan, D.-D.; Cao, J.-X.; Chen, Y.-J.; Liu, Y.; Sun, Y.-Y.; Ou, C.-R. The changes in the proteolysis activity and the accumulation of free amino acids during chinese traditional dry-cured loins processing. Food Sci. Biotechnol. 2017, 26, 679–687. [Google Scholar] [CrossRef]
- Deng, S.; Liu, Y.; Huang, F.; Liu, J.; Han, D.; Zhang, C.; Blecker, C. Evaluation of volatile flavor compounds in bacon made by different pig breeds during storage time. Food Chem. 2021, 357, 129765. [Google Scholar] [CrossRef]
- Roobab, U.; Zeng, X.-A.; Ahmed, W.; Madni, G.M.; Manzoor, M.F.; Aadil, R.M. Effect of Pulsed Electric Field on the Chicken Meat Quality and Taste-Related Amino Acid Stability: Flavor Simulation. Foods 2023, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Udomkun, P.; Ilukor, J.; Mockshell, J.; Mujawamariya, G.; Okafor, C.; Bullock, R.; Nabahungu, N.L.; Vanlauwe, B. What are the key factors influencing consumers’ preference and willingness to pay for meat products in Eastern DRC? Food Sci. Nutr. 2018, 6, 2321–2336. [Google Scholar] [CrossRef] [PubMed]
- Hygreeva, D.; Pandey, M.C. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology-A review. Trends Food Sci. Technol. 2016, 54, 175–185. [Google Scholar] [CrossRef]
- Lesiow, T.; Rentfrow, G.K.; Xiong, Y.L. Polyphosphate and myofibrillar protein extract promote transglutaminase-mediated enhancements of rheological and textural properties of PSE pork meat batters. Meat Sci. 2017, 128, 40–46. [Google Scholar] [CrossRef]
- Khan, A.A.; Randhawa, M.A.; Carne, A.; Mohamed Ahmed, I.A.; Barr, D.; Reid, M.; Bekhit, A.E.-D.A. Effect of low and high pulsed electric field on the quality and nutritional minerals in cold boned beef M. longissimus et lumborum. Innov. Food Sci. Emerg. Technol. 2017, 41, 135–143. [Google Scholar] [CrossRef]
- Zheng, H.-B.; Han, M.-y.; Yang, H.-J.; Xu, X.-L.; Zhou, G.-H. The effect of pressure-assisted heating on the water holding capacity of chicken batters. Innov. Food Sci. Emerg. Technol. 2018, 45, 280–286. [Google Scholar] [CrossRef]
- Yang, W.; Huang, J.; Zhu, Z.; Lei, Y.; Zhou, X.; Huang, M. Changes in nitrosohemachrome lead to the discoloration of spiced beef during storage. Food Chem. 2022, 394, 133449. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Li, H.; Nuerjiang, M.; Shi, S.; Kong, B.; Liu, Q.; Xia, X. Application of ultrasound treatment in chicken gizzards tenderization: Effects on muscle fiber and connective tissue. Ultrason. Sonochem. 2021, 79, 105786. [Google Scholar] [CrossRef]
- O’Dowd, L.P.; Arimi, J.M.; Noci, F.; Cronin, D.A.; Lyng, J.G. An assessment of the effect of pulsed electrical fields on tenderness and selected quality attributes of post rigour beef muscle. Meat Sci. 2013, 93, 303–309. [Google Scholar] [CrossRef]
- Ge, L.; Xu, Y.; Xia, W.; Jiang, Q. Synergistic action of cathepsin B, L, D and calpain in disassembly and degradation of myofibrillar protein of grass carp. Food Res. Int. 2018, 109, 481–488. [Google Scholar] [CrossRef]
- Zhou, C.-Y.; Xia, Q.; He, J.; Sun, Y.-Y.; Dang, Y.-L.; Zhou, G.-H.; Geng, F.; Pan, D.-D.; Cao, J.-X. Insights into ultrasonic treatment on the mechanism of proteolysis and taste improvement of defective dry-cured ham. Food Chem. 2022, 388, 133059. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, S.; Cao, J.; Zhou, J.; Chen, Y.; Jamali, M.A.; Zhang, Y. Hydrolysis and oxidation of protein and lipids in dry-salted grass carp (Ctenopharyngodon idella) as affected by partial substitution of NaCl with KCl and amino acids. RSC Adv. 2019, 9, 39545–39560. [Google Scholar] [CrossRef] [PubMed]
- Barekat, S.; Soltanizadeh, N. Application of high-intensity ultrasonic radiation coupled with papain treatment to modify functional properties of beef Longissimus lumborum. J. Food Sci. Technol. 2019, 56, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Benet, I.; Guàrdia, M.D.; Ibañez, C.; Solà, J.; Arnau, J.; Roura, E. Analysis of SPME or SBSE extracted volatile compounds from cooked cured pork ham differing in intramuscular fat profiles. LWT Food Sci. Technol. 2015, 60, 393–399. [Google Scholar] [CrossRef]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of Volatile Compounds of Dry-Cured Meat Products Using HS-SPME-GC/MS Technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Chen, Y.; Xing, J.; Chin, C.-K.; Ho, C.-T. Effect of Urea on Volatile Generation from Maillard Reaction of Cysteine and Ribose. J. Agric. Food Chem. 2000, 48, 3512–3516. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Oey, I.; Bremer, P.; Silcock, P.; Carne, A. Proteolytic pattern, protein breakdown and peptide production of ovomucin-depleted egg white processed with heat or pulsed electric fields at different pH. Food Res. Int. 2018, 108, 465–474. [Google Scholar] [CrossRef]
- Kantono, K.; Hamid, N.; Ma, Q.; Oey, I.; Farouk, M. Changes in the physicochemical properties of chilled and frozen-thawed lamb cuts subjected to pulsed electric field processing. Food Res. Int. 2021, 141, 110092. [Google Scholar] [CrossRef]
- Liu, Y.; Oey, I.; Leong, S.Y.; Kam, R.; Kantono, K.; Hamid, N. Pulsed Electric Field Pretreatments Affect the Metabolite Profile and Antioxidant Activities of Freeze− and Air−Dried New Zealand Apricots. Foods 2024, 13, 1764. [Google Scholar] [CrossRef]
- Chen, Q.; Kong, B.; Han, Q.; Liu, Q.; Xu, L. The role of bacterial fermentation in the hydrolysis and oxidation of sarcoplasmic and myofibrillar proteins in Harbin dry sausages. Meat Sci. 2016, 121, 196–206. [Google Scholar] [CrossRef]
- Gutsche, K.A.; Tran, T.B.T.; Vogel, R.F. Production of volatile compounds by Lactobacillus sakei from branched chain α-keto acids. Food Microbiol. 2012, 29, 224–228. [Google Scholar] [CrossRef] [PubMed]
Code | Electric Field Strength (kV/cm) | Treatment Time (s) | L* | a* | b* |
---|---|---|---|---|---|
CK | - | - | 37.98 ± 0.91 e | 10.72 ± 0.54 b | 11.41 ± 2.10 ac |
LPEF-30 | 1 | 30 | 44.75 ± 0.91 a | 11.11 ± 1.22 b | 10.74 ± 3.45 ac |
LPEF-60 | 1 | 60 | 40.45 ± 2.47 bd | 12.35 ± 1.79 ab | 12.03 ± 2.52 ab |
LPEF-90 | 1 | 90 | 38.54 ± 2.07 de | 11.90 ± 2.37 ab | 12.88 ± 2.49 a |
MPEF-30 | 2 | 30 | 41.92 ± 2.13 b | 11.17 ± 1.15 b | 10.20 ± 0.81 ac |
MPEF-60 | 2 | 60 | 38.27 ± 1.43 de | 11.76 ± 2.14 ab | 13.37 ± 1.73 a |
MPEF-90 | 2 | 90 | 38.89 ± 0.92 ce | 11.17 ± 1.31 b | 11.50 ± 1.57 ab |
HPEF-30 | 3 | 30 | 40.84 ± 1.40 bc | 11.70 ± 1.13 ab | 13.10 ± 1.60 a |
HPEF-60 | 3 | 60 | 40.27 ± 1.53 bd | 13.74 ± 1.19 a | 11.54 ± 1.52 ab |
HPEF-90 | 3 | 90 | 38.95 ± 0.94 ce | 10.79 ± 0.85 b | 11.88 ± 0.78 a |
Treatment | Hardness (g) | Chewiness | Gumminess | Moisture Content (%) |
---|---|---|---|---|
CK | 1084.26 ± 235.18 a | 696.72 ± 176.19 a | 761.37 ± 191.23 a | 60.02 ± 1.78 b |
LPEF-30 | 792.98 ± 93.71 bc | 573.68 ± 112.84 ac | 603.35 ± 118.97 ab | 65.23 ± 1.16 a |
LPEF-60 | 800.00 ± 56.04 bc | 503.40 ± 68.54 ad | 552.15 ± 81.14 ab | 65.13 ± 0.52 a |
LPEF-90 | 898.95 ± 85.37 ab | 635.11 ± 93.40 ab | 668.23 ± 93.51 ab | 65.15 ± 1.21 a |
MPEF-30 | 724.78 ± 53.35 bc | 465.62 ± 52.53 bd | 505.78 ± 50.02 bc | 65.47 ± 1.93 a |
MPEF-60 | 709.37 ± 229.19 bc | 476.14 ± 131.40 bd | 503.35 ± 139.13 bc | 65.72 ± 0.18 a |
MPEF-90 | 721.41 ± 243.12 bc | 459.92 ± 173.16 bd | 494.25 ± 183.02 bc | 63.40 ± 2.04 a |
HPEF-30 | 374.74 ± 70.36 d | 278.89 ± 28.87 d | 300.21 ± 34.80 c | 65.40 ± 0.84 a |
HPEF-60 | 641.07 ± 203.23 bd | 443.47 ± 133.85 bd | 485.05 ± 158.29 bc | 63.35 ± 1.17 a |
HPEF-90 | 561.29 ± 117.82 cd | 404.41 ± 105.44 cd | 437.63 ± 110.99 bc | 63.97 ± 1.01 a |
Free Amino Acid | Taste Attribute | Taste Threshold (mg/100 mL) | Free Amino Acid Content (mg/100 g) | TVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CK | LPEF-30 | MPEF-30 | HPEF-30 | CK | LPEF-30 | MPEF-30 | HPEF-30 | |||
Asp | Umami (+) | 100 | 28.72 ± 0.80 b | 33.45 ± 0.77 a | 34.39 ± 0.75 a | 28.77 ± 0.40 b | 0.29 | 0.33 | 0.34 | 0.29 |
Glu | Umami (+) | 30 | 91.32 ± 0.95 c | 98.00 ± 1.21 b | 106.56 ± 4.17 a | 98.55 ± 1.58 b | 3.04 | 3.27 | 3.55 | 3.29 |
Ser | Sweet (+) | 150 | 10.21 ± 0.65 a | 4.92 ± 0.47 b | 10.97 ± 0.17 a | 10.20 ± 0.90 a | 0.07 | 0.03 | 0.07 | 0.07 |
His | Bitter (−) | 20 | 18.17 ± 0.94 b | 18.50 ± 0.33 b | 19.87 ± 0.19 a | 17.06 ± 0.82 b | 0.91 | 0.93 | 0.99 | 0.85 |
Gly | Sweet (+) | 130 | 35.58 ± 0.99 c | 36.15 ± 0.22 bc | 42.52 ± 1.25 a | 37.85 ± 0.94 b | 0.27 | 0.28 | 0.33 | 0.29 |
Thr | Sweet (+) | 260 | 39.49 ± 1.54 b | 43.09 ± 0.57 ab | 44.92 ± 0.64 a | 41.06 ± 2.60 b | 0.15 | 0.17 | 0.17 | 0.16 |
Arg | Bitter (−) | 50 | 33.85 ± 1.30 c | 34.13 ± 0.28 c | 39.75 ± 1.61 b | 44.54 ± 0.80 a | 0.68 | 0.68 | 0.80 | 0.89 |
Ala | Sweet (+) | 60 | 92.18 ± 3.49 c | 132.20 ± 1.04 a | 109.47 ± 2.23 b | 111.18 ± 1.39 b | 1.54 | 2.20 | 1.82 | 1.85 |
Tyr | Bitter (−) | - | 19.38 ± 1.06 c | 18.57 ± 0.28 c | 30.49 ± 0.29 a | 25.98 ± 0.52 b | - | - | - | - |
Cys | - | - | 1.69 ± 0.09 a | 1.25 ± 0.04 b | 1.78 ± 0.05 a | 1.35 ± 0.02 b | - | - | - | - |
Val | Sweet/Bitter (+) | 40 | 38.41 ± 1.24 b | 36.89 ± 0.13 bc | 35.47 ± 1.66 c | 41.65 ± 1.10 a | 0.96 | 0.92 | 0.89 | 1.04 |
Met | Bitter (−) | 30 | 18.80 ± 0.79 b | 19.69 ± 0.12 b | 22.80 ± 0.65 a | 18.53 ± 1.41 b | 0.63 | 0.66 | 0.76 | 0.62 |
Phe | Bitter (−) | 90 | 33.28 ± 1.40 b | 30.40 ± 0.36 c | 38.40 ± 0.32 a | 29.55 ± 1.22 c | 0.37 | 0.34 | 0.43 | 0.33 |
Ile | Bitter (−) | 90 | 24.94 ± 1.17 b | 23.29 ± 0.13 c | 28.17 ± 0.57 a | 22.88 ± 0.73 c | 0.28 | 0.26 | 0.31 | 0.25 |
Leu | Bitter (−) | 190 | 53.82 ± 1.67 b | 50.12 ± 0.33 c | 64.39 ± 1.21 a | 49.14 ± 1.64 c | 0.28 | 0.26 | 0.34 | 0.26 |
Lys | Bitter/Sweet (−) | 50 | 42.03 ± 1.54 c | 36.30 ± 0.68 d | 49.98 ± 0.97 a | 45.86 ± 1.77 b | 0.84 | 0.73 | 0.99 | 0.92 |
Pro | Sweet/Bitter (+) | 300 | 66.32 ± 1.09 a | 47.28 ± 1.20 c | 58.80 ± 1.99 b | 44.97 ± 0.06 d | 0.22 | 0.16 | 0.20 | 0.15 |
Total | - | - | 648.19 ± 5.58 c | 664.23 ± 1.09 b | 738.71 ± 14.53 a | 669.12 ± 9.17 b | - | - | - | - |
Umami taste FAAs | - | - | 120.04 ± 1.71 c | 131.45 ± 1.04 b | 140.95 ± 4.89 a | 127.31 ± 1.51 b | - | - | - | - |
Sweet taste FAAs | - | - | 177.45 ± 3.83 d | 216.35 ± 0.94 b | 207.88 ± 3.98 a | 200.30 ± 1.98 c | - | - | - | - |
Bitter taste FAAs | - | - | 149.59 ± 6.15 b | 140.87 ± 0.68 c | 170.34 ± 2.18 a | 155.61 ± 4.49 b | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Shi, Z.; Hu, Y.; Sun, Y.; Zhou, C.; Xia, Q.; He, J.; Yan, H.; Yu, H.; Pan, D. Effect of Pulsed Electric Field Pretreatment on the Texture and Flavor of Air-Dried Duck Meat. Foods 2025, 14, 1891. https://doi.org/10.3390/foods14111891
Zhang N, Shi Z, Hu Y, Sun Y, Zhou C, Xia Q, He J, Yan H, Yu H, Pan D. Effect of Pulsed Electric Field Pretreatment on the Texture and Flavor of Air-Dried Duck Meat. Foods. 2025; 14(11):1891. https://doi.org/10.3390/foods14111891
Chicago/Turabian StyleZhang, Ning, Zihang Shi, Yangyang Hu, Yangying Sun, Changyu Zhou, Qiang Xia, Jun He, Hongbing Yan, Hui Yu, and Daodong Pan. 2025. "Effect of Pulsed Electric Field Pretreatment on the Texture and Flavor of Air-Dried Duck Meat" Foods 14, no. 11: 1891. https://doi.org/10.3390/foods14111891
APA StyleZhang, N., Shi, Z., Hu, Y., Sun, Y., Zhou, C., Xia, Q., He, J., Yan, H., Yu, H., & Pan, D. (2025). Effect of Pulsed Electric Field Pretreatment on the Texture and Flavor of Air-Dried Duck Meat. Foods, 14(11), 1891. https://doi.org/10.3390/foods14111891