Effects of Spectral Ranges on Growth and Yield in Vertical Hydroponic–Aeroponic Hybrid Grow Systems for Radishes and Turnips
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeds
2.2. Agrotunnel Conditions
2.3. Grow Walls
2.4. Lighting
2.5. Measurements
3. Results
3.1. Plant Heights
3.2. Leaf Count
3.3. Crop Yields
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CEA | Controlled Environment Agriculture |
VF | Vertical Farming |
LED | Light-Emitting Diode |
EC | Electrical Conductivity |
FSSC | Food Security Structures Canada |
PPFD | Photosynthetic Photon Flux Density |
PV | Photovoltaic |
References
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can Soil-Less Crop Production Be a Sustainable Option for Soil Conservation and Future Agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Hidaka, K.; Dan, K.; Imamura, H.; Miyoshi, Y.; Takayama, T.; Sameshima, K.; Kitano, M.; Okimura, M. Effect of Supplemental Lighting from Different Light Sources on Growth and Yield of Strawberry. Environ. Control Biol. 2013, 51, 41–47. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, B. LEDs for Energy Efficient Greenhouse Lighting. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Alrajhi, A.A.; Alsahli, A.S.; Alhelal, I.M.; Rihan, H.Z.; Fuller, M.P.; Alsadon, A.A.; Ibrahim, A.A. The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa). Plants 2023, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Yeh, N.; Chung, J.-P. High-Brightness LEDs—Energy Efficient Lighting Sources and Their Potential in Indoor Plant Cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180. [Google Scholar] [CrossRef]
- Zha, L.; Liu, W. Effects of Light Quality, Light Intensity, and Photoperiod on Growth and Yield of Cherry Radish Grown under Red plus Blue LEDs. Hortic. Environ. Biotechnol. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Guiamba, H.D.S.S.; Zhang, X.; Sierka, E.; Lin, K.; Ali, M.M.; Ali, W.M.; Lamlom, S.F.; Kalaji, H.M.; Telesiński, A.; Yousef, A.F.; et al. Enhancement of Photosynthesis Efficiency and Yield of Strawberry (Fragaria ananassa Duch.) plants via LED Systems. Front. Plant Sci. 2022, 13, 918038. [Google Scholar] [CrossRef]
- Olle, M.; Viršile, A. The Effects of Light-Emitting Diode Lighting on Greenhouse Plant Growth and Quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Piew-ondee, P.; Dangsamer, T.; Thongtip, A.; Janta, S.; Wanichananan, P.; Thepsilvisut, O.; Ehara, H.; Chutimanukul, P. Effects of Light Spectra on Growth, Physiological Responses, and Antioxidant Capacity in Five Radish Varieties in an Indoor Vertical Farming System. Horticulturae 2024, 10, 1059. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Xu, Z.; Liu, X.; Han, X. Effects of Different Light Sources on the Growth of Non-Heading Chinese Cabbage (Brassica campestris L.). J. Agric. Sci. 2012, 4, p262. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hahida, S.; Yoshihara, T. Effect of Green Light Wavelength and Intensity on Photomorphogenesis and Photosynthesis in Lactuca sativa. Environ. Exp. Bot. 2012, 75, 128–133. [Google Scholar] [CrossRef]
- Mizuno, T.; Amaki, W.; Watanabe, H. Effects of Monochromatic Light Irradiation by Led on The Growth and Anthocyanin Contents in Leaves of Cabbage Seedlings. In Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2011; pp. 179–184. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Duchovskis, P.; Urbonavičiūtė, A.; Samuolienė, G.; Jankauskienė, J.; Sakalauskaitė, J.; Šabajevienė, G.; Sirtautas, R.; Novičkovas, A. The Effect of Light-Emitting Diodes Lighting on the Growth of Tomato Transplants. Zemdirb. Agric. 2010, 97, 89–98. [Google Scholar]
- Goto, E.; Matsumoto, H.; Ishigami, Y.; Hikosaka, S.; Fujiwara, K.; Yano, A. Measurements of the Photosynthetic Rates in Vegetables Under Various Qualities of Light from Light-Emitting Diodes. In Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2014; pp. 261–268. [Google Scholar] [CrossRef]
- Touliatos, D.; Dodd, I.C.; McAinsh, M. Vertical Farming Increases Lettuce Yield per Unit Area Compared to Conventional Horizontal Hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Asgari, N.; Jamil, U.; Pearce, J.M. Net Zero Agrivoltaic Arrays for Agrotunnel Vertical Growing Systems: Energy Analysis and System Sizing. Sustainability 2024, 16, 6120. [Google Scholar] [CrossRef]
- Kumar, H.; Agarwal, A.; Prakash, O. Turnip (Brassica Rapa) Cultivation under Modern Farming System. Indian Farming 2024, 74, 7–9. [Google Scholar]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in An Innovative Indoor Cultivation System. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef]
- Miao, C.; Yang, S.; Xu, J.; Wang, H.; Zhang, Y.; Cui, J.; Zhang, H.; Jin, H.; Lu, P.; He, L.; et al. Effects of Light Intensity on Growth and Quality of Lettuce and Spinach Cultivars in a Plant Factory. Plants 2023, 12, 3337. [Google Scholar] [CrossRef]
- Oliver, L.P.; Coyle, S.D.; Bright, L.A.; Shultz, R.C.; Hager, J.V.; Tidwell, J.H. Comparison of Four Artificial Light Technologies for Indoor Aquaponic Production of Swiss Chard and Kale. J. World Aquac. Soc. 2018, 49, 837–844. [Google Scholar] [CrossRef]
- Anum, H.; Cheng, R.; Tong, Y. Improving Plant Growth, Anthocyanin Production and Oxidative Status of Red Lettuce (Lactuca sativa Cv. Lolla Rossa) by Optimizing Red to Blue Light Ratio with a Constant Green Light Fraction in a Plant Factory. Sci. Hortic. 2024, 338, 113832. [Google Scholar] [CrossRef]
- Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of Bioprotectant Content of Red Leaf Lettuce with Light-Emitting Diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef]
- Lefsrud, M.G.; Kopsell, D.A.; Sams, C.E. Irradiance from Distinct Wavelength Light-Emitting Diodes Affect Secondary Metabolites in Kale. HortScience 2008, 43, 2243. [Google Scholar] [CrossRef]
- Vatistas, C.; Avgoustaki, D.D.; Monedas, G.; Bartzanas, T. The Effect of Different Light Wavelengths on the Germination of Lettuce, Cabbage, Spinach and Arugula Seeds in a Controlled Environment Chamber. Sci. Hortic. 2024, 331, 113118. [Google Scholar] [CrossRef]
- Matysiak, B.; Kowalski, A. The Growth, Photosynthetic Parameters and Nitrogen Status of Basil, Coriander and Oregano Grown Under Different Led Light Spectra. Acta Sci. Pol. Hortorum Cultus 2021, 20, 13–22. [Google Scholar] [CrossRef]
- Bukhov, N.G.; Bondar, V.V.; Drozdova, I.S.; Kara, A.N.; Kotov, A.A.; Maevskaya, S.N.; Vasil’ev, A.A.; Voevudskaya, S.Y.; Voronin, P.Y.; Mokronosov, A.T. Development of Storage Roots in Radish (Raphanus Sativus) Plants as Affected by Light Quality. J. Plant Physiol. 1996, 149, 405–412. [Google Scholar] [CrossRef]
- Wholesale Price of Turnip Tops Greens. IndexMundi. Available online: https://www.indexmundi.com/agricultural-prices/product/turnip-tops-greens (accessed on 15 May 2025).
- Turnip Greens. Safeway. Available online: https://www.safeway.com/shop/product-details.184400064.html (accessed on 15 May 2025).
- Turnips, White. Walmart.ca. Available online: https://www.walmart.ca/en/ip/turnips-white/982055 (accessed on 15 May 2025).
- Dolferus, R. To Grow or Not to Grow: A Stressful Decision for Plants. Plant Sci. 2014, 229, 247–261. [Google Scholar] [CrossRef]
- Asgari, N.; Basdeo, A.; Givans, J.; Pearce, J.M. Lighting and Revenue Analysis of Grow Lights in Agrivoltaic Agrotunnel for Lettuces and Swiss Chard; Social Science Research Network: Rochester, NY, USA, 2025. [Google Scholar] [CrossRef]
- Pascaris, A.S.; Schelly, C.; Rouleau, M.; Pearce, J.M. Do Agrivoltaics Improve Public Support for Solar? A Survey on Perceptions, Preferences, and Priorities. Green Technol. Resil. Sustain. 2022, 2, 8. [Google Scholar] [CrossRef]
- Ha, J.; Nguyen, J.; Pearce, J.M. Determinants of Consumers’ Willingness to Pay for Agrivoltaic Produce: The Mediating Role of Trust. Soc. Sci. Res. Netw. 2024, 1–51, submitted. [Google Scholar] [CrossRef]
- Qian, J.-Y.; Pearce, J.M. Open-Source Indoor Horizontal Grow Structure Designs. Designs 2024, 8, 95. [Google Scholar] [CrossRef]
- Gallegos, J.; Álvaro, J.E.; Urrestarazu, M. Container Design Affects Shoot and Root Growth of Vegetable Plant. HortScience 2020, 55, 787–794. [Google Scholar] [CrossRef]
- Khoshroo, A.; Izadikhah, M.; Emrouznejad, A. Improving Energy Efficiency Considering Reduction of CO2 Emission of Turnip Production: A Novel Data Envelopment Analysis Model with Undesirable Output Approach. J. Clean. Prod. 2018, 187, 605–615. [Google Scholar] [CrossRef]
Crop | Red | White | Control | Total |
---|---|---|---|---|
Turnip | 10 | 11 | 10 | 31 |
Radish | 14 | 12 | 11 | 37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shadd, A.; Asgari, N.; Pearce, J.M. Effects of Spectral Ranges on Growth and Yield in Vertical Hydroponic–Aeroponic Hybrid Grow Systems for Radishes and Turnips. Foods 2025, 14, 1872. https://doi.org/10.3390/foods14111872
Shadd A, Asgari N, Pearce JM. Effects of Spectral Ranges on Growth and Yield in Vertical Hydroponic–Aeroponic Hybrid Grow Systems for Radishes and Turnips. Foods. 2025; 14(11):1872. https://doi.org/10.3390/foods14111872
Chicago/Turabian StyleShadd, Adia, Nima Asgari, and Joshua M. Pearce. 2025. "Effects of Spectral Ranges on Growth and Yield in Vertical Hydroponic–Aeroponic Hybrid Grow Systems for Radishes and Turnips" Foods 14, no. 11: 1872. https://doi.org/10.3390/foods14111872
APA StyleShadd, A., Asgari, N., & Pearce, J. M. (2025). Effects of Spectral Ranges on Growth and Yield in Vertical Hydroponic–Aeroponic Hybrid Grow Systems for Radishes and Turnips. Foods, 14(11), 1872. https://doi.org/10.3390/foods14111872