Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in Torreya grandis Kernels Under Different States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Portable NIR Spectrum Collection of T. grandis Kernels
2.3. Determination of Protein Content in T. grandis Kernels
2.4. Principal Component Analysis (PCA) of T. grandis Kernels’ Portable NIR Spectra
2.5. Elimination of Outlier Samples
2.6. Sample Set Division of T. grandis Kernels’ Portable NIR Spectra
2.7. Establishment of a Quantitative Prediction Model for Determining Protein Content in T. grandis Kernels
2.8. Evaluation of the Quantitative Prediction Model for Determining Protein Content in T. grandis Kernels
3. Results and Discussion
3.1. Determination Results of Protein Content in T. grandis Kernels
3.2. Portable NIR Spectrum Analysis of T. grandis Kernels
3.3. Portable NIR Spectrum PCA of T. grandis Kernels
3.4. Removal of Outlier Samples with Abnormal Protein Contents in T. grandis Kernels
3.5. Results of Sample Division of T. grandis Kernel Samples
3.6. Establishment and Analysis of a Quantitative Model for Determining Protein Content in T. grandis Kernels
3.7. The Predictive Performance of the Optimal Quantitative Model Preprocessed with 1Der-SNV-PLSR-G for Protein Content in T. grandis Kernels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bushueva, A.; Adeleye, T.; Roy, P. Socioeconomic and Environmental Prospects of the Food Industry. Agric. Rural. Stud. 2024, 2, 16. [Google Scholar] [CrossRef]
- Fan, S.; Zhu, Y.; Fang, X. Big Food Vision and Food Security in China. Agric. Rural. Stud. 2023, 1, 1. [Google Scholar] [CrossRef]
- Guan, S.; Shang, Y.; Zhao, C. Storage Time Detection of Torreya grandis Kernels Using Near Infrared Spectroscopy. Sustainability 2023, 15, 7757. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, Y.; Shen, J.; Meng, X.; Suo, J.; Zhang, Z.; Song, L.; Wu, J. Acceleration of Aril Cracking by Ethylene in Torreya grandis During Nut Maturation. Front. Plant Sci. 2021, 12, 761139. [Google Scholar] [CrossRef]
- Xiang, J.; Huang, Y.; Guan, S.; Shang, Y.; Bao, L.; Yan, X.; Hassan, M.; Xu, L.; Zhao, C. A Sustainable Way to Determine the Water Content in Torreya grandis Kernels Based on Near-Infrared Spectroscopy. Sustainability 2023, 15, 12423. [Google Scholar] [CrossRef]
- Jian, F.; Zhang, Z.; Li, D.; Luo, F.; Wu, Q.; Lu, F.; Dai, Z.; Nie, M.; Xu, Y.; Feng, L.; et al. Evaluation of the digestibility and antioxidant activity of protein and lipid after mixing nuts based on in vitro and in vivo models. Food Chem. 2023, 414, 135706. [Google Scholar] [CrossRef] [PubMed]
- Golly, M.K.; Ma, H.; Duan, Y.Q.; Liu, D.D.; Quaisie, J.; Tuli, J.A.; Mintah, B.K.; Dzah, C.S.; Agordoh, P.D. Effect of multi-frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from Walnut (Juglans regia L.) meal. J. Food Biochem. 2020, 44, 13210. [Google Scholar] [CrossRef]
- Jancewicz, L.J.; Swift, M.L.; Penner, G.B.; Beauchemin, K.A.; Koenig, K.M.; Chibisa, G.E.; He, M.L.; McKinnon, J.J.; Yang, W.; McAllister, T.A. Development of near-infrared spectroscopy calibrations to estimate fecal composition and nutrient digestibility in beef cattle. Can. J. Anim. Sci. 2016, 97, 51–64. [Google Scholar]
- Jiang, H.; Lin, H.; Lin, J.; Adade, S.Y.S.; Chen, Q.; Xue, Z.; Chan, C. Non-destructive detection of multi-component heavy metals in corn oil using nano-modified colorimetric sensor combined with near-infrared spectroscopy. Food Control. 2022, 133, 108640. [Google Scholar] [CrossRef]
- Ding, Y.; Yan, Y.; Li, J.; Chen, X.; Jiang, H. Classification of Tea Quality Levels Using Near-Infrared Spectroscopy Based on CLPSO-SVM. Foods 2022, 11, 1658. [Google Scholar] [CrossRef]
- Lin, H.; Jiang, H.; Lin, J.; Chen, Q.; Ali, S.; Teng, S.W.; Zuo, M. Rice Freshness Identification Based on Visible Near-Infrared Spectroscopy and Colorimetric Sensor Array. Food Anal. Meth. 2021, 14, 1305–1314. [Google Scholar] [CrossRef]
- Tahir, H.E.; Zou, X.B.; Shen, T.T.; Shi, J.Y.; Mariod, A.A. Near-Infrared (NIR) Spectroscopy for Rapid Measurement of Antioxidant Properties and Discrimination of Sudanese Honeys from Different Botanical Origin. Food Anal. Meth. 2016, 9, 2631–2641. [Google Scholar] [CrossRef]
- Shang, Y.; Bao, L.; Bi, H.; Guan, S.; Xu, J.; Gu, Y.; Zhao, C. Authenticity Discrimination and Adulteration Level Detection of Camellia Seed Oil via Hyperspectral Imaging Technology. Food Anal. Meth. 2024, 17, 450–463. [Google Scholar] [CrossRef]
- Gu, Y.; Shi, L.; Wu, J.; Hu, S.; Shang, Y.; Hassan, M.; Zhao, C. Quantitative Prediction of Acid Value of Camellia Seed Oil Based on Hyperspectral Imaging Technology Fusing Spectral and Image Features. Foods 2024, 13, 3249. [Google Scholar] [CrossRef]
- Kucha, C.; Samaranayaka, A.; Asavajaru, P.; Ngadi, M. High-throughput precision assessment of pea-derived protein products using near infrared hyperspectral imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 331, 125770. [Google Scholar] [CrossRef]
- Wang, W.; Kong, W.; Shen, T.; Man, Z.; Zhu, W.; He, Y.; Liu, F.; Liu, Y. Application of laser-induced breakdown spectroscopy in detection of cadmium content in rice stems. Front. Plant Sci. 2020, 11, 599616. [Google Scholar] [CrossRef]
- Liu, F.; Shen, T.; Kong, W.; Peng, J.; Zhang, C.; Song, K.; Wang, W.; Zhang, C.; He, Y. Quantitative analysis of cadmium in tobacco roots using laser-induced breakdown spectroscopy with variable index and chemometrics. Front. Plant Sci. 2018, 9, 1316. [Google Scholar] [CrossRef]
- Chen, R.; Liu, F.; Zhang, C.; Wang, W.; Yang, R.; Zhao, Y.; Peng, J.; Kong, W.; Huang, J. Trends in digital detection for the quality and safety of herbs using infrared and Raman spectroscopy. Front. Plant Sci. 2023, 14, 1128300. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.; Liu, C.; Zhou, L.; Tang, L.; Wei, H.; Fan, K.; Wang, A.; Tang, Y. Rapid and Non-Destructive Geographical Origin Identification of Chuanxiong Slices Using Near-Infrared Spectroscopy and Convolutional Neural Networks. Agriculture 2024, 14, 1281. [Google Scholar] [CrossRef]
- Jiang, H.; He, Y.; Chen, Q. Determination of acid value during edible oil storage using a portable NIR spectroscopy system combined with variable selection algorithms based on an MPA-based strategy. J. Sci. Food Agric. 2021, 101, 3328–3335. [Google Scholar] [CrossRef]
- Nasir, V.; Nourian, S.; Zhou, Z.; Rahimi, S.; Avramidis, S.; Cool, J. Classification and characterization of thermally modified timber using visible and near-infrared spectroscopy and artificial neural networks: A comparative study on the performance of different NDE methods and ANNs. Wood Sci. Technol. 2019, 53, 1093–1109. [Google Scholar] [CrossRef]
- Diallo, T.; Abay, C. Malian Farmers’ Perception of Sustainable Agriculture: A Case of Southern Mali Farmers. Agric. Rural. Stud. 2024, 2, 19. [Google Scholar] [CrossRef]
- Belletti, Â.; Schneider, S. The Relationship between Agri-Food Production and Macro-Economic Dynamics: A Study on Soybeans in Brazilian South and Chinese Mainland. Agric. Rural. Stud. 2023, 1, 9. [Google Scholar] [CrossRef]
- Zeng, G.; Zhao, Y.; Sun, S. Sustainable development mechanism of food culture’s translocal production based on authenticity. Sustainability 2014, 6, 7030–7047. [Google Scholar] [CrossRef]
- Chang, X.; Huang, X.; Xu, W.; Tian, X.; Wang, C.; Wang, L.; Yu, S. Monitoring of dough fermentation during Chinese steamed bread processing by near-infrared spectroscopy combined with spectra selection and supervised learning algorithm. J. Food Process Eng. 2021, 44, e13783. [Google Scholar] [CrossRef]
- Fan, S.; Li, J.; Xia, Y.; Tian, X.; Guo, Z.; Huang, W. Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method. Postharvest Biol. Technol. 2019, 151, 79–87. [Google Scholar] [CrossRef]
- Fan, S.; Pan, T.; Li, G. Evaluation of the physicochemical content and solid-state fermentation stage of Zhenjiang aromatic vinegar using near-infrared spectroscopy. Int. J. Food Eng. 2020, 16, 20200127. [Google Scholar] [CrossRef]
- Sheng, R.; Cheng, W.; Li, H.; Ali, S.; Agyekum, A.A.; Chen, Q. Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy. Postharvest Biol. Technol. 2019, 156, 110952. [Google Scholar] [CrossRef]
- Qiu, X.; Cao, J. Application of Band Optimization of Near-infrared Spectra for Quantitative Detection of Proteins in Northeastern Pine Nuts. Mod. Food Sci. Tech. 2016, 32, 303–309. [Google Scholar]
- Hu, J.; Ma, X.; Liu, L.; Wu, Y.; Ouyang, J. Rapid evaluation of the quality of chestnuts using near-infrared reflectance spectroscopy. Food Chem. 2017, 231, 141–147. [Google Scholar] [CrossRef]
- Yi, J.; Sun, Y.; Zhu, Z.; Liu, N.; Lu, J. Near-infrared reflectance spectroscopy for the prediction of chemical composition in walnut kernel. Int. J. Food Pr. 2017, 20, 1633–1642. [Google Scholar] [CrossRef]
- Shi, D.; Hang, J.; Neufeld, J.; Zhao, S.; House, J.D. Estimation of crude protein and amino acid contents in whole, ground and defatted ground soybeans by different types of near-infrared (NIR) reflectance spectroscopy. J. Food Compos. Anal. 2022, 111, 104601. [Google Scholar] [CrossRef]
- Tang, W.; Xu, J.; Hu, D.; Zhao, C. Determination of protein and fat content inpecan based on near infrared spectroscopy. Cereals Oils 2022, 12, 158–161. [Google Scholar]
- GB 5009.5-2016; Determination of Protein content in Foods. China National Food Safety Standard: Beijing China, 2016.
- Ma, J.; Sun, D.; Pu, H.; Wei, Q.; Wang, X. Protein content evaluation of processed pork meats based on a novel single shot (snapshot) hyperspectral imaging sensor. J. Food Eng. 2019, 240, 207–213. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, F.; Shi, M. Rapid Identification and Visualization of Jowl Meat Adulteration in Pork Using Hyperspectral Imaging. Foods 2020, 9, 154. [Google Scholar] [CrossRef]
- Tian, W.; Chen, G.; Zhang, G.; Wang, D.; Tilley, M.; Li, Y. Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics. Food Chem. 2021, 344, 128633. [Google Scholar] [CrossRef]
- Hayes, M. Measuring Protein Content in Food: An Overview of Methods. Foods 2020, 9, 1340. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.; Shao, Q.; Yang, Z.; Zhang, X.; Xu, X.; Hassan, M. Determination of water content in corn stover silage using near-infrared spectroscopy. Int. J. Agric. Biol. Eng. 2019, 12, 143–148. [Google Scholar] [CrossRef]
- Xie, L. Analysis of Protein Amino Acid Composition in Chinese Torreya Nuts. Food Res. Dev. 2003, 24, 106–107. [Google Scholar]
- Zhu, M.; Long, Y.; Chen, Y.; Huang, Y.; Tang, L.; Gan, B.; Yu, Q.; Xie, J. Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. J. Food Compos. Anal. 2021, 102, 104055. [Google Scholar] [CrossRef]
- Aulia, R.; Kim, Y.; Amanah, H.Z.; Andi, A.M.A.; Kim, H.; Kim, H.; Lee, W.; Kim, K.; Baek, J.; Cho, B. Non-destructive prediction of protein contents of soybean seeds using near-infrared hyperspectral imaging. Infrared Phys. Technol. 2022, 127, 104365. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Naidoo, S.I.M.; Laurie, S.M.; Laing, M.D.; Shimelis, H. Development of NIRS models for rapid quantification of protein content in sweetpotato [Ipomoea batatas (L.) LAM.]. LWT-Food Sci. Tech. 2016, 72, 63–70. [Google Scholar] [CrossRef]
Component | Sample Size | Maximum/% | Minimum/% | Average/% | Standard Deviation |
---|---|---|---|---|---|
Protein | 124 | 12.44 | 6.46 | 9.64 | 0.64 |
Sample State | Method | Serial Number |
---|---|---|
T. grandis kernels with shells | PCA-MD | 24, 45, 83, 101, 115 |
Concentration residual | 14, 73, 95, 105, 113, 119 | |
T. grandis kernels without shells | PCA-MD | 7, 30, 82 |
Concentration residual | 9, 17, 34, 59, 77, 92, 106, 111, 117 | |
T. grandis kernel granules | PCA-MD | 66, 75, 91, 111 |
Concentration residual | 5, 17, 28, 47, 59, 62, 117 |
Sample State | Calibration Set | Prediction Set | ||||||
---|---|---|---|---|---|---|---|---|
Number | Range/% | Mean/% | SD/% | Number | Range/% | Mean/% | SD/% | |
T. grandis kernels with shells | 85 | 6.46–12.44 | 9.44 | 0.92 | 28 | 6.89–11.83 | 10.24 | 0.78 |
T. grandis kernels without shells | 84 | 6.46–12.44 | 9.48 | 0.88 | 28 | 6.52–11.65 | 10.12 | 0.79 |
T. grandis kernel granules | 85 | 6.46–12.44 | 9.53 | 0.89 | 28 | 6.68–12.03 | 9.97 | 0.83 |
Sample State | Preprocessing Method | Optimal Number of Latent Variables | Calibration Set | Prediction Set | ||||
---|---|---|---|---|---|---|---|---|
RMSEC | RMSEP | RPD | RER | |||||
T. grandis kernels with shells | Original | 10 | 0.60 | 0.29 | 0.59 | 0.30 | 2.60 | 17.03 |
1Der | 4 | 0.54 | 0.33 | 0.50 | 0.36 | 2.17 | 13.72 | |
2Der | 4 | 0.58 | 0.31 | 0.57 | 0.32 | 2.44 | 15.44 | |
SG | 6 | 0.54 | 0.33 | 0.51 | 0.35 | 2.23 | 14.11 | |
Normalize | 7 | 0.63 | 0.26 | 0.62 | 0.27 | 2.89 | 18.30 | |
Baseline | 6 | 0.60 | 0.30 | 0.55 | 0.33 | 2.36 | 14.97 | |
SNV | 10 | 0.65 | 0.25 | 0.62 | 0.27 | 2.89 | 18.30 | |
MSC | 8 | 0.57 | 0.33 | 0.53 | 0.35 | 2.23 | 14.11 | |
1Der+SNV | 4 | 0.66 | 0.24 | 0.62 | 0.26 | 3.00 | 19.00 | |
2Der+SNV | 4 | 0.69 | 0.20 | 0.67 | 0.21 | 3.71 | 23.52 | |
SG+SNV | 8 | 0.66 | 0.24 | 0.64 | 0.25 | 3.12 | 19.76 | |
T. grandis kernels without shells | Original | 10 | 0.70 | 0.24 | 0.68 | 0.26 | 3.04 | 19.73 |
1-Der | 5 | 0.81 | 0.21 | 0.73 | 0.29 | 2.72 | 17.69 | |
2-Der | 4 | 0.73 | 0.24 | 0.68 | 0.28 | 2.82 | 18.32 | |
SG | 5 | 0.74 | 0.23 | 0.69 | 0.28 | 2.82 | 18.32 | |
Normalize | 7 | 0.81 | 0.17 | 0.78 | 0.20 | 3.95 | 25.65 | |
Baseline | 6 | 0.74 | 0.23 | 0.71 | 0.26 | 3.04 | 19.73 | |
SNV | 10 | 0.72 | 0.24 | 0.69 | 0.27 | 2.93 | 19.00 | |
MSC | 7 | 0.72 | 0.24 | 0.67 | 0.28 | 2.82 | 18.32 | |
1-Der+SNV | 4 | 0.84 | 0.19 | 0.74 | 0.30 | 2.63 | 17.10 | |
2-Der+SNV | 4 | 0.78 | 0.21 | 0.72 | 0.26 | 3.04 | 19.73 | |
SG+SNV | 7 | 0.72 | 0.24 | 0.67 | 0.28 | 2.82 | 18.32 | |
T. grandis kernel granules | Original | 8 | 0.80 | 0.23 | 0.79 | 0.25 | 4.37 | 28.16 |
1-Der | 4 | 0.86 | 0.26 | 0.82 | 0.21 | 3.32 | 21.40 | |
2-Der | 4 | 0.84 | 0.25 | 0.74 | 0.18 | 3.95 | 25.48 | |
SG | 6 | 0.80 | 0.25 | 0.86 | 0.21 | 4.61 | 29.72 | |
Normalize | 6 | 0.83 | 0.17 | 0.79 | 0.24 | 3.95 | 25.48 | |
Baseline | 7 | 0.80 | 0.23 | 0.87 | 0.22 | 3.46 | 22.29 | |
SNV | 10 | 0.85 | 0.24 | 0.82 | 0.17 | 3.77 | 24.32 | |
MSC | 7 | 0.86 | 0.25 | 0.82 | 0.18 | 4.88 | 31.47 | |
1-Der+SNV | 7 | 0.92 | 0.27 | 0.86 | 0.22 | 4.61 | 29.72 | |
2-Der+SNV | 5 | 0.89 | 0.23 | 0.72 | 0.19 | 3.77 | 24.32 | |
SG+SNV | 8 | 0.87 | 0.25 | 0.84 | 0.25 | 4.37 | 28.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Y.; Zhong, H.; Wu, J.; Li, K.; Huang, Y.; Fang, H.; Hassan, M.; Yao, L.; Zhao, C. Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in Torreya grandis Kernels Under Different States. Foods 2025, 14, 1847. https://doi.org/10.3390/foods14111847
Gu Y, Zhong H, Wu J, Li K, Huang Y, Fang H, Hassan M, Yao L, Zhao C. Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in Torreya grandis Kernels Under Different States. Foods. 2025; 14(11):1847. https://doi.org/10.3390/foods14111847
Chicago/Turabian StyleGu, Yuqi, Haosheng Zhong, Jianhua Wu, Kaixuan Li, Yu Huang, Huimin Fang, Muhammad Hassan, Lijian Yao, and Chao Zhao. 2025. "Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in Torreya grandis Kernels Under Different States" Foods 14, no. 11: 1847. https://doi.org/10.3390/foods14111847
APA StyleGu, Y., Zhong, H., Wu, J., Li, K., Huang, Y., Fang, H., Hassan, M., Yao, L., & Zhao, C. (2025). Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in Torreya grandis Kernels Under Different States. Foods, 14(11), 1847. https://doi.org/10.3390/foods14111847