Moderate Ohmic Field Modification of Okara and Its Effects on Physicochemical Properties, Structural Organization, and Functional Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.2.1. OH Treatment
2.2.2. Blank Group and Control Group
2.3. Water-Holding Capacity and Oil-Holding Capacity (WHC and OHC)
- m1 is the weight of the sample, in g;
- m2 is the weight of the test tube with sediment, in g.
2.4. Swelling Capacity (SC) Analysis
2.5. Total Sugar Content Analysis
2.6. Analysis of Bioactive Compounds
2.6.1. Soluble Dietary Fiber (SDF)
2.6.2. Total Flavonoid Content (TFC)
2.6.3. Total Phenolic Content (TPC)
2.7. Antioxidant Activity
2.7.1. ABTS
2.7.2. DPPH
2.8. Fourier-Transform Infrared Spectroscopy (FTIR)
2.9. Electron Microscopy
2.10. Data Analysis
3. Results and Discussion
3.1. WHC and OHC
3.2. Swelling Capacity (SC)
3.3. Total Sugar Content
3.4. Bioactive Compounds
3.4.1. SDF
3.4.2. TFC
3.4.3. TPC
3.5. Antioxidant Capacity Analysis (DPPH and ABTS)
3.6. Fourier-Transform Infrared Spectroscopy (FTIR)
3.7. Microstructure
3.8. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, F.; Liu, Y.; Li, B. Okara dietary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Diet. Fibre 2013, 2, 126–132. [Google Scholar] [CrossRef]
- Privatti, R.T.; Rodrigues, C.E.D.C. An overview of the composition, applications, and recovery techniques of the components of Okara aimed at the biovalorization of this soybean processing residue. Food Rev. Int. 2023, 39, 726–749. [Google Scholar] [CrossRef]
- Fan, X.; Li, S.; Zhang, A.; Chang, H.; Zhao, X.; Lin, Y.; Feng, Z. Mechanism of change of the physicochemical characteristics, gelation process, water state, and microstructure of okara tofu analogues induced by high-intensity ultrasound treatment. Food Hydrocoll. 2021, 111, 106241. [Google Scholar] [CrossRef]
- Vong, W.C.; Liu, S.Q. Biovalorisation of okara (soybean residue) for food and nutrition. Trends Food Sci. Technol. 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I.; Mateos-Peinado, C.; Rupérez, P. High hydrostatic pressure improves the functionality of dietary fibre in okara by-product from soybean. Innov. Food Sci. Emerg. Technol. 2010, 11, 445–450. [Google Scholar] [CrossRef]
- Fayaz, G.; Plazzotta, S.; Calligaris, S.; Manzocco, L.; Nicoli, M.C. Impact of high pressure homogenization on physical properties, extraction yield and biopolymer structure of soybean okara. LWT 2019, 113, 108324. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Yang, G.; Liu, T.; Guo, Q.; Zhao, M.; Zhao, Q. Physicochemical and emulsification properties of okara-derived soluble dietary fiber modified by steam explosion. Food Hydrocoll. 2024, 152, 109943. [Google Scholar] [CrossRef]
- Nagano, T.; Arai, Y.; Yano, H.; Aoki, T.; Kurihara, S.; Hirano, R.; Nishinari, K. Improved physicochemical and functional properties of okara, a soybean residue, by nanocellulose technologies for food development–A review. Food Hydrocoll. 2020, 109, 105964. [Google Scholar] [CrossRef]
- Kantrong, H.; Aussanasuwannakul, A.; Rodkwan, N.; Chitisankul, W.T. Effect of mechanical treatment from extrusion process on physicochemical properties of okara cellulose powder. Sci. Rep. 2024, 14, 22193. [Google Scholar] [CrossRef]
- Lazarin, R.A.; Zanin, R.C.; Silva, M.B.R.; Ida, E.I.; Berteli, M.N.; Kurozawa, L.E. Drying kinetic and bioactive compounds of okara dried in microwave-assisted rotating-pulsed fluidized bed dryer. Food Bioprocess Technol. 2023, 16, 565–575. [Google Scholar] [CrossRef]
- Fan, X.; Chang, H.; Lin, Y.; Zhao, X.; Zhang, A.; Li, S.; Feng, Z.; Chen, X. Effects of ultrasound-assisted enzyme hydrolysis on the microstructure and physicochemical properties of okara fibers. Ultrason. Sonochem. 2020, 69, 105247. [Google Scholar] [CrossRef]
- Yoshida, B.Y.; Prudencio, S.H. Alkaline hydrogen peroxide improves physical, chemical, and techno-functional properties of okara. Food Chem. 2020, 323, 126776. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Huang, L.; Tao, X.; Su, J.; Chen, B.; Zhao, M.; Zhao, Q.; Van der Meeren, P. Adjustment of the structural and functional properties of okara protein by acid precipitation. Food Biosci. 2020, 37, 100677. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Wang, W.; Devahastin, S. Solid-state fermentation with probiotics and mixed yeast on properties of okara. Food Biosci. 2020, 36, 100610. [Google Scholar] [CrossRef]
- Zhan, Q.; Thakur, K.; Feng, J.Y.; Zhu, Y.Y.; Zhang, J.G.; Wei, Z.J. LC–MS based metabolomics analysis of okara fermented by Bacillus subtilis DC-15: Insights into nutritional and functional profile. Food Chem. 2023, 413, 135656. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Ning, H.; Liu, Y.; Qin, W.; Liu, J.; Loy, D.A. Mechanism of promoting okara insoluble to soluble dietary fiber by high-pressure homogenization-microbial fermentation. Bioresour. Technol. 2025, 416, 131774. [Google Scholar] [CrossRef]
- Lei, Y.T.; Meng, F.B.; Jiao, X.L.; Tang, Y.M.; Wu, Q.J.; Li, Y.C. Effects of UV-A irradiation and microbial fermentation on the physicochemical, microstructure and functional properties of okara. Food Res. Int. 2025, 200, 115445. [Google Scholar] [CrossRef]
- Feng, J.Y.; Zhang, W.W.; Thakur, K.; Hu, F.; Zhang, J.G.; Wei, Z.J. Combination of dry planetary ball milling and Lactobacillus plantarum fermentation improves nutritional and functional value of okara. Appl. Food Res. 2025, 5, 100827. [Google Scholar] [CrossRef]
- Llave, Y.; Morinaga, K.; Fukuoka, M.; Sakai, N. Characterization of ohmic heating and sous-vide treatment of scallops: Analysis of electrical conductivity and the effect of thermal protein denaturation on quality attribute changes. Innov. Food Sci. Emerg. Technol. 2018, 50, 112–123. [Google Scholar] [CrossRef]
- Liu, L.; Llave, Y.; Jin, Y.; Zheng, D.Y.; Fukuoka, M.; Sakai, N. Electrical conductivity and ohmic thawing of frozen tuna at high frequencies. J. Food Eng. 2017, 197, 68–77. [Google Scholar] [CrossRef]
- Knirsch, M.C.; Dos Santos, C.A.; de Oliveira Soares, A.A.M.; Penna, T.C.V. Ohmic heating–A review. Trends Food Sci. Technol. 2010, 21, 436–441. [Google Scholar] [CrossRef]
- Müller, W.A.; Marczak, L.D.F.; Sarkis, J.R. Microbial inactivation by ohmic heating: Literature review and influence of different process variables. Trends Food Sci. Technol. 2020, 99, 650–659. [Google Scholar] [CrossRef]
- Salari, S.; Jafari, S.M. The Influence of Ohmic Heating on Degradation of Food Bioactive Ingredients. Food Eng. Rev. 2020, 12, 191–208. [Google Scholar] [CrossRef]
- Talha, M.; Khalid, S.; Maan, A.A.; Tanveer, N.; Khan, M.K.I.; Asif, M.; Arif, S.; Sarwar, A. Ohmic assisted extraction: A sus-tainable and environment friendly approach to substitute conventional extraction methods. Food Rev. Int. 2024, 40, 3508–3529. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Al-Musafer, A.M.; Gavahian, M. Pilot-scale ohmic heating-assisted extraction of wheat bran bioactive compounds: Effects of the extract on corn oil stability. Food Res. Int. 2020, 137, 109649. [Google Scholar] [CrossRef]
- Cabas, B.M.; Icier, F. Ohmic Heating–Assisted Extraction of Natural Color Matters from Red Beetroot. Food Bioprocess Technol. 2021, 14, 2062–2077. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, S.; Liu, L.; Ren, Y.; Li, Q.; Zhang, C.; Qian, J.Y. Influence of ohmic heating on structure, texture and flavor of peanut protein isolate. Innov. Food Sci. Emerg. Technol. 2023, 90, 103512. [Google Scholar] [CrossRef]
- Khalid, S.; Hassan, S.A.; Altemimi, A.B.; Chaudhary, K.; Raana, S.; Javaid, H.; Naeem, M.; Bhat, Z.F.; Aadil, R.M. Recovery of valuable substances from food waste by ohmic heating assisted extraction—A step towards sustainable production. Future Foods 2024, 9, 100365. [Google Scholar] [CrossRef]
- Sánchez, M.; Ferreira-Santos, P.; Gomes-Dias, J.S.; Botelho, C.; Laca, A.; Rocha, C.M. Ohmic heating-based extraction of bi-ocompounds from cocoa bean shell. Food Biosci. 2023, 54, 102886. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of phenolic compounds from grape pomace using ohmic heating: Chemical composition, bioactivity and bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef]
- Álvarez-Chávez, J.; Villamiel, M.; Santos-Zea, L.; Ramírez-Jiménez, A.K. Agave by-products: An overview of their nutraceutical value, current applications, and pro-cessing methods. Polysaccharides 2021, 2, 720–743. [Google Scholar] [CrossRef]
- Fuentes, A.P.C.; Bengoa, A.; Gagliarini, N.; Abraham, A.; de Escalada Pla, M.F.; Flores, S.K. Physicochemical and functional characterisation of a food ingredient based on okara containing probiotics. Food Bioprod. Process. 2022, 135, 74–86. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, X.; Zhao, G.; Peng, L.; Zhao, F.; Qin, Y.; Zhang, R. Green preparation and evaluation of physicochemical, structural and functional properties of dietary fiber from navel orange peel. J. Sci. Food Agric. 2025, 105, 4515–4523. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, J.; Xuan, J.; Chen, Y.; Tu, J.; Mu, H.; Wang, J.; Liu, G. Increase of γ-aminobutyric acid content and improvement of physicochemical characteristics of mulberry leaf powder by fermentation with a selected lactic acid bacteria strain. LWT 2023, 187, 115250. [Google Scholar] [CrossRef]
- Meng, C.; Wang, Y.; Xie, J.; Xuan, J.; Geng, J.; Liu, G.; Tu, J.; Xiao, H. Pediococcus pentosaceus JS35 improved flavor, metabolic profile of fermentation supernatant of mulberry leaf powder and increased its antioxidant capacity. Front. Nutr. 2025, 12, 1551689. [Google Scholar] [CrossRef]
- Song, Y.; Li, Q.; Liu, Y.; Ma, Y.; Lin, C.; Bai, X.; Nie, N.; Liu, Y.; Yi, Z.; Zheng, H.; et al. Discrepancy on the quality characteristics of soluble dietary fiber in wild Rosa roxburghii Tratt fruits from different regions. Sci. Rep. 2025, 15, 8289. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Official Analytical Chemists; The Association: New York, NY, USA, 2000; Volume 11. [Google Scholar]
- Zhao, H.; Wang, Q.; Yang, L.; Ran, Y.; Hu, Q.; Hong, Y.; Tian, M. Phytochemical analysis, antioxidant, anti-inflammatory and enzyme inhibitory activities of bean pear (Pyrus calleryana fruit). Front. Plant Sci. 2025, 16, 1521990. [Google Scholar] [CrossRef]
- Quan, Y.; Chen, L.; Fan, M.; Zhao, X.; Hao, J. Antioxidant Peptides from Tiger Nut (Cyperus esculentus L.): Chemical Analysis and Cytoprotective Functions on HepG2 and Caco-2 Cells. Foods 2025, 14, 349. [Google Scholar] [CrossRef]
- Lyu, B.; Wang, Y.; Zhang, X.; Chen, Y.; Fu, H.; Liu, T.; Hao, J.; Li, Y.; Yu, H.; Jiang, L. Changes of High-Purity Insoluble Fiber from Soybean Dregs (Okara) after Being Fermented by Colonic Flora and Its Adsorption Capacity. Foods 2021, 10, 2485. [Google Scholar] [CrossRef]
- Lan, Q.; Lin, Z.; Dong, H.; Wu, D.; Lin, D.; Qin, W.; Liu, J.; Yang, W.; Zhang, Q. Influence of okara with varying particle sizes on the gelling, rheological, and microstructural properties of glucono-δ-lactone-induced tofu. J. Food Sci. Technol. 2021, 58, 520–531. [Google Scholar] [CrossRef]
- Yoshida, B.Y.; Prudencio, S.H. Physical, chemical, and technofunctional properties of okara modified by a carbohydrase mixture. LWT 2020, 134, 110141. [Google Scholar] [CrossRef]
- Huang, K.; Du, B.; Xu, B. Alterations in physicochemical properties and bile acid binding capacities of dietary fibers upon ultrafine grinding. Powder Technol. 2018, 326, 146–150. [Google Scholar] [CrossRef]
- Wu, C.; Teng, F.; McClements, D.J.; Zhang, S.; Li, Y.; Wang, Z. Effect of cavitation jet processing on the physicochemical properties and structural characteristics of okara dietary fiber. Food Res. Int. 2020, 134, 109251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, G.; Pan, Y.; Chen, W.; Huang, W.; Chen, H.; Li, Y. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction. Carbohydr. Polym. 2017, 172, 102–112. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, X.; Ju, S.; Cai, R.; Roopesh, M.S.; Pan, D.; Du, L. Influence of atmospheric pressure plasma jet on the structural, functional and digestive properties of chickpea protein isolate. Food Res. Int. 2023, 174, 113565. [Google Scholar] [CrossRef] [PubMed]
- Bowker, B. Developments in our understanding of water-holding capacity. In Poultry Quality Evaluation; Woodhead Publishing: Cambridge, UK, 2017; pp. 77–113. [Google Scholar] [CrossRef]
- Vilela, W.F.; Leão, D.P.; Franca, A.S.; Oliveira, L.S. Effect of peroxide treatment on functional and technological properties of fiber-rich powders based on spent coffee grounds. Int. J. Food Eng. 2016, 2, 42–47. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Fang, D.; Zhuang, W.; Chen, C.; Jiang, W.; Zheng, Y. Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. Int. J. Biol. Macromol. 2018, 120, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wu, X.; Chen, X.; Li, X.; Zheng, Z.; Jiang, S. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chem. 2020, 316, 126243. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Goulart, F.R.; Silva, L.P.D.; Penna, N.G. Micronization and extrusion processing on the physicochemical properties of dietary fiber. Ciência Rural. 2019, 49, e20190154. [Google Scholar] [CrossRef]
- Feng, X.; Chen, H.; Liang, Y.; Geng, M.; He, M.; Huang, Y.; Li, Y.; Teng, F. Effects of electron beam irradiation treatment on the structural and functional properties of okara insoluble dietary fiber. J. Sci. Food Agric. 2023, 103, 195–204. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Helstad, A.; Marefati, A.; Ahlström, C.; Rayner, M.; Purhagen, J.; Östbring, K. High-pressure pasteurization of soy okara. Foods 2023, 12, 3736. [Google Scholar] [CrossRef]
- Li, B.; Yang, W.; Nie, Y.; Kang, F.; Goff, H.D.; Cui, S.W. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara. Food Hydrocoll. 2019, 94, 48–56. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Sun, X.; Qin, W.; Wu, D.; Hu, B.; Raheem, D.; Yang, W.; Dong, H.; Vasanthan, T.; et al. High-speed shearing of soybean flour suspension disintegrates the component cell layers and modifies the hydration properties of okara fibers. LWT 2019, 116, 108505. [Google Scholar] [CrossRef]
- Yang, N.; Jin, Y.; Zhou, Y.; Zhou, X. Physicochemical characterization of pectin extracted from mandarin peels using novel electromagnetic heat. Int. J. Biol. Macromol. 2024, 262, 130212. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.J.; Jiang, W.; Qian, J.Y. Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT 2017, 84, 73–81. [Google Scholar] [CrossRef]
- Yang, T.; Yan, H.L.; Tang, C.H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara. Food Hydrocoll. 2021, 111, 106386. [Google Scholar] [CrossRef]
- Tao, X.; Cai, Y.; Liu, T.; Long, Z.; Huang, L.; Deng, X.; Zhao, Q.; Zhao, M. Effects of pretreatments on the structure and functional properties of okara protein. Food Hydrocoll. 2019, 90, 394–402. [Google Scholar] [CrossRef]
- O’Toole, D.K. Characteristics and use of okara, the soybean residue from soy milk production a review. J. Agric. Food Chem. 1999, 47, 363–371. [Google Scholar] [CrossRef]
- Li, B.; Qiao, M.; Lu, F. Composition, nutrition, and utilization of okara (soybean residue). Food Rev. Int. 2012, 28, 231–252. [Google Scholar] [CrossRef]
- Rownaghi, M.; Niakousari, M. Assessing physicochemical characteristics of a shear-thinning polysaccharide mucilage extracted from marshmallow root (Althaea officinalis L.) by an ohmic heating system. Int. J. Biol. Macromol. 2024, 277, 134274. [Google Scholar] [CrossRef]
- Joshi, T.J.; Singh, S.M.; Rao, P.S. Novel thermal and non-thermal millet processing technologies: Advances and research trends. Eur. Food Res. Technol. 2023, 249, 1149–1160. [Google Scholar] [CrossRef]
- Yue, F.; Zhang, J.; Xu, J.; Niu, T.; Lü, X.; Liu, M. Effects of monosaccharide composition on quantitative analysis of total sugar content by phenol-sulfuric acid method. Front. Nutr. 2022, 9, 963318. [Google Scholar] [CrossRef]
- Boz, H.; Karaoğlu, M.M.; Kaban, G. The effects of cooking time and sugar on total phenols, hydroxymethylfurfural and acrylamide content of mulberry leather (pestil). Qual. Assur. Saf. Crops Foods 2016, 8, 493–500. [Google Scholar] [CrossRef]
- Poojitha, P.; Athmaselvi, K.A. Influence of sucrose concentration on electric conductivity of banana pulp during ohmic heating. Food Sci. Technol. Int. 2018, 24, 664–672. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K.; Amitabh, A.; Chavan, S.M. Effect of ohmic heating on physicochemical, bioactive compounds, and shelf life of watermelon flesh-rind drinks. J. Food Process Eng. 2022, 45, e13818. [Google Scholar] [CrossRef]
- Hai, A.; AlYammahi, J.; Bharath, G.; Rambabu, K.; Hasan, S.W.; Banat, F. Extraction of nutritious sugar by cell membrane permeabilization and electroporation of biomass using a moderate electric field: Parametric optimization and kinetic modeling. Biomass Convers. Biorefinery 2024, 14, 19187–19202. [Google Scholar] [CrossRef]
- Rambabu, K.; AlYammahi, J.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Velu, S.; Banat, F. Sub-critical water extraction of reducing sugars and phenolic compounds from date palm fruit. Biomass Convers. Biorefinery 2022, 29, 1–12. [Google Scholar] [CrossRef]
- Rascón, L.; Cruz, M.; Rodríguez-Jasso, R.M.; Neira-Vielma, A.A.; Ramírez-Barrón, S.N.; Belmares, R. Effect of ohmic heating on sensory, physicochemical, and microbiological properties of “aguamiel” of agave salmiana. Foods 2020, 9, 1834. [Google Scholar] [CrossRef]
- Liang, Z.; Li, K.; Huang, W.; Li, Z.; Xu, X.; Xu, H.; Li, S. Production, structural and functional characteristics of soluble dietary fiber from fermented okara by Penicillium expansum. Int. J. Biol. Macromol. 2023, 253, 126621. [Google Scholar] [CrossRef]
- Ma, Q.; Yu, Y.; Zhou, Z.; Wang, L.; Cao, R. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran. Food Biosci. 2023, 53, 102517. [Google Scholar] [CrossRef]
- Barrón-García, O.Y.; Gaytán-Martínez, M.; Ramírez-Jiménez, A.K.; Luzardo-Ocampo, I.; Velazquez, G.; Morales-Sánchez, E. Physicochemical characterization and polyphenol oxidase inactivation of Ataulfo mango pulp pasteurized by conventional and ohmic heating processes. LWT 2021, 143, 111113. [Google Scholar] [CrossRef]
- Álvarez-Chávez, J.; Castrejon, A.; Gaytán-Martínez, M.; Ramírez-Jiménez, A.K. Effect of Ohmic heating, ultrasound and extrusion on the bioactive composition and nutritional value of Agave bagasse from Mezcal production. Innov. Food Sci. Emerg. Technol. 2025, 100, 103897. [Google Scholar] [CrossRef]
- Coelho, M.C.; Ghalamara, S.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Innovation and winemaking by-product valorization: An ohmic heating approach. Processes 2023, 11, 495. [Google Scholar] [CrossRef]
- Coelho, M.C.; Ghalamara, S.; Campos, D.; Ribeiro, T.B.; Pereira, R.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M. Tomato processing by-products valorisation through ohmic heating approach. Foods 2023, 12, 818. [Google Scholar] [CrossRef]
- Khajehei, F.; Niakousari, M.; Seidi Damyeh, M.; Merkt, N.; Claupein, W.; Graeff-Hoenninger, S. Impact of ohmic-assisted decoction on bioactive components extracted from yacon (Smallanthus sonchifolius Poepp.) Comparison with conventional decoction. Molecules 2017, 22, 2043. [Google Scholar] [CrossRef]
- Markhali, F.S.; Teixeira, J.A. Extractability of oleuropein, hydroxytyrosol, tyrosol, verbascoside and flavonoid-derivatives from olive leaves using ohmic heating (a green process for value addition). Sustain. Food Technol. 2024, 2, 461–469. [Google Scholar] [CrossRef]
- Moongngarm, A.; Sriharboot, N.; Loypimai, P.; Moontree, T. Ohmic heating-assisted water extraction of steviol glycosides and phytochemicals from Stevia rebaudiana leaves. LWT 2022, 154, 112798. [Google Scholar] [CrossRef]
- Domínguez-Hernández, E.; Gutiérrez-Uribe, J.A.; Domínguez-Hernández, M.E.; Loarca-Piña, G.F.; Gaytán-Martínez, M. In search of better snacks: Ohmic-heating nixtamalized flour and amaranth addition increase the nutraceutical and nutritional potential of vegetable-enriched tortilla chips. J. Sci. Food Agric. 2023, 103, 2773–2785. [Google Scholar] [CrossRef]
- Abedelmaksoud, T.G.; Mohsen, S.M.; Duedahl-Olesen, L.; Altemimi, A.B.; Elnikeety, M.M.; Cacciola, F.; Feyissa, A.H. Positive influences of Ohmicsonication on phytochemical profile and storage stability of not-from-concentrate mango juice. Molecules 2022, 27, 1986. [Google Scholar] [CrossRef]
- Sari, F.; Incedayi, B.; Turkmen Erol, N.; Akpinar, P.; Copur, O.U. Impact of ohmic heating and ultrasound pretreatments on oil absorption and other quality parameters of fried potato. Potato Res. 2024, 68, 111–125. [Google Scholar] [CrossRef]
- Ibidapo, O.; Henshaw, F.; Shittu, T.; Afolabi, W. Bioactive components of malted millet (Pennisetum glaucum), Soy Residue “okara” and wheat flour and their antioxidant properties. Int. J. Food Prop. 2019, 22, 1886–1898. [Google Scholar] [CrossRef]
- de Queiroz, Y.S.; Antunes, P.B.; Vicente, S.J.; Sampaio, G.R.; Shibao, J.; Bastos, D.H.; Torres, E.A.D.S. Bioactive compounds, in vitro antioxidant capacity and Maillard reaction products of raw, boiled and fried garlic (Allium sativum L.). Int. J. Food Sci. Technol. 2014, 49, 1308–1314. [Google Scholar] [CrossRef]
- Zhang, L.; Qu, H.; Xie, M.; Shi, T.; Shi, P.; Yu, M. Effects of different cooking methods on phenol content and antioxidant activity in sprouted peanut. Molecules 2023, 28, 4684. [Google Scholar] [CrossRef]
- Darvishi, H.; Salami, P.; Fadavi, A.; Saba, M.K. Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food Bioprod. Process. 2020, 123, 102–110. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, T.; Zhu, X.; Song, G.; Wang, D.; Li, L.; Huang, M.; Gong, J. The phenolics, antioxidant activity and in vitro digestion of pomegranate (Punica granatum L.) peels: An investigation of steam explosion pre-treatment. Front. Nutr. 2023, 10, 1161970. [Google Scholar] [CrossRef]
- Darvishi, H.; Behroozi-Khazaei, N.; Koushesh Saba, M.; Alimohammadi, Z.; Nourbakhsh, H. The influence of Ohmic-vacuum heating on phenol, ascorbic acid and engineering factors of kiwifruit juice concentration process. Int. J. Food Sci. Technol. 2021, 56, 4789–4798. [Google Scholar] [CrossRef]
- Gavahian, M.; Chu, R. Ohmic heating extraction at different times, temperatures, voltages, and frequencies: A new ener-gy-saving technique for pineapple core valorization. Foods 2022, 11, 2015. [Google Scholar] [CrossRef]
- Doan, N.K.; Lai, Q.D.; Le, T.K.P.; Le, N.T. Influences of AC frequency and electric field strength on changes in bioactive compounds in ohmic heating of pomelo juice. Innov. Food Sci. Emerg. Technol. 2021, 72, 102754. [Google Scholar] [CrossRef]
- Helvacıoğlu, S.; Charehsaz, M.; Güzelmeriç, E.; Acar, E.T.; Yeşilada, E.; Aydın, A. Comparatively investigation of grape molasses produced by conventional and industrial techniques. Marmara Pharm. J. 2018, 22, 44–51. [Google Scholar] [CrossRef]
- Sun, H.; Yuan, X.; Zhang, Z.; Su, X.; Shi, M. Thermal processing effects on the chemical constituent and antioxidant activity of okara extracts using subcritical water extraction. J. Chem. 2018, 2018, 6823789. [Google Scholar] [CrossRef]
- Safarzadeh Markhali, F.; Teixeira, J.A.; Rocha, C.M. Effect of ohmic heating on the extraction yield, polyphenol content and antioxidant activity of olive mill leaves. Clean Technol. 2022, 4, 512–528. [Google Scholar] [CrossRef]
- Mannozzi, C.; Rompoonpol, K.; Fauster, T.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Jaeger, H. Influence of pulsed electric field and ohmic heating pretreatments on enzyme and antioxidant activity of fruit and vegetable juices. Foods 2019, 8, 247. [Google Scholar] [CrossRef]
- Torgbo, S.; Sukatta, U.; Kamonpatana, P.; Sukyai, P. Ohmic heating extraction and characterization of rambutan (Nephelium lappaceum L.) peel extract with enhanced antioxidant and antifungal activity as a bioactive and functional ingredient in white bread preparation. Food Chem. 2022, 382, 132332. [Google Scholar] [CrossRef]
- Moscoso Ospina, Y.A.; Porfiri, M.C.; Cabezas, D.M. Soybean okara: Effect of ultrasound on compositional and emulsifying properties. Int. J. Food Sci. Technol. 2022, 57, 3914–3923. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I.; Mateos-Peinado, C.; Jiménez-Escrig, A.; Rupérez, P. Multifunctional antioxidant activity of polysaccharide fractions from the soybean byproduct okara. Carbohydr. Polym. 2010, 82, 245–250. [Google Scholar] [CrossRef]
- Ma, M.; Mu, T. Modification of deoiled cumin dietary fiber with laccase and cellulase under high hydrostatic pressure. Carbohydr. Polym. 2016, 136, 87–94. [Google Scholar] [CrossRef]
- Chu, J.; Zhao, H.; Lu, Z.; Lu, F.; Bie, X.; Zhang, C. Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chem. 2019, 294, 79–86. [Google Scholar] [CrossRef]
- Chylińska, M.; Szymańska-Chargot, M.; Kruk, B.; Zdunek, A. Study on dietary fibre by Fourier transform-infrared spectroscopy and chemometric methods. Food Chem. 2016, 196, 114–122. [Google Scholar] [CrossRef]
- Luo, W.B.; Han, Z.; Zeng, X.A.; Yu, S.J.; Kennedy, J.F. Study on the degradation of chitosan by pulsed electric fields treatment. Innov. Food Sci. Emerg. Technol. 2010, 11, 587–591. [Google Scholar] [CrossRef]
- Tang, L.; Wang, B.; Bai, S.; Fan, B.; Zhang, L.; Wang, F. Preparation and characterization of cellulose nanocrystals with high stability from okara by green solvent pretreatment assisted TEMPO oxidation. Carbohydr. Polym. 2024, 324, 121485. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H.; Roth, A.; Toepfl, S.; Holzhauser, T.; Engel, K.H.; Knorr, D.; Vogel, R.F.; Bandick, N.; Kulling, S.; Heinz, V.; et al. Opinion on the use of ohmic heating for the treatment of foods. Trends Food Sci. Technol. 2016, 55, 84–97. [Google Scholar] [CrossRef]
- Xue, S.; Cui, Z.; Yang, L.; Wang, S.; He, Y.; Zhang, Y.; Liu, H. The effect of okara on physical–chemical characteristics and starch hydrolysis of extruded reconstituted rice in vitro. J. Funct. Foods 2024, 117, 106252. [Google Scholar] [CrossRef]
- Xie, L.; Lu, L.; Zhao, L.; Peng, J.; Zhou, W. Improvement of okara noodle quality by modifying the soluble/insoluble dietary fibre ratio. Food Chem. 2025, 464, 141566. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Luo, S.; Wang, N.; Wang, L.; Zhang, N.; Yu, D. Evaluation of ohmic heating modified soybean protein isolate structure and antioxidant film under different catechin concentrations. LWT 2023, 186, 115224. [Google Scholar] [CrossRef]
- Avelar, Z.; Monge-Morera, M.; Delcour, J.A.; Saraiva, J.A.; Vicente, A.A.; Rodrigues, R.M. Ohmic heating as an innovative strategy to modulate protein fibrillation. Innov. Food Sci. Emerg. Technol. 2024, 92, 103587. [Google Scholar] [CrossRef]
- Yang, T.; Liu, T.X.; Li, X.T.; Tang, C.H. Novel nanoparticles from insoluble soybean polysaccharides of Okara as unique Pickering stabilizers for oil-in-water emulsions. Food Hydrocoll. 2019, 94, 255–267. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, Y.; Swallah, M.S.; Wang, S.; Zhang, J.; Fang, J.; Lu, J.; Yu, H. Structural characteristics of insoluble dietary fiber from okara with different particle sizes and their prebiotic effects in rats fed high-fat diet. Foods 2022, 11, 1298. [Google Scholar] [CrossRef]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Xie, J.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Lin, D.; Long, X.; Huang, Y.; Yang, Y.; Wu, Z.; Chen, H.; Zhang, Q.; Wu, D.; Qin, W.; Tu, Z. Effects of microbial fermentation and microwave treatment on the composition, structural characteristics, and functional properties of modified okara dietary fiber. LWT 2020, 123, 109059. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Hu, X.; Zhu, X.; Wang, L.; Zhang, N.; Yu, D. Structural and physical properties of soybean protein isolate films with ohmic heating treatment: Impacts of electric field. Innov. Food Sci. Emerg. Technol. 2022, 82, 103213. [Google Scholar] [CrossRef]
- Ariza-Gracia, M.Á.; Cabello, M.P.; Cebrián, G.; Calvo, B.; Álvarez, I. Experimental and computational analysis of microbial inactivation in a solid by ohmic heating using pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2020, 65, 102440. [Google Scholar] [CrossRef]
- Ullah, I.; Yin, T.; Xiong, S.; Huang, Q.; Zhang, J.; Javaid, A.B. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling. J. Food Eng. 2018, 237, 18–26. [Google Scholar] [CrossRef]
Code | WHC (g/g) | OHC (g/g) | SC (mL/g) |
---|---|---|---|
UT | 0.45 ± 0.01 g | 0.27 ± 0.01 g | 1.87 ± 0.07 f |
WH0-3 | 0.49 ± 0.01 e,f | 0.31 ± 0.01 f,g | 2.07 ± 0.01 e,f |
WH0-6 | 0.51 ± 0.01 d,e,f | 0.33 ± 0.01 f | 2.04 ± 0.12 e,f |
WH0-9 | 0.51 ± 0.01 c,d,e | 0.31 ± 0.01 f,g | 2.09 ± 0.05 e,f |
OH40-3 | 0.52 ± 0.01 c,d,e | 0.4 ± 0.01 e | 2.33 ± 0.17 d,e |
OH40-6 | 0.54 ± 0.01 b,c,d | 0.42 ± 0.01 c,d,e | 2.39 ± 0.19 c,d,e |
OH40-9 | 0.56 ± 0.01 b | 0.43 ± 0.01 c,d,e | 2.56 ± 0.08 b,c,d |
OH45-3 | 0.54 ± 0.01 b,c | 0.45 ± 0.02 c,d | 2.39 ± 0.23 c,d,e |
OH45-6 | 0.68 ± 0.01 a | 0.51 ± 0.01 a | 3.06 ± 0.06 a |
OH45-9 | 0.48 ± 0.01 f,g | 0.46 ± 0.01 b,c | 2.73 ± 0.17 a,b,c,d |
OH50-3 | 0.57 ± 0.02 b | 0.49 ± 0.01 a,b | 2.99 ± 0.11 a,b |
OH50-6 | 0.51 ± 0.01 c,d,e,f | 0.42 ± 0.02 d,e | 2.79 ± 0.23 a,b,c |
OH50-9 | 0.39 ± 0.01 h | 0.42 ± 0.01 d,e | 2.46 ± 0.24 c,d,e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Xie, C.; Yang, C.; Liu, X.; Meng, X. Moderate Ohmic Field Modification of Okara and Its Effects on Physicochemical Properties, Structural Organization, and Functional Characteristics. Foods 2025, 14, 1833. https://doi.org/10.3390/foods14101833
Cao Z, Xie C, Yang C, Liu X, Meng X. Moderate Ohmic Field Modification of Okara and Its Effects on Physicochemical Properties, Structural Organization, and Functional Characteristics. Foods. 2025; 14(10):1833. https://doi.org/10.3390/foods14101833
Chicago/Turabian StyleCao, Zhongwen, Chengcheng Xie, Cheng Yang, Xingyu Liu, and Xiangren Meng. 2025. "Moderate Ohmic Field Modification of Okara and Its Effects on Physicochemical Properties, Structural Organization, and Functional Characteristics" Foods 14, no. 10: 1833. https://doi.org/10.3390/foods14101833
APA StyleCao, Z., Xie, C., Yang, C., Liu, X., & Meng, X. (2025). Moderate Ohmic Field Modification of Okara and Its Effects on Physicochemical Properties, Structural Organization, and Functional Characteristics. Foods, 14(10), 1833. https://doi.org/10.3390/foods14101833