Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Production of Plant-Based Snacks
- -
- Snacks such as red bean wafers with inulin 3%, salt 0.5%—basic variant (RBB);
- -
- Snacks such as red bean wafers—basic variant + marjoram (2%) (RBM);
- -
- Snacks such as red bean wafers—basic variant + carrot (30%) (RBC);
- -
- Snacks such as red bean wafers—basic variant + red beetroot (15%) (RBRB).
2.3. Chemical Composition
2.4. In Vitro Digestion Process
2.5. Preparation of Samples from Red Bean for the Analysis of Biologically Active Compounds
2.5.1. Total Polyphenols Content
2.5.2. Antioxidant Activity
2.6. β-Glucuronidase and β-Glucosidase Activity
2.7. The Intestinal Microflora
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results
3.1. Chemical Content and Biologically Active Compounds of Plant-Based Snacks During or After Biotechnological Treatment
3.2. Sensory Quality of the Obtained Plant-Based Snacks
3.3. Effect of In Vitro Digestion on Total Polyphenols and Antioxidant Activity
3.4. Changes in Reduced Substance and Soluble Protein During Digestion
3.5. Effects of β-Glucuronidase and β-Glucosidase Activity
3.6. Effect of Gut Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Cabrejas, M.A. Legumes: An overview. In Legumes: Nutritional Quality, Processing and Potential Health Benefits; Martín-Cabrejas, M.Á., Ed.; Royal Society of Chemistry: London, UK, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Shehzad, A.; Chander, M.U.; Sharif, K.M.; Rakha, A.; Ansari, A.; Shuja, Z.M. Nutritional, Functional and Health Promoting Attributes of Red Kidney Bean.s A review. Pak. J. Food Sci. 2016, 25, 235–246. [Google Scholar]
- Mayer Labba, I.-C.; Frøkiær, H.; Sandberg, A.-S. Nutritional and Antinutritional Composition of Fava Bean (Vicia faba L., var. minor) Cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef] [PubMed]
- Srenuja, D.; Hema, V.; Anand, M.T.; Mohan, R.J.; Vidyalakshmi, R. Kidney Bean: Protein’s Treasure Trove and Creates Avenues for a Healthy Lifestyle. Legume Sci. 2023, 5, e193. [Google Scholar] [CrossRef]
- Kimothi, S.; Dhaliwal, Y.S. Nutritional and Health Promoting Attribute of Kidney Beans (Phaseolus vulgaris L.): A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1201–1209. [Google Scholar] [CrossRef]
- Granito, M.; Flias, J.; Doblado, R.; Guerra, M.; Champ, M. Nutritional Improvent of Beans (Phaseolus vulgaris) by Natural Fermentation. Eur. Food Res. Technol. 2002, 214, 226–231. [Google Scholar] [CrossRef]
- Imam, Y.T.; Irondi, E.A.; Awoyale, W.; Ajani, E.O.; Alamu, E.O. Application of Legumes in the Formulation of Gluten-Free Foods: Functional, Nutritional and Nutraceutical Importance. Front. Sustain. Food Syst. 2024, 8, 1251760. [Google Scholar] [CrossRef]
- Schmidt, H.d.O.; Oliveira, V.R.d. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023, 12, 2586. [Google Scholar] [CrossRef]
- WGSN | Big Ideas 2022: Food & Drink—WGSN Food & Drink. Available online: https://www.wgsn.com/fd/p/article/87743 (accessed on 1 December 2024).
- Sozer, N.; Melama, L.; Silbir, S.; Rizzello, C.G.; Flander, L.; Poutanen, K. Lactic acid Fermentation as a Pre-Treatment Process for Faba Bean Flour and its Effect on Textural, Structural and Nutritional Properties of Protein-enriched Gluten-free Faba Bean Breads. Foods 2019, 8, 431. [Google Scholar] [CrossRef]
- Hippolite, L.; Feng, Z.; Zhang, Y.; Lee, S.; Serventi, L. Sensory Quality of Upcycled Legume Water: Expectation vs. Reality. Front. Food. Sci. Technol. 2023, 3, 1143371. [Google Scholar] [CrossRef]
- Cerro, D.; Maldonado, A.; Matiacevich, S. Comparative Study of the Physicochemical Properties of a Vegan Dressing-type Mayonnaise and Traditional Commercial Mayonnaise. Grasas Aceites 2021, 72, e439. [Google Scholar] [CrossRef]
- Silva, A.C.V.d.; Ramos, G.L.d.P.A.; Ferreira, P.S.; Silva, M.C.d. Technological Prospection of Aquafaba: A Study of Patent Applications and Trends in the Food Market. Food Sci. Technol. 2023, 43, e114422. [Google Scholar] [CrossRef]
- Szymandera-Buszka, K.; Gumienna, M.; Jędrusek-Golińska, A.; Waszkowiak, K.; Hęś, M.; Szwengiel, A.; Gramza-Michałowska, A. Innovative Application of Phytochemicals from Fermented Legumes and Spices/Herbs Added in Extruded Snacks. Nutrients 2021, 13, 4538. [Google Scholar] [CrossRef]
- Gumienna, M.; Czarnecka, M.; Czarnecki, Z. Changes in the Content of Selected Food Ingredients in Products Obtained from Legumes under the Influence of Biotechnological Treatment. Food. Sci. Technol. Qual. 2007, 6, 159–169. (In Polish) [Google Scholar]
- ISO 2483:1973; Sodium Chloride for Industrial Use—Determination of the Loss of Mass at 110_C (Reviewed and Confirmed in 2018). ISO: Geneva, Switzerland, 2018.
- ISO 20483; Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. ISO: Geneva, Switzerland, 2006.
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.M.; Connor, M.A.; Booth, A.N.; Bickoff, E.M.; Kohler, G.O. Measurement of Digestibility of Alfalfa Protein Concentrates by in vivo and in vitro Methods. J. Nutr. 1973, 103, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Gumienna, M.; Goderska, K.; Nowak, J.; Czarnecki, Z. Changes in the Antioxidative Activities of Bean Products and Intestinal Microflora in the Model of the Gastrointestinal Tract “in vitro”. Pol. J. Environ. Stud. 2006, 15, 29–32. [Google Scholar]
- Gumienna, M.; Lasik, M.; Czarnecki, Z. Bioconversion of Grape and Chokeberry Wine Polyphenols during Simulated Gastrointestinal in vitro Digestion. Int. J. Food Sci. Nutr. 2011, 62, 226–233. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional Value and Biological Activity of Gluten-Free Bread Enriched with Cricket Powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Djouzi, Z.; Andrieux, C. Compared Effects of Three Oligosaccharides on Metabolism of Intestinal Microflora in Rats Inoculated with a Human Faecal Flora. Br. J. Nutr. 1997, 78, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Kapnoor, S.; Mulimani, V.H. Production of α-Galactosidase by Aspergillus Oryzae through Solid-State Fermentation and Its Application in Soymilk Galactooligosaccharide Hydrolysis. Braz. Arch. Biol. Technol. 2010, 53, 211–218. [Google Scholar] [CrossRef]
- PN-EN ISO 8589:2010; Sensory Analysis. General Guidance for the Design Studio of Sensory Analysis. Polish Committee for Standardization: Warszawa, Poland, 2010.
- Lemken, D.; Spiller, A.; Schulze-Ehlers, B. More Room for Legume—Consumer Acceptance of Meat Substitution with Classic, Processed and Meat-Resembling Legume Products. Appetite 2019, 143, 104412. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, K.K.; Kaczmarczyk, D. Role and Importance of Fermented Products in the Diet. Med. Og. Nauk. Zdr. 2023, 29, 79–88. [Google Scholar] [CrossRef]
- Drulyte, D.; Orlien, V. The Effect of Processing on Digestion of Legume Proteins. Foods 2019, 8, 224. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, B.; Chen, Y.; Miao, J.; Zhang, Q.; Rui, X. Solid-state Bioprocessing with Cordyceps Militaris Enhanced Antioxidant Activity and DNA Damage Protection of Red Beans (Phaseolus angularis). Cereal Chem. 2016, 94, 177–184. [Google Scholar] [CrossRef]
- Li, T.; Song, S.; Liu, C.; Huang, W.; Bi, Y.; Yu, L. Fermentation Reduced the in vitro Glycemic Index Values of Probiotic-rich Bean Powders. In. J. Food Sci. Technol. 2022, 57, 3038–3045. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Effect of Different Drying Methods and Storage Time on the Retention of Bioactive Compounds and Antibacterial Activity of Wine Grape Pomace (Pinot Noir and Merlot). J. Food Sci. 2012, 77, H192–H201. [Google Scholar] [CrossRef] [PubMed]
- Salaudeen, M. Acute and Reproductive Toxicity of Freeze-dried and Steam-dried Extracts of Tradomal® in Drosophila Melanogaster. Pharmacol. Toxicol. Nat. Med. 2023, 3, 11–15. [Google Scholar] [CrossRef]
- Bhatta, S.; Janežić, T.; Ratti, C. Freeze-drying of Plant-based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, A.; Karasu, S.; Akçiçek, A.; Kayacan, S. Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat. Foods 2019, 8, 216. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, R.K.; Ma, X.; Colonna, A.; Montero, M.L.; Ross, C. Consumers’ Preferences for Novel and Traditional Pear Cultivars: Evidence from Sensory Evaluation and Willingness-to-Pay Elicitation. HortScience 2023, 58, 1474–1483. [Google Scholar] [CrossRef]
- Drewnowski, A.; Gomez-Carneros, C. Bitter Taste, Phytonutrients, and the Consumer: A Review. Am. J. Clin. Nutr. 2000, 72, 1424–1435. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different Phenolic Compounds Activate Distinct Human Bitter Taste Receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Milani, T.M.G.; Menis, M.E.C.; Jordano, A.; Boscolo, M.; Conti-Silva, A.C. Pre-Extrusion Aromatization of a Soy Protein Isolate Using Volatile Compounds and Flavor Enhancers: Effects on Physical Characteristics, Volatile Retention and Sensory Characteristics of Extrudates. Food Res. Int. 2014, 62, 375–381. [Google Scholar] [CrossRef]
- Szymandera-Buszka, K.; Waszkowiak, K.; Jędrusek-Golińska, A.; Hęś, M. Sensory Analysis in Assessing the Possibility of Using Ethanol Extracts of Spices to Develop New Meat Products. Foods 2020, 9, 209. [Google Scholar] [CrossRef]
- Baltaci, C.; Şidim, M.; Akşit, Z. Effects of Spray and Freeze-drying Methods on Aroma Compounds, Sensory Characteristics, Physicochemical Composition, Antioxidant and Antimicrobial Properties of Instant Sage (Salvia rosifolia Sm.) tea. Turk. J. Anal. Chem. 2022, 4, 19–30. [Google Scholar] [CrossRef]
- Roger, W.W. Tastes of Herbs and Dishes—Often Overlooked, but Crucial for Health. Coat Arms Rev. 2019, 1, 1–4. [Google Scholar]
- Cardello, A.V.; Schutz, H.; Snow, C.; Lesher, L. Predictors of Food Acceptance, Consumption and Satisfaction in Specific Eating Situations. Food Qual. Prefer. 2000, 11, 201–216. [Google Scholar] [CrossRef]
- Wang, K.; Gao, Y.; Zhao, J.; Wu, Y.; Sun, J.; Niu, G.; Zuo, F.; Zheng, X. Effects of in Vitro Digestion on Protein Degradation, Phenolic Compound Release, and Bioactivity of Black Bean Tempeh. Front. Nutr. 2022, 9, 1017765. [Google Scholar] [CrossRef]
- Tarko, T.; Semik, D.; Duda-Chodak, A.; Satora, P.; Sroka, P. Transformations of Polyphenolic Compounds in Simulated Human Gastrointestinal Tract. Food Sci. Technol. Qual. 2016, 105, 132–144. [Google Scholar] [CrossRef]
- Choi, S.R.; Lee, H.; Singh, D.; Cho, D.; Chung, J.-O.; Roh, J.-H.; Kim, W.-G.; Lee, C.H. Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria. J. Microbiol. Biotechnol. 2023, 33, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Bezek, K.; Barlič-Maganja, D. Dietary Polyphenols and Their Effect on the Gut Microbiota and Human Health. In Zdravje Delovno Aktivne Populacije/Health of the Working-Age Population; Petelin, A., Ed.; Založba Univerze na Primorskem: Izola, Slovenia, 2020; pp. 12–20. ISBN 978-961-293-015-8. [Google Scholar]
- Tamura, M.; Hoshi, C.; Kobori, M.; Takahashi, S.; Tomita, J.; Nishimura, M.; Nishihira, J. Quercetin Metabolism by Fecal Microbiota from Healthy Elderly Human Subjects. PLoS ONE 2017, 12, e0188271. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zheng, Y.; Tang, W.; Yan, W.; Nie, H.; Fang, J.; Liu, G. Dietary Polyphenols in Lipid Metabolism: A Role of Gut Microbiome. Anim. Nutr. 2020, 6, 404–409. [Google Scholar] [CrossRef]
- Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef]
- Corrêa, T.A.F.; Rogero, M.M.; Hassimotto, N.M.A.; Lajolo, F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019, 6, 188. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, V.; Ali, S.; Mancin, L.; Davinelli, S.; Paoli, A.; Scapagnini, G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients 2020, 12, 1908. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon Bioaccessibility and Antioxidant Activity of White, Green and Black Tea Polyphenols Extract after In Vitro Simulated Gastrointestinal Digestion. Nutrients 2018, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Navajas-Porras, B.; López-Maldonado, A.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J.Á. Green Tea and Its Relation to Human Gut Microbiome. Molecules 2021, 26, 3907. [Google Scholar] [CrossRef]
- Gamage, H.K.A.H.; Tetu, S.G.; Chong, R.W.W.; Bucio-Noble, D.; Rosewarne, C.P.; Kautto, L.; Ball, M.S.; Molloy, M.P.; Packer, N.H.; Paulsen, I.T. Fiber Supplements Derived From Sugarcane Stem, Wheat Dextrin and Psyllium Husk Have Different In Vitro Effects on the Human Gut Microbiota. Front. Microbiol. 2018, 9, 1618. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Wei, X.; Song, J.; Xu, X.; Huang, H.; Fan, S.; Zhang, D.; Han, L.; Lin, J. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules 2022, 27, 7377. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Gu, X.; Zhuang, T.; Xu, Y.; Yang, L.; Zhou, M. Gut Microbiota: A Pivotal Hub for Polyphenols as Antidepressants. J. Agric. Food Chem. 2020, 68, 6007–6020. [Google Scholar] [CrossRef] [PubMed]
- Arreaza-Gil, V.; Escobar-Martínez, I.; Mulero, M.; Muguerza, B.; Suárez, M.; Arola-Arnal, A.; Torres-Fuentes, C. Gut Microbiota Influences the Photoperiod Effects on Proanthocyanidins Bioavailability in Diet-Induced Obese Rats. Mol. Nutr. Food Res. 2023, 67, 2200600. [Google Scholar] [CrossRef] [PubMed]
- Haș, I.M.; Tit, D.M.; Bungau, S.G.; Pavel, F.M.; Teleky, B.-E.; Vodnar, D.C.; Vesa, C.M. Cardiometabolic Risk: Characteristics of the Intestinal Microbiome and the Role of Polyphenols. Int. J. Mol. Sci. 2023, 24, 13757. [Google Scholar] [CrossRef]
- ElGamal, R.; Song, C.; Rayan, A.M.; Liu, C.; Al-Rejaie, S.; ElMasry, G. Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview. Agronomy 2023, 13, 1580. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Chaudhary, H.; Rajput, K.; Parekh, B.; Joshi, R. Assessment of Gut Microbial β-Glucuronidase and β-Glucosidase Activity in Women with Polycystic Ovary Syndrome. Sci. Rep. 2023, 13, 11967. [Google Scholar] [CrossRef]
- Ebrahim, A.E.; Abd El-Aziz, N.K.; Elariny, E.Y.T.; Shindia, A.; Osman, A.; Hozzein, W.N.; Alkhalifah, D.H.M.; El-Hossary, D. Antibacterial Activity of Bioactive Compounds Extracted from Red Kidney Bean (Phaseolus vulgaris L.) Seeds against Multidrug-Resistant Enterobacterales. Front. Microbiol. 2022, 13, 1035586. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Z.; Zhang, C.; Xia, H.; Jie, Z.; Han, X.; Chen, Y.; Ji, L. Effects of Acarbose on the Gut Microbiota of Prediabetic Patients: A Randomized, Double-Blind, Controlled Crossover Trial. Diabetes Ther. 2017, 8, 293–307. [Google Scholar] [CrossRef]
- Modrackova, N.; Vlkova, E.; Tejnecky, V.; Schwab, C.; Neuzil-Bunesova, V. Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific. Microorganisms 2020, 8, 839. [Google Scholar] [CrossRef]
Products | Dry Matter (%) | Reducing Substance (mg·g−1 dm) | Soluble Protein (mg·g−1 dm) | Total Protein (mg·g−1 dm) | Protein Digestibility (%) | Total Polyphenols (mg GAE·g−1 dm) | Antioxidant Activity (mg TE·g−1 dm) |
---|---|---|---|---|---|---|---|
Red bean seeds during biotechnological processing: before and after the microbial fermentation process | |||||||
RB | 88.24 ± 0.21 c | 7.08 ± 0.12 c | 82.09 ± 2.69 c | 225.70 ± 1.76 c | 29.04 ± 1.023 a | 4.53 ± 0.36 c | 10.24 ± 1.04 b |
BFRB | 48.02 ± 0.40 a | 5.20 ± 0.29 a | 33.37 ± 2.69 b | 143.40 ± 0.14 a | 62.05± 1.018 b | 3.33 ± 0.02 a | 7.03 ± 0.68 a |
AFRB | 50.27 ± 1.56 b | 5.60 ± 0.30 b | 15.76 ± 0.71 a | 146.40 ± 0.99 b | 80.97 ± 0.75 c | 3.76 ± 0.03 b | 12.11 ± 0.25 c |
Fermented red bean snacks with additives after the freeze-drying process | |||||||
RBB | 90.42 ± 0.12 b | 5.10 ± 0.33 a | 17.16 ± 0.83 a | 242.31 ± 0.25 a | 80.37 ± 0.35 a | 2.92 ± 0.11 b | 7.31 ± 0.43 a |
RBM | 91.01 ± 0.17 d | 9.39 ± 1.14 c | 21.03 ± 1.36 c | 258.20 ± 0.12 c | 82.62 ± 0.21 b | 3.66 ± 0.15 c | 10.63 ± 0.45 c |
RBC | 89.54 ± 0.16 a | 23.91 ± 2.41 d | 18.68 ± 0.62 b | 255.01 ± 0.33 b | 81.15 ± 0.82 a | 2.10 ± 0.06 a | 8.36 ± 0.23 b |
RBRB | 90.90 ± 0.14 c | 6.25 ± 0.19 b | 18.04 ± 0.50 a | 258.23 ± 0.89 c | 83.17 ± 0.65 b | 2.74 ± 0.09 b | 8.66 ± 0.75 b |
Products | Dry Matter (%) | Reducing Substance (mg·g−1 dm) | Soluble Protein (mg·g−1 dm) | Total Protein (mg·g−1 dm) | Total Polyphenols (mg GAE g−1 dm) | Antioxidant Activity (mg TE g−1 dm) |
---|---|---|---|---|---|---|
Aquafaba | 6.10 ± 0.05 a | 5.02 ± 0.15 a | 29.10 ± 0.33 b | 12.60 ± 0.12 a | 1.10 ± 0.05 a | 1.30 ± 0.06 a |
Marjoram (dried) | 87.61 ± 0.37 d | 94.87 ± 3.35 c | 249.10 ± 5.38 d | 116.09 ± 0.58 d | 29.20 ± 068 b | 87.73 ± 6.37 d |
Carrot (raw) | 13.71 ± 0.22 b | 170.22 ± 5.05 d | 82.69 ± 1.39 c | 14.85 ± 0.45 b | 1.37 ± 0.15 a | 5.32 ± 0.27 b |
Red Beetroot (cooked) | 15.49 ± 0.44 c | 17.48 ± 0.34 b | 27.89 ± 0.67 a | 22.82 ± 0.05 c | 80.48 ± 0.70 c | 55.35 ± 4.32 c |
Sensory Descriptors | Factor | ||
---|---|---|---|
F1 | F2 | F3 | |
Aroma | |||
Essential oil | −0.991 * | −0.116 | 0.066 |
Herbal | −0.994 * | −0.102 | −0.028 |
Starch | 0.938 * | −0.088 | 0.335 |
Lemon | −0.172 | −0.443 | 0.880 * |
Bitter | 0.088 | 0.993 * | 0.072 |
Strange | 0.376 | −0.913 * | −0.160 |
Sour | −0.811 * | 0.283 | 0.511 |
Fermentation | −0.849 * | −0.496 | −0.183 |
Taste | |||
Essential oil | 0.556 | −0.793 | 0.250 |
Herbal | 0.427 | −0.864 * | 0.265 |
Sour | 0.421 | 0.906 * | −0.048 |
Salty | −0.295 | −0.830 * | 0.472 |
Sweet | −0.921 * | −0.355 | 0.161 |
Starch | −0.774 | 0.461 | −0.434 |
Broth | −0.968 * | −0.237 | 0.079 |
Bitter | 0.966 * | −0.241 | −0.098 |
Strange | −0.006 | −0.399 | −0.917 |
Sensory Attributes | Consumer Desirability |
---|---|
Color desirability | 0.720 |
Aroma desirability | 0.611 |
Taste desirability | 0.995 |
Texture desirability | 0.532 |
The Stages of Digestion | Total Polyphenols (mg GAE g−1 d. c.) | Antioxidant Activity (mg TE g−1 d. c.) | ||||||
---|---|---|---|---|---|---|---|---|
RBB | RBM | RBC | RBRB | RBB | RBM | RBC | RBRB | |
before digestion | 2.71 ± 0.12 dC | 2.85 ± 0.17 cD | 1.83 ± 0.05 bB | 1.29 ± 0.13 aA | 4.01 ± 0.13 bD | 5.92 ± 0.25 bC | 2.34 ± 0.15 aB | 1.99 ± 0.18 bA |
“stomach” after 2 h at pH 2.0 | 3.01 ± 0.29 eC | 3.27 ± 0.21 dC | 1.89 ± 0.12 bA | 2.33 ± 0.02 dB | 1.20 ± 0.11 aA | 5.17 ± 0.24 aD | 3.56 ± 0.24 bC | 1.54 ± 0.10 aB |
after “duodenum” pH 7.4 | 1.41 ± 0.12 aA | 1.82 ± 0.03 aB | 1.20 ± 0.16 aA | 2.13 ± 0.16 cB | 2.10 ± 0.09 cD | 5.88 ± 0.05 bC | 2.82 ± 0.05 aB | 1.94 ± 0.36 bA |
“small intestine” with fecal flora at pH 7.4 | 1.55 ± 0.09 aC | 1.91 ± 0.09 aC | 1.39 ± 0.04 aA | 1.51 ± 0.06 bB | 12.10 ± 0.01 dB | 14.09 ± 0.02 cC | 2.38 ± 0.42 aA | 2.10 ± 0.21 bA |
“small intestine” after 2 h at pH 7.4 | 1.90 ± 0.23 bC | 2.26 ± 0.04 bD | 1.32 ± 0.16 aA | 1.52 ± 0.05 bB | 15.20 ± 0.26 eC | 15.84 ± 0.24 dD | 4.38 ± 0.17 cB | 2.40 ± 0.03 cA |
“large intestine” at pH 8.0 | 2.23 ± 0.11 cB | 2.92 ± 0.32 cD | 1.91 ± 0.30 bA | 2.41 ± 0.09 eC | 19.10 ± 0.52 fC | 22.07 ± 0.45 eD | 5.62 ± 0.45 dB | 2.51 ± 0.17 cA |
“large intestine” after 18 h at pH 8.0 | 3.92 ± 0.33 fB | 5.61 ± 0.14 eD | 2.40 ± 0.01 cA | 5.02 ± 0.17 fC | 24.10 ± 0.65 gC | 28.82 ± 0.18 fD | 7.89 ± 0.44 eB | 5.35 ± 0.67 dA |
The Stages of Digestion | Reduce Substance (mg·g−1 d. c.) | Soluble Protein (mg·g−1 d. c.) | ||||||
---|---|---|---|---|---|---|---|---|
RBB | RBM | RBC | RBRB | RBB | RBM | RBC | RBRB | |
before digestion | 6.70 ± 1.45 aA | 19.25 ± 0.95 aB | 31.15 ± 0.44 cC | 5.14 ± 0.23 aA | 17.14 ± 0.13 aD | 10.10 ± 1.06 aA | 16.71 ± 0.29 aC | 12.57 ± 0.53 aB |
“stomach” after 2 h at pH 2.0 | 11.39 ± 0.07 bA | 24.18 ± 0.07 bC | 46.72 ± 0.35 eD | 20.63 ± 0.89 cB | 53.30 ± 3.98 bC | 14.77 ± 0.22 bA | 64.42 ± 0.84 bD | 47.01 ± 0.70 bB |
after “duodenum” pH 7.4 | 55.39 ± 4.60 dB | 41.93 ± 4.31 cA | 43.50 ± 0.59 dA | 59.95 ± 0.52 eB | 89.20 ± 0.37 cD | 62.93 ± 1.05 cA | 85.82 ± 0.50 cC | 67.86 ± 1.36 cB |
“small intestine” with fecal flora at pH 7.4 | 59.57 ± 5.93 dC | 44.93 ± 5.09 cB | 46.21 ± 1.47 eB | 8.92 ± 0.66 bA | 96.29 ± 1.46 dC | 65.42 ± 0.88 dA | 95.38 ± 2.42 aC | 76.48 ± 1.21 dB |
“small intestine” after 2 h at pH 7.4 | 85.99 ± 9.57 eC | 80.62 ± 9.57 dC | 21.95 ± 0.78 aB | 9.55 ± 0.25 bA | 108.28 ± 1.34 eD | 71.49 ± 2.27 eA | 100.38 ± 3.17 dC | 79.80 ± 0.99 eB |
“ large intestine” at pH 8.0 | 97.16 ± 2.52 fC | 90.62 ± 2.32 dB | 25.10 ± 0.89 bA | 140.55 ± 5.09 fD | 329.98 ± 7.65 fD | 91.07 ± 1.45 fA | 123.62 ± 7.45 eC | 111.12 ± 3.17 fB |
“large intestine” after 18 h at pH 8.0 | 19.30 ± 1.40 cA | 49.31 ± 1.3 4 cC | 84.01 ± 1.11 dD | 23.30 ± 0.35 dB | 204.30 ± 6.75 gB | 162.78 ± 3.18 gA | 196.89 ± 4.84 fB | 166.35 ± 4.67 fA |
The Stages of Digestion | β-Glucuronidase Activity (U·g−1 d. c.) | β-Glucosidase Activity (U·g−1 d. c.) | ||||||
---|---|---|---|---|---|---|---|---|
RBB | RBM | RBC | RBRB | RBB | RBM | RBC | RBRB | |
“small intestine” after 2 h at pH 7.4 | 0.171 ± 0.012 cB | 0.188 ± 0.0014 cD | 0.146 ± 0.013 cA | 0.180 ± 0.013 cC | 0.132 ± 0.012 cA | 0.252 ± 0.025 cC | 0.180 ± 0.024 cB | 0.152 ± 0.010 cA |
“ large intestine” at pH 8.0 | 0.104 ± 0.008 bB | 0.165± 0.015 bD | 0.099 ± 0.002 bA | 0.147 ± 0.012 bC | 0.128 ± 0.013 bB | 0.223 ± 0.011 bC | 0.093 ± 0.012 bA | 0.125 ± 0.022 bB |
“large intestine” after 18 h at pH 8.0 | 0.067 ± 0.003 aB | 0.042 ± 0.001 aA | 0.060 ± 0.005 aB | 0.076 ± 0.08 aC | 0.087 ± 0.004 aA | 0.112 ± 0.008 aC | 0.089 ± 0.002 aA | 0.098 ± 0.004 aB |
The Stages of Digestion | RBB | RBM | RBC | RBRB |
---|---|---|---|---|
Lactobacillus (log10 cfu·mL−1) | ||||
“small intestine” after 2 h at pH 7.4 | 7.24 ± 0.15 aA | 7.48 ± 0.14 aA | 7.44 ± 0.09 aA | 7.34 ± 0.07 aA |
“ large intestine” at pH 8.0 | 8.18 ± 0.04 bB | 8.30 ± 0.02 aC | 8.61 ± 0.07 bD | 7.57 ± 0.05 bA |
“large intestine” after 18 h at pH 8.0 | 11.70 ± 0.01 cC | 10.16 ± 0.03 bA | 10.26 ± 0.02 cB | 10.27 ± 0.06 cB |
Bifidobacterium (log10 cfu·mL−1) | ||||
“small intestine” after 2 h at pH 7.4 | 7.22 ± 0.15 aA | 7.30 ± 0.06 aA | 7.54 ± 0.09 aB | 7.33 ± 0.09 aA |
“large intestine” at pH 8.0 | 8.31 ± 0.04 aB | 8.36 ± 0.02 bB | 8.64 ± 0.08 bC | 8.11 ± 0.08 bA |
“large intestine” after 18 h at pH 8.0 | 11.67 ± 0.06 bC | 10.22 ± 0.06 cA | 10.50 ± 0.07 cB | 10.35 ± 0.11 cB |
Enterococcus (log10 cfu·mL−1) | ||||
“small intestine” after 2 h at pH 7.4 | 6.95 ± 0.15 aB | 6.46 ± 0.11 aA | 7.47 ± 0.05 aC | 6.31 ± 0.08 aA |
“ large intestine” at pH 8.0 | 8.24 ± 0.03 bB | 7.18 ± 0.02 bA | 8.61 ± 0.11 bC | 7.05 ± 0.25 bA |
“large intestine” after 18 h at pH 8.0 | 11.64 ± 0.12 cD | 7.55 ± 0.01 cA | 9.76 ± 0.15 cB | 10.02 ± 0.07 cC |
Escherichia coli (log10 cfu·mL−1) | ||||
“small intestine” after 2 h at pH 7.4 | 6.17 ± 0.12 aA | 6.68 ± 0.03 aB | 7.07 ± 0.3 aC | 6.36 ± 0.09 aA |
“large intestine” at pH 8.0 | 6.35 ± 0.13 aA | 6.60 ± 0.05 aB | 7.47 ± 0.10 bC | 7.63 ± 0.05 cD |
“large intestine” after 18 h at pH 8.0 | 6.55 ± 0.14 aC | 3.95 ± 0.07 bA | 5.94 ± 0.09 cB | 7.28 ± 0.07 bD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumienna, M.; Lasik-Kurdyś, M.; Szymandera-Buszka, K.; Górna-Szweda, B.; Walkowiak-Tomczak, D.; Jędrusek-Golińska, A. Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity. Foods 2025, 14, 88. https://doi.org/10.3390/foods14010088
Gumienna M, Lasik-Kurdyś M, Szymandera-Buszka K, Górna-Szweda B, Walkowiak-Tomczak D, Jędrusek-Golińska A. Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity. Foods. 2025; 14(1):88. https://doi.org/10.3390/foods14010088
Chicago/Turabian StyleGumienna, Małgorzata, Małgorzata Lasik-Kurdyś, Krystyna Szymandera-Buszka, Barbara Górna-Szweda, Dorota Walkowiak-Tomczak, and Anna Jędrusek-Golińska. 2025. "Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity" Foods 14, no. 1: 88. https://doi.org/10.3390/foods14010088
APA StyleGumienna, M., Lasik-Kurdyś, M., Szymandera-Buszka, K., Górna-Szweda, B., Walkowiak-Tomczak, D., & Jędrusek-Golińska, A. (2025). Innovative Application of Fermented Red Bean Seeds in Constructing Foods with Increased Biological Activity. Foods, 14(1), 88. https://doi.org/10.3390/foods14010088