Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in Oenanthe javanica from Hainan Province of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sample Collection and Preparation
2.3. UPLC-MS/MS Analysis
2.3.1. Liquid Chromatographic Conditions
2.3.2. Mass Spectrometry Conditions
2.3.3. Instrumental Analysis
2.4. Risk Assessment Methods
2.4.1. Calculation of Acute and Chronic Dietary Risks
2.4.2. Methods of Cumulative Exposure Assessment
2.5. Statistics
3. Results
3.1. Quality Control of the Experimental Process
3.2. Residue Analysis of NEOs in Oenanthe javanica
3.3. Dietary Risk Assessment
3.4. Cumulative Exposure Assessment
3.4.1. HI Assessment
3.4.2. EPF Assessment
4. Discussion
4.1. Registration and Residue Status of 10 NEOs Insecticides in Oenanthe javanica
4.2. Dietary Risk Assessment Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, C.-L.; Li, X.-F. A Review of Oenanthe javanica (Blume) DC. as Traditional Medicinal Plant and Its Therapeutic Potential. Evid. Based Complement. Alternat. Med. 2019, 2019, 6495819. [Google Scholar] [CrossRef] [PubMed]
- Bae, U.-J.; Jang, H.-N.; Lee, S.-H.; Kim, J.-Y.; Kim, G.-C. Oenanthe javanica Ethanolic Extract Alleviates Inflammation and Modifies Gut Microbiota in Mice with DSS-Induced Colitis. Antioxidants 2022, 11, 2429. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.-F. Analysis of Pesticide in Tea; Pang, G.-F., Fan, C.-L., Chang, Q.-Y., Yang, F., Cao, Y.-Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; p. iii. ISBN 978-0-12-812727-8. [Google Scholar]
- Yan, W.; Zhang, J.; Wang, C.; Xia, Y. An Urchin-Shaped Covalent Organic Framework with Rich Nitrogen for Efficient Removal of Neonicotinoid Insecticides in Honey and Fruits. Food Chem. 2023, 429, 136872. [Google Scholar] [CrossRef] [PubMed]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Neonicotinoids: A Critical Assessment of the Global Research Landscape of the Most Extensively Used Insecticide. Environ. Res. 2022, 213, 113727. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, S. Human Exposure to Neonicotinoids and the Associated Health Risks: A Review. Environ. Int. 2022, 163, 107201. [Google Scholar] [CrossRef]
- Xylia, P.; Chrysargyris, A.; Shahwar, D.; Ahmed, Z.F.R.; Tzortzakis, N. Application of Rosemary and Eucalyptus Essential Oils on the Preservation of Cucumber Fruit. Horticulturae 2022, 8, 774. [Google Scholar] [CrossRef]
- Wang, D.; Wan, N.; Huang, J.; Chen, M.; Yang, Z.; Tang, Z. Detection of Multiple Pesticide Residues in Oenanthe javanica Based on Multi-Walled Carbon Nanotuebes Coupled with Chromatog-Raphy-Mass Spectrometry. Food Sci. Technol. 2023, 48, 276–284, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- GB 2763-2021; National Food Safety Standard—Maximum Residue Limit of Pesticides in Foods. National Health Commission of PRC, Ministry of Agriculture and Rural Affairs of PRC and State Administration for Market Regulation of PRC, China Zhijian Publishing House: Beijing, China, 2021.
- GB 23200.121-2021; National Food Safety Standard-Determination of 331 Pesticides and Their Metabolite Residues in Plant-Derived Foods. National Health Commission of PRC, Ministry of Agriculture of PRC and Rural Affairs of PRC and State Administration for Market Regulation of PRC, China Zhijian Publishing House: Beijing, China, 2021.
- Tang, Z.; Wei, Y.; Wang, D.; Huang, J.; Wan, N.; Wei, J.; Li, B. Risk Assessment of 369 Pesticide Residues in Banana from Hainan Province of China Through UPLC-Q-TOF/MS. J. Food Compos. Anal. 2023, 123, 105638. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Lv, B.; Liu, Z.; Han, J.; Li, J.; Zhao, Y.; Wu, Y. Dietary Exposure to Neonicotinoid Insecticides and Health Risks in the Chinese General Population Through Two Consecutive Total Diet Studies. Environ. Int. 2020, 135, 105399. [Google Scholar] [CrossRef]
- Cui, K.; Wu, X.; Wei, D.; Zhang, Y.; Cao, J.; Xu, J.; Dong, F.; Liu, X.; Zheng, Y. Health Risks to Dietary Neonicotinoids Are Low for Chinese Residents Based on an Analysis of 13 Daily-Consumed Foods. Environ. Int. 2021, 149, 106385. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Cui, S.; Zhang, L.; Zhang, Z.; Hough, R.; Fu, Q.; Li, Y.-F.; An, L.; Huang, M.; Li, K.; et al. Occurrence, Variations, and Risk Assessment of Neonicotinoid Insecticides in Harbin Section of the Songhua River, Northeast China. Environ. Sci. Ecotechnol. 2021, 8, 100128. [Google Scholar] [CrossRef]
- Zhang, Q.; Lu, Z.; Chang, C.-H.; Yu, C.; Wang, X.; Lu, C. Dietary Risk of Neonicotinoid Insecticides through Fruit and Vegetable Consumption in School-Age Children. Environ. Int. 2019, 126, 672–681. [Google Scholar] [CrossRef]
- GB 5009.295-2023; General Rules for Validation of National Food Safety Standards Chemical Analysis Methods. National Health Commission of PRC and State Administration for Market Regulation of PRC, China Zhijian Publishing House: Beijing, China, 2023.
- GB 27404-2014; Criterion on Quality Control of Laboratories--Chemical Testing of Food. State Administration for Market Regulation of PRC and Standardization Administration of PRC, China Zhijian Publishing House: Beijing, China, 2014.
- GB 2763.1-2022; National Food Safety Standard--Maximum Residue Limits for 112 Pesticides in Food. National Health Commission of PRC, Ministry of Agriculture and Rural Affairs of PRC and State Administration for Market Regulation of PRC, China Zhijian Publishing House: Beijing, China, 2022.
- Zhang, T.; Song, S.; Bai, X.; He, Y.; Zhang, B.; Gui, M.; Kannan, K.; Lu, S.; Huang, Y.; Sun, H. A Nationwide Survey of Urinary Concentrations of Neonicotinoid Insecticides in China. Environ. Int. 2019, 132, 105114. [Google Scholar] [CrossRef]
- Bridi, R.; Larena, A.; Pizarro, P.N.; Giordano, A.; Montenegro, G. LC-MS/MS Analysis of Neonicotinoid Insecticides: Residue Findings in Chilean Honeys. Ciência Agrotecnol. 2018, 42, 51–57. [Google Scholar] [CrossRef]
- Ikenaka, Y.; Fujioka, K.; Kawakami, T.; Ichise, T.; Bortey-Sam, N.; Nakayama, S.M.M.; Mizukawa, H.; Taira, K.; Takahashi, K.; Kato, K.; et al. Contamination by Neonicotinoid Insecticides and Their Metabolites in Sri Lankan Black Tea Leaves and Japanese Green Tea Leaves. Toxicol. Rep. 2018, 5, 744–749. [Google Scholar] [CrossRef]
- Dankyi, E.; Carboo, D.; Gordon, C.; Fomsgaard, I.S. Application of the QuEChERS Procedure and LC–MS/MS for the Assessment of Neonicotinoid Insecticide Residues in Cocoa Beans and Shells. J. Food Compos. Anal. 2015, 44, 149–157. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Y.; Ying, Z.; Tang, T.; Hu, S. Integrated Exposure Assessment and Potential Risks of Neonicotinoids in Vegetables from Three Different Sources in Zhejiang, China (2018–2020). Environ. Sci. Pollut. Res. Int. 2023, 30, 22941–22949. [Google Scholar] [CrossRef]
- Yáñez, K.P.; Bernal, J.L.; Nozal, M.J.; Martín, M.T.; Bernal, J. Determination of Seven Neonicotinoid Insecticides in Beeswax by Liquid Chromatography Coupled to Electrospray-Mass Spectrometry Using a Fused-Core Column. J. Chromatogr. A 2013, 1285, 110–117. [Google Scholar] [CrossRef]
- Mrzlikar, M.; Heath, D.; Heath, E.; Markelj, J.; Kandolf Borovšak, A.; Prosen, H. Investigation of Neonicotinoid Pesticides in Slovenian Honey by LC-MS/MS. LWT 2019, 104, 45–52. [Google Scholar] [CrossRef]
- Wei, X.; Pan, Y.; Tang, Z.; Lin, Q.; Jiang, Y.; Chen, J.; Xian, W.; Yin, R.; Li, A.J.; Qiu, R. Neonicotinoids Residues in Cow Milk and Health Risks to the Chinese General Population. J. Hazard. Mater. 2023, 452, 131296. [Google Scholar] [CrossRef]
- Wang, H.; Yang, D.; Fang, H.; Han, M.; Tang, C.; Wu, J.; Chen, Y.; Jiang, Q. Predictors, Sources, and Health Risk of Exposure to Neonicotinoids in Chinese School Children: A Biomonitoring-Based Study. Environ. Int. 2020, 143, 105918. [Google Scholar] [CrossRef] [PubMed]
NEOs | Retention Time (min) | Precursorion, m/z | Production, m/z | Linear Equation | R2 | Linear Range (mg/L) | Recovery Rates of Spiked (%) | RSD (%) | ||
---|---|---|---|---|---|---|---|---|---|---|
10 μg/kg | 20 μg/kg | 10 μg/kg | 20 μg/kg | |||||||
Imidacloprid | 4.37 | 256.060 | 175.00/209.06 | y = 15,437x + 31,974.5 | 0.9917 | 2–200 | 116 | 105 | 5.33 | 3.92 |
Thiamethoxam | 3.91 | 292.030 | 181.10/211.07 | y = 10,402x − 542.892 | 0.9978 | 2–200 | 102 | 97.5 | 5.78 | 7.26 |
Acetamiprid | 4.67 | 223.070 | 99.00/126.00 | y = 95,540.1x + 40,618.4 | 0.9931 | 2–100 | 106 | 101 | 0.39 | 2.27 |
Clothianidin | 4.44 | 250.020 | 132.00/169.00 | y = 15,403.6x + 1585.74 | 0.9955 | 2–200 | 97.4 | 94.6 | 1.37 | 1.85 |
Thiacloprid | 4.96 | 253.030 | 99.00/126.00 | y = 101,166x − 20,557.5 | 0.9954 | 2–50 | 119 | 120 | 0.61 | 1.34 |
Dinotefuran | 3.35 | 203.100 | 129.10/157.10 | y = 3217.7x − 517.721 | 0.9990 | 2–200 | 103 | 120 | 6.40 | 1.90 |
Nitenpyram | 3.63 | 271.090 | 99.00/225.10 | y = 4650.68x + 201.267 | 0.9982 | 2–200 | 109 | 104 | 0.71 | 6.01 |
Imidaclothiz | 4.54 | 262.000 | 122.00/181.00 | y = 13,330.1x + 12,302.8 | 0.9923 | 2–200 | 115 | 117 | 0.13 | 1.60 |
Flonicamid | 3.87 | 230.000 | 148.05/203.07 | y = 6388.57x + 57.1042 | 0.9973 | 2–200 | 119 | 105 | 8.39 | 3.57 |
Sulfoxaflor | 4.75 | 278.032 | 153.87/173.89 | y = 4536.22x–161.586 | 0.9966 | 2–100 | 108 | 105 | 3.87 | 0.75 |
Combination Count | Multi-Residue Combinations of Pesticides | Detection Number | Detection Rate (%) |
---|---|---|---|
Combination of Two | Imidacloprid/Acetamiprid | 21 | 29.58 |
Imidacloprid/Thiamethoxam | 6 | 8.45 | |
Imidacloprid/Clothianidin | 17 | 23.94 | |
Thiamethoxam/Acetamiprid | 9 | 12.68 | |
Thiamethoxam/Clothianidin | 10 | 14.08 | |
Acetamiprid/Clothianidin | 14 | 19.72 | |
Combination of Three | Imidacloprid/Thiamethoxam/Acetamiprid | 6 | 8.45 |
Imidacloprid/Thiamethoxam/Thiacloprid | 6 | 8.45 | |
Imidacloprid/Thiamethoxam/Dinotefuran | 3 | 4.23 | |
Imidacloprid/Acetamiprid/Clothianidin | 14 | 19.72 | |
Imidacloprid/Thiamethoxam/Acetamiprid/Thiacloprid | 6 | 8.45 | |
Combination of Six | Imidacloprid/Thiamethoxam/Acetamiprid/Thiacloprid/Flonicamid/Dinotefuran | 3 | 4.23 |
Insecticide Name | ARfD (mg/kg bw) | ADI (mg/kg bw) | Concentration (mg/kg) | cRfD (mg/kg/d) | RPF | Adult (mg/kg/d) | Children (mg/kg/d) | |||
---|---|---|---|---|---|---|---|---|---|---|
Highest Residue | Average | BCi | TBC | BCi | TBC | |||||
Imidacloprid | 0.4 | 0.06 | 0.363 | 0.028 | 0.057 | 1.000 | 0.000149 | 0.000149 | 0.000491 | 0.000491 |
Thiamethoxam | 1 | 0.08 | 0.084 | 0.0031 | 0.006 | 9.500 | 0.000016 | 0.000157 | 0.000054 | 0.000516 |
Acetamiprid | 0.1 | 0.07 | 0.11 | 0.0073 | 0.071 | 0.803 | 0.000039 | 0.000031 | 0.000128 | 0.000103 |
Thiamethoxam | 0.6 | 0.1 | 0.14 | 0.0053 | 0.01 | 5.700 | 0.000028 | 0.000161 | 0.000093 | 0.000530 |
Dinotefuran | 1 | 0.2 | 0.012 | 0.0018 | 0.02 | 2.850 | 0.000010 | 0.000027 | 0.000032 | 0.000090 |
Flonicamid | 0.025 | 0.07 | 0.024 | 0.002 | 0.04 | 1.425 | 0.000011 | 0.000015 | 0.000035 | 0.000050 |
Year | Country | Sample | Number of Pesticides Monitored | Number of Pesticides Detected | Total Detection Rate (%) | Each Detection Rate (%) |
---|---|---|---|---|---|---|
2018 | Chile [21] | Honey | 4 | 4 | 18.8 | 6.3–18.8 |
2018 | Japan [22] | Tea | 7 | 7 | 100.0 | 3.0–100.0 |
2015 | Ghana [23] | Cocoa | 5 | 3 | 100.0 | 2.5–100.0 |
2019 | China [24] | 13 Everyday Foods | 7 | 7 | 62.2 | 1.5–34.3 |
2018–2020 | China [14] | Commercially available fruits and vegetables | 3 | 3 | 80.0 | 12.0–55.1 |
2013 | Spain [25] | Beeswax | 7 | 3 | 36.7 | 1.3–26.7 |
2019 | Slovenia [26] | Honey | 4 | 2 | 60.8 | 11.7–58.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Zeng, Z.; Kang, R.; Wei, Y.; Tan, G.; Chen, M.; Wang, B.; Tang, Z. Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in Oenanthe javanica from Hainan Province of China. Foods 2025, 14, 78. https://doi.org/10.3390/foods14010078
Tang S, Zeng Z, Kang R, Wei Y, Tan G, Chen M, Wang B, Tang Z. Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in Oenanthe javanica from Hainan Province of China. Foods. 2025; 14(1):78. https://doi.org/10.3390/foods14010078
Chicago/Turabian StyleTang, Shusheng, Zikang Zeng, Rui Kang, Ying Wei, Gaohao Tan, Minni Chen, Bin Wang, and Zhuhua Tang. 2025. "Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in Oenanthe javanica from Hainan Province of China" Foods 14, no. 1: 78. https://doi.org/10.3390/foods14010078
APA StyleTang, S., Zeng, Z., Kang, R., Wei, Y., Tan, G., Chen, M., Wang, B., & Tang, Z. (2025). Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in Oenanthe javanica from Hainan Province of China. Foods, 14(1), 78. https://doi.org/10.3390/foods14010078