Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Fluorescent Medium
2.2. Exciting and Receiving Components
2.3. Experimental Set-Up
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weber, A.; Lednev, I.K. Brightness of Blood: Review of Fluorescence Spectroscopy Analysis of Bloodstains. Front. Anal. Sci. 2022, 2, 906532. [Google Scholar] [CrossRef]
- Tadini, A.M.; Xavier, A.A.P.; Milori, D.M.B.P.; Oliveira, P.P.A.; Pezzopane, J.R.; Bernardi, A.C.C.; Martin-Neto, L. Evaluation of Soil Organic Matter from Integrated Production Systems Using Laser-Induced Fluorescence Spectroscopy. Soil Tillage Res. 2021, 211, 105001. [Google Scholar] [CrossRef]
- Sørensen, D.H.; Christensen, N.P.A.; Skibsted, E.; Rantanen, J.; Rinnan, A. In-line Fluorescence Spectroscopy for Quantification of Low Amount of Active Pharmaceutical Ingredient. J. Pharm. Sci. 2022, 111, 2406–2410. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.H.S.; Delgado, G.G.; da Costa, T.S.; Tasic, L. Applications of Fluorescence Spectroscopy in Protein Conformational Changes and Intermolecular Contacts. BBA Adv. 2023, 3, 100091. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, H.; Wang, J.; Chen, W.; Zhao, M. Single-Molecule Fluorescence Techniques for Membrane Protein Dynamics Analysis. Appl. Spectrosc. 2021, 75, 491–505. [Google Scholar] [PubMed]
- Raghushaker, C.R.; D’Souza, M.; Urala, A.S.; Ray, S.; Mahato, K.K. An Overview of Conventional and Fluorescence Spectroscopy Tools in Oral Cancer Diagnosis. Lasers Dent. Sci. 2020, 4, 167–179. [Google Scholar] [CrossRef]
- Kumar, K.; Tarai, M.; Mishra, A.K. Unconventional Steady-State Fluorescence Spectroscopy as an Analytical Technique for Analyses of Complex-Multifluorophoric Mixtures. Trends Anal. Chem. 2017, 97, 216–243. [Google Scholar] [CrossRef]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods And Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Nadal, M. Human Dietary Exposure to Polycyclic Atomatic Hydrocarbons: A Review of the Scientific Literature. Food Chem. Toxicol. 2015, 86, 144–153. [Google Scholar] [CrossRef]
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to Polycyclic Aromatic Hydrocarbons with Special Focus on Cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 1691–2221. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Gong, G. Trends of Research on Polycyclic Aromatic Hydrocarbons in Food: A 20-year Perspective from 1997 to 2007. Trends Food Sci Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemistry. Available online: www.eoma.aoac.org (accessed on 10 March 2024).
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Fluorescence Spectroscopy and Imaging Instruments for Food Quality Evaluation. In Evaluation Technologies for Food Quality; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Cambridge, UK, 2019; pp. 491–533. [Google Scholar] [CrossRef]
- Radotic, K.; Stankovic, M.; Bartolic, D.; Natic, M. Intrinsic Fluorescence Markers for Food Characteristics, Shelf Life, and Safety Estimation: Advanced Analytical Approach. Foods 2023, 12, 862–872. [Google Scholar]
- Lia, F.; Formosa, J.P.; Zammit-Mangion, M.; Farrugia, C. The First Identification of the Uniqueness and Authentication of Maltese Extra Virgin Olive Oil Using 3D-Fluorescence Spectroscopy Coupled with Multi-Way Data Analysis. Foods 2020, 9, 498. [Google Scholar] [CrossRef]
- Botosoa, E.P.; Karoui, R. 3D Front Face Fluorescence Spectroscopy as a Tool for Monitoring the Oxidation Level of Edible Vegetable Oil during Storage at 60 °C. LWT 2022, 154, 1–8. [Google Scholar] [CrossRef]
- Dramicanin, T.; Lenhardt Ackovic, L.; Zekovic, I.; Dramicanin, M.D. Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices. J. Spectrosc. 2018, 2018, 8395212. [Google Scholar] [CrossRef]
- Sciscenko, I.; Arques, A.; Mico, P.; Mora, M.; García-Ballesteros, S. Emerging Applications of EEM-PARAFAC for Water Treatment: A Concise Review. Chem. Eng. J. Adv. 2022, 10, 100286. [Google Scholar] [CrossRef]
- Rossi, G.; Durek, J.; Ojha, S.; Schlüter, O.K. Fluorescence-Based Characterisation of Selected Edible Insect Species: Excitation Emission Matrix (EEM) and Parallel Factor (PARAFAC) Analysis. Curr. Res. Food Sci. 2021, 4, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Samokhvalov, A.V.; Safenkova, I.V.; Zherdev, A.V.; Dzantiev, B.B. The Registration of Aptamereligand (Ochratoxin A) Interactions Based on Ligand Fluorescence Changes. Biochem. Biophys. Res. Commun. 2018, 505, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Bartolić, D.; Mutavdžić, D.; Carstensen, J.M.; Stanković, S.; Nikolić, M.; Krstović, S.; Radotić, K. Fluorescence Spectroscopy and Multispectral Imaging for Fingerprinting of Aflatoxin-B1 Contaminated (Zea mays L.) Seeds: A Preliminary Study. Sci. Rep. 2022, 12, 4849. [Google Scholar] [CrossRef]
- Xagoraris, M.; Revelou, P.-K.; Alissandrakis, E.; Tarantilis, P.A.; Pappas, C.S. The Use of Right Angle Fluorescence Spectroscopy to Distinguish the Botanical Origin of Greek Common Honey Varieties. Appl. Sci. 2021, 11, 4047. [Google Scholar] [CrossRef]
- Hao, S.; Yuan, J.; Wu, Q.; Liu, X.; Cui, J.; Xuan, H. Rapid Identification of Corn Sugar Syrup Adulteration in Wolfberry Honey Based on Fluorescence Spectroscopy Coupled with Chemometrics. Foods 2023, 12, 2309. [Google Scholar] [CrossRef] [PubMed]
- Airado-Rodriguez, D.; Galeano-Diaz, T.; Duran-Meras, I.; Wold, J.P. Usefulness of Fluorescence Excitation-Emission Matrices in Combination with PARAFAC, as Fingerprints of Red Wines. J. Agric. Food Chem. 2009, 57, 1711–1720. [Google Scholar] [CrossRef] [PubMed]
- Parri, E.; Santinami, G.; Domenici, V. Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy). Appl. Sci. 2020, 10, 1776. [Google Scholar] [CrossRef]
- Strelec, I.; Brodar, L.; Flanjak, I.; Kenjerić, F.Č.; Kovač, T.; Kenjerić, D.Č.; Primorac, L. Characterization of Croatian Honeys by Right-Angle Fluorescence Spectroscopy and Chemometrics. Food Anal. Methods 2018, 11, 824–838. [Google Scholar] [CrossRef]
- Quintanilla-Casas, B.; Rinnan, Å.; Romero, A.; Guardiola, F.; Tres, A.; Vichi, S.; Bro, R. Using Fluorescence Excitation-Emission Matrices to Predict Bitterness and Pungency of Virgin Olive Oil: A Feasibility Study. Food Chem. 2022, 395, 133602. [Google Scholar] [CrossRef] [PubMed]
- Martín-Tornero, E.; Fernández, A.; Durán-Merás, I.; Martín-Vertedor, D. Fluorescence Monitoring Oxidation of Extra Virgin Olive Oil Packed in Different Containers. Molecules 2022, 27, 7254. [Google Scholar] [CrossRef]
- Martín-Tornero, E.; Fernández, A.; Pérez-Rodriguez, J.M.; Durán-Merás, I.; Prieto, M.H.; Martín-Vertedor, D. Non-destructive Fluorescence Spectroscopy as a Tool for Discriminating between Olive Oils According to Agronomic Practices and for Assessing Quality Parameters. Food Anal. Methods 2022, 15, 253–265. [Google Scholar] [CrossRef]
- Mu, T.; Chen, S.; Zhang, Y.; Chen, H.; Gu, P.; Meng, F. Portable Detection and Quantification of Olive Oil Adulteration by 473-nm Laser-Induced Fluorescence. Food Anal. Methods 2016, 9, 275–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Chen, H.; Chen, S.; Guo, P.; Li, Y. Excitation Wavelength Analysis of a Laser-Induced Fluorescence Technique for Quantification of Extra Virgin Olive Oil Adulteration. Appl. Opt. 2019, 58, 4484–4491. [Google Scholar] [CrossRef]
- Hart, S.J.; JiJi, R.D. Light Emitting Diode Excitation Emission Matrix Fluorescence Spectroscopy. Analyst 2002, 127, 1693–1699. [Google Scholar] [CrossRef]
- Omwange, K.A.; Al Riza, D.F.; Saito, Y.; Suzuki, T.; Ogawa, Y.; Shiraga, K.; Giametta, F.; Kondo, N. Potential of Front Face Fluorescence Spectroscopy and Fluorescence Imaging in Discriminating Adulterated Extra-Virgin Olive Oil with Virgin Olive Oil. Food Control 2021, 124, 107906. [Google Scholar] [CrossRef]
- Venturini, F.; Sperti, M.; Michelucci, U.; Herzig, I.; Baumgartner, M.; Caballero, J.P.; Jimenez, A.; Deriu, M.A. Exploration of Spanish Olive Oil Quality with a Miniaturized Low-Cost Fluorescence Sensor and Machine Learning Techniques. Foods 2021, 10, 1010. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Dai, Z.; Cui, L.; Lin, H.; Li, Z.; Wu, K.; Liu, G. Quantitative Detection of Extra Virgin Olive Oil Adulteration, as Opposed to Peanut and Soybean Oil, Employing LED-Induced Fluorescence Spectroscopy. Sensors 2022, 22, 1227. [Google Scholar] [CrossRef] [PubMed]
- Minkova, S.; Vladev, V.; Hristova-Aqakumova, N.; Gabrova, R.; Nikolova, K.; Evtimov, T.; Hadjimitova, V. Comparative Study of the Characteristics of Red Bulgarian and French Wines Using Applied Photonics Methods. In Proceedings of the International Conference and School on Quantum Electronics “Laser Physics And Applications”: ICSQE 2018, Nessebar, Bulgaria, 17–21 September 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11047, pp. 142–147. [Google Scholar] [CrossRef]
- Nikolova, K.; Tsankova, D.; Evtimov, T. Determination of The Optical Properties of Bulgarian Honey. In Proceedings of the 9th International Physics Conference Of The Balkan Physical Union (Bpu-9), Istanbul, Turkey, 24–27 August 2015; AIP Publishing: College Park, MD, USA, 2016; Volume 1722, p. 290009. [Google Scholar] [CrossRef]
- Nikolova, K.; Zlatanov, M.; Eftimov, T.; Brabant, D.; Yosifova, S.; Halil, E.; Antova, G.; Angelova, M. Fluoresence Spectra From Vegetable Oils Using Violet and Blue Ld/Led Exitation and An Optical Fiber Spectrometer. Int. J. Food Prop. 2014, 17, 1211–1223. [Google Scholar] [CrossRef]
- Nikolova, K.; Eftimov, T.; Perifanova, M.; Brabant, D. Quick Fluorescence Method for The Distinguishing of Vegetable Oils. J. Food Sci. Eng. 2012, 2, 674–684. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T. Fiberized Fluorescent Dye Microtubes. In Proceeding of the 17th International School on Quantum Electronics: Laser Physics and Applications, Nessebar, Bulgaria, 24–28 September 2012; SPIE: Bellingham, WA, USA, 2013; Volume 8770, p. 87700V. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Bock, W. Broad-Band Fluorescent All-Fiber Source Based on Microstructured Optical Fibers. Photonics Lett. Pol. 2015, 7, 41–43. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Bock, W. Fluorescent All-Fiber Light Source Based on Micro-Capillaries and on Microstructured Optical Fibers Terminated With a Microbulb. Opt. Commun. 2015, 356, 34–40. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Nedev, S. Excitation Efficiency of a Side-Pumped Fiberized Fluorescent Dye Microcapillary. Opt. Fib. Tech. 2016, 28, 28–37. [Google Scholar] [CrossRef]
- Vladev, V.; Todorova, M.; Slavchev, V.; Brazkova, M.; Belina, E.; Bozhkov, S.; Radusheva, P. A New Basic Structure Suitable for a Fully Integrated All-Fiberoptic Stimulated Emission Dye Source. J. Phys. Conf. Ser. 2021, 1859, 012059. [Google Scholar] [CrossRef]
- Vladev, V.P.; Todorova, M.M.; Brazkova, M.S.; Bozhkov, S.I. Diode-Pumped All-Fiber-Optic Liquid Dye Laser. Laser Phys. Lett. 2021, 18, 115103. [Google Scholar] [CrossRef]
- Vladev, V.; Eftimov, T.; Bozhkov, S.; Nikolova, K.; Minkova, S.; Blazheva, D.; Angelova, G.; Brazkova, M. Fiber-Coupled Fluorescence Light Source Suitable for Spectroscopic Applications. Photonics Lett. Pol. 2022, 14, 65–67. [Google Scholar] [CrossRef]
- Poh, A.H.; Jamaludin, M.F.; Fadzallah, I.A.; Ibrahim, N.M.J.N.; Yusof, F.; Adikan, F.; Moghavvemi, M. Diffuse Reflectance Spectroscopic Analysis of Barium Sulfate as a Reflection Sstandard within 173–2500 nm: From Pure to Sintered Form. J. Near Infrared Spectrosc. 2019, 27, 393–401. [Google Scholar] [CrossRef]
- Hadi, A.G.; Lafta, F.; Hashim, A.; Hakim, H.; Al-Zuheiry, A.I.O.; Salman, S.R.; Ahmed, H. Study the Effect of Barium Sulphate on Optical Properties of Polyvinyl Alcohol (PVA). Univers. J. Mater. Sci. 2013, 1, 52–55. [Google Scholar] [CrossRef]
- OMLC. Coumarin 1. Available online: https://omlc.org/spectra/PhotochemCAD/html/045.html (accessed on 18 March 2024).
- Hernández-Sánchez, N.; Lleó, L.; Diezma, B.; Correa, E.C.; Sastre, B.; Roger, J.-M. Multiblock Analysis Applied to Fluorescence and Absorbance Spectra to Estimate Total Polyphenol Content in Extra Virgin Olive Oil. Foods 2021, 10, 2556. [Google Scholar] [CrossRef]
- Lastra-Mejias, M.; Izquierdo, M.; Torreblanca-Zanca, A.; Aroca-Santos, R.; Cancilla, J.C.; Sepulveda-Diaz, J.E.; Torrecilla, J.S. Cognitive Fluorescence Sensing to Monitor The Storage Conditions and Locate Adulterations of Extra Virgin Olive Oil. Food Control 2019, 103, 48–58. [Google Scholar] [CrossRef]
- Baltazar, P.; Hernández-Sánchez, N.; Diezma, B.; Lleó, L. Development of Rapid Extra Virgin Olive Oil Quality Assessment Procedures Based on Spectroscopic Techniques. Agronomy 2020, 10, 41. [Google Scholar] [CrossRef]
- Ansar, A.; Ahmad, N.; Albqmi, M.; Saleem, M.; Ali, H. Thermal Effects on The Quality Parameters of Extra Virgin Olive Oil Using Fluorescence Spectroscopy. J. Fluoresc. 2023, 33, 1749–1760. [Google Scholar] [CrossRef]
- Kongbonga, G.Y.M.; Hassine, K.B.; Ghalila, H.; Malouche, D. Front-Face Fluorescence Using UV-LED Coupled to USB Spectrometer to Discriminate between Virgin Olive Oil from Two Cultivars. Food Nutr. Sci. 2019, 10, 119–127. [Google Scholar] [CrossRef]
- Mishra, P.; Lleó, L.; Cuadrado, T.; Ruiz-Altisent, M.; Hernández-Sánchez, N. Monitoring Oxidation Changes in Commercial Extra Virgin Olive Oils with Fluorescence Spectroscopy-Based Prototype. Eur. Food Res. Technol. 2018, 244, 565–575. [Google Scholar] [CrossRef]
- Kongbonga, Y.M.; Ghalila, H.; Majdi, Y.; Feudjio, W.M.; Lakhdar, Z.B. Investigation of Heat-Induced Degradation of Virgin Olive Oil Using Front Face Fluorescence Spectroscopy and Chemometric Analysis. J. Am. Oil Chem. Soc. 2015, 92, 1399–1404. [Google Scholar] [CrossRef]
- OMLC. Coumarin 6. Available online: https://omlc.org/spectra/PhotochemCAD/html/013.html (accessed on 18 March 2024).
- OMLC. Perylene. Available online: https://omlc.org/spectra/PhotochemCAD/html/023.html (accessed on 18 March 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladev, V.; Brazkova, M.; Bozhkov, S.; Angelova, G.; Blazheva, D.; Minkova, S.; Nikolova, K.; Eftimov, T. Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis. Foods 2024, 13, 1329. https://doi.org/10.3390/foods13091329
Vladev V, Brazkova M, Bozhkov S, Angelova G, Blazheva D, Minkova S, Nikolova K, Eftimov T. Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis. Foods. 2024; 13(9):1329. https://doi.org/10.3390/foods13091329
Chicago/Turabian StyleVladev, Veselin, Mariya Brazkova, Stefan Bozhkov, Galena Angelova, Denica Blazheva, Stefka Minkova, Krastena Nikolova, and Tinko Eftimov. 2024. "Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis" Foods 13, no. 9: 1329. https://doi.org/10.3390/foods13091329
APA StyleVladev, V., Brazkova, M., Bozhkov, S., Angelova, G., Blazheva, D., Minkova, S., Nikolova, K., & Eftimov, T. (2024). Light-Emitting-Diode-Induced Fluorescence from Organic Dyes for Application in Excitation–Emission Fluorescence Spectroscopy for Food System Analysis. Foods, 13(9), 1329. https://doi.org/10.3390/foods13091329