Effects of Different Pre-Harvest Bagging Times on Fruit Quality of Apple
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Determination of External Quality
2.3. Determination of Internal Quality
2.4. Assessment of the Membership Function
2.5. Statistical Analysis
3. Results
3.1. Effect of Different Bagging Times on the External Quality of Ruixue Apple
3.1.1. Effect of Different Bagging Times on the Apparent Quality of the Peel of Ruixue Apple
3.1.2. Effects of Different Bagging Times on the Peel Browning of Ruixue Apple
3.1.3. Effects of Different Bagging Times on the Peel Fruit Spot, Coloration, and Smooth Index of Ruixue Apple
3.1.4. Effect of Different Bagging Times on the Size, Shape, and Surface Color of Ruixue Apple
3.1.5. Effects of Different Bagging Times on the Peel Chlorophyll Content of Ruixue Apple
3.2. Effects of Different Bagging Times on the Internal Quality of Ruixue Apple
3.2.1. Effects of Different Bagging Times on the Soluble Solid Content, Titratable Acidity Content, and Hardness of Ruixue Apple
3.2.2. Effects of Different Bagging Times on the Total Phenolic Content, Flavonoid Content, and Peel Peroxidase Activity of Ruixue Apple
3.2.3. Effect of Different Bagging Times on the Number of Volatile Aroma Components of Ruixue Apple
3.2.4. Correlation Analysis of Different Bagging Times and Volatile Aroma Components
3.3. Comprehensive Assessment of the Quality of Ruixue Apple
4. Discussion
4.1. External Quality of Ruixue Apples as Affected by Different Bagging Times
4.2. Internal Quality of Ruixue Apples as Affected by Different Bagging Times
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
2021 | 2022 | ||
---|---|---|---|
A1 | Number of volatile aroma components | A1 | Number of volatile aroma components |
A2 | Pentyl 2-methyl propanoate | A2 | Hexyl acetate |
A3 | Hexyl acetate | A3 | Butyl caprylate |
A4 | Butyl caprylate | A4 | Hexyl tiglate |
A5 | Propyl octanoate | A5 | Amyl hexanoate |
A6 | Hexyl tiglate | A6 | Hexyl hexanoate |
A7 | Amyl hexanoate | A7 | Butyl Hexanoate |
A8 | Hexyl hexanoate | A8 | Amyl butyrate |
A9 | Butyl Hexanoate | A9 | Hexyl butyrate |
A10 | Propyl hexanoate | A10 | Butyl butanoate |
A11 | Ethyl butanoate | A11 | Propyl butyrate |
A12 | Amyl butyrate | A12 | Pentyl propionate |
A13 | Hexyl butyrate | A13 | Hexyl propionate |
A14 | Butyl butanoate | A14 | Butyl isovalerate |
A15 | Propyl butyrate | A15 | 2-methylbutyl 2-methylbutanoate |
A16 | Methyl-2-Butyl-Butyrate | A16 | Amyl-2-Methylbutyrate |
A17 | Pentyl propionate | A17 | Exyl 2-methylbutanoate |
A18 | Hexyl propionate | A18 | utyl 2-methylbutyrate |
A19 | Butyl benzoate | A19 | Propyl 2-Methylbutyrate |
A20 | Butyl Isovalerate | A20 | 2-methyl butyl hexanoate |
A21 | 2-methylbutyl 2-methylbutanoate | A21 | Hexyl isobutyrate |
A22 | Amyl-2-Methylbutyrate | A22 | Octanal |
A23 | Hexyl isovalerate | A23 | Nonanal |
A24 | Propyl 2-Methylbutyrate | A24 | Hexanal |
A25 | 2-methyl butyl hexanoate | A25 | 3-Hexenal |
A26 | Octanal | A26 | 2-Methylpent-4-enal |
A27 | Nonanal | A27 | 2-Hexenal |
A28 | Hexanal | A28 | 2-Heptenal |
A29 | 3-Hexenal | A29 | 2,4-Heptadienal |
A30 | 2-Methylpent-4-enal | A30 | (2E)-2-Octenal |
A31 | 2-Hexenal | A31 | 1-Hexanol |
A32 | 2-Heptenal | A32 | 2-Methylhexadecan-1-ol |
A33 | 2,4-Heptadienal | A33 | 2-Methylbutan-1-ol |
A34 | (2E)-2-Octenal | A34 | 13-Heptadecyn-1-ol |
A35 | 1-Hexanol | A35 | 1-Octen-3-one |
A36 | 2-Methylbutan-1-ol | A36 | Methylheptenone |
A37 | Isoamyl alcohol | A37 | Tetradecane |
A38 | Butanol | A38 | Cis-β-farnesene |
A39 | 13-Heptadecyn-1-ol | A39 | (-)-thujopsene |
A40 | 1-Octen-3-one | A40 | α-farnesene |
A41 | Methylheptenone | A41 | 1-Hexacosene |
A42 | Cis-β-farnesene | A42 | (4E)-1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohexene |
A43 | α-bergamotene | A43 | Heptyl 2-methylbutanoate |
A44 | (-)-thujopsene | ||
A45 | (E,E)-α-farnesene | ||
A46 | (4E)-1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohexene | ||
A47 | Heptyl 2-methyl butanoate |
Compound | Relative Content (%) | ||||||
---|---|---|---|---|---|---|---|
50 d | 60 d | 70 d | 80 d | 90 d | 100 d | 115 d | |
Pentyl 2-methyl propanoate | 0.12/0 | 0.07/0 | 0.12/0 | 0/0 | 0/0 | 0/0 | 0/0 |
Hexyl acetate | 0.05/0.19 | 0.08/0.22 | 0.05/0.11 | 0/0.21 | 0/0.2 | 0/0.27 | 0/0.22 |
Butyl caprylate | 0.18/0.14 | 0.14/0.17 | 0.22/0.13 | 0/0.2 | 0/0.21 | 0/0.16 | 0/0.19 |
Propyl octanoate | 0/0.06 | 0/0.06 | 0/0.07 | 0/0.08 | 0/0.08 | 0/0.05 | 0/0.06 |
Hexyl tiglate | 0.47/0.41 | 0.52/0.47 | 0.54/0.32 | 0.35/0.49 | 0.75/0.51 | 0.53/0.73 | 0.52/0.98 |
Amyl hexanoate | 0.44/0.36 | 0.5/0.4 | 0.66/0.43 | 0.31/0.32 | 0.8/0.23 | 0.77/0.28 | 0.47/0.47 |
Hexyl hexanoate | 10.15/8.59 | 10.8/6.02 | 7.75/5.58 | 10.71/5.86 | 4.65/6.41 | 3.78/3.49 | 3.17/2.35 |
Butyl Hexanoate | 1.07/0.5 | 0.67/0.44 | 0.85/0.46 | 0.55/0.5 | 1.27/0.41 | 0.97/0.33 | 0.62/0.66 |
Propyl hexanoate | 0.13/0.41 | 0.14/0.37 | 0.17/0.28 | 0.05/0.32 | 0.16/0.18 | 0/0.1 | 0/0.19 |
Ethyl butanoate | 0.1/0.1 | 0.04/0.08 | 0.09/0.07 | 0.06/0.07 | 0.06/0.03 | 0/0.07 | 0/0 |
Amyl butyrate | 0/0 | 0/0.05 | 0/0.04 | 0.1/0.07 | 0.1/0.05 | 0.14/0.07 | 0.14/0.08 |
Hexyl butyrate | 5.94/2.82 | 3.01/2.85 | 4.36/2.65 | 7.17/2.45 | 5.41/1.66 | 5.31/2.84 | 3.7/3.09 |
Butyl butanoate | 0.52/0.5 | 0.46/0.45 | 0.43/0.19 | 0.33/0.48 | 0.38/0.39 | 0.39/0.57 | 0.31/0.28 |
Propyl butyrate | 0.35/1.02 | 0.32/0.85 | 0.19/0.57 | 0.31/0.8 | 0.12/0.42 | 0.08/0.24 | 0.08/0.21 |
Methyl-2-Butyl-Butyrate | 0.21/0 | 0.26/0 | 0.21/0 | 0/0 | 0/0 | 0/0 | 0/0 |
Pentyl propionate | 0/0.09 | 0/0.09 | 0/0.09 | 0/0.1 | 0/0.09 | 0/0.05 | 0/0.05 |
Hexyl propionate | 0.64/1.33 | 0.53/1.28 | 0.32/1.17 | 0.22/1.3 | 0.35/1.07 | 0.14/0.9 | 0.18/0.96 |
Butyl benzoate | 0.1/0 | 0.09/0 | 0.09/0 | 0/0 | 0/0 | 0/0 | 0/0 |
Butyl Isovalerate | 0/0.2 | 0/0.16 | 0/0.17 | 0.11/0.19 | 0.34/0.16 | 0.2/0 | 0.18/0.13 |
2-Methylbutyl 2-methylbutanoate | 0.16/0.27 | 0.18/0.27 | 0.18/0.22 | 0.1/0.23 | 0.13/0.14 | 0.17/0.08 | 0.12/0.22 |
Amyl-2-Methylbutyrate | 0.3/0.38 | 0.29/0.2 | 0.27/0.19 | 0.18/0.34 | 0.36/0.24 | 0.24/0.2 | 0.23/0.36 |
Hexyl isovalerate | 21.16/26.31 | 21.54/23.11 | 19.97/23.72 | 24.35/22.62 | 15.37/23.25 | 17.86/19.49 | 19.01/30.32 |
Propyl 2-Methylbutyrate | 0.08/0.3 | 0.1/0.33 | 0.11/0.34 | 0/0.25 | 0/0.14 | 0/0.1 | 0/0 |
Methyl butyl hexanoate | 0.29/0.33 | 0.3/0.28 | 0.33/0.35 | 0.19/0.3 | 0.51/0.22 | 0.35/0.2 | 0.28/0.4 |
Octanal | 0/0 | 0/0 | 0/0 | 0/0 | 0/0.05 | 0/0.05 | 0/0 |
Nonanal | 0.18/0.15 | 0.33/0.21 | 0.19/0.19 | 0.21/0.22 | 0/0.25 | 0/0.29 | 0/0.13 |
Hexanal | 2.88/0.73 | 1.3/2.5 | 1.63/3.27 | 1.26/1.34 | 6.34/1.81 | 1.83/3.1 | 2.87/0.8 |
3-Hexenal | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0.04/0 | 0.09/0 |
2-Methylpent-4-enal | 0/0 | 0/0 | 0/0 | 0.08/0 | 0.12/0 | 0/0.11 | 0/0 |
2-Hexenal | 9.38/8.76 | 5.84/18.5 | 11.06/18.23 | 8.92/17.21 | 17.12/23.85 | 14.98/32.19 | 18.16/17.2 |
2-Heptenal | 0.13/0.1 | 0.08/0.08 | 0.14/0.09 | 0.04/0.1 | 0.07/0.08 | 0/0.12 | 0.06/0.08 |
2,4-Heptadienal | 0.05/0.07 | 0/0.06 | 0/0.07 | 0/0.07 | 0/0.06 | 0/0.11 | 0.09/0 |
(2E)-2-Octenal | 0.07/0.07 | 0/0.07 | 0/0.07 | 0.04/0.08 | 0/0 | 0/0 | 0/0 |
1-Hexanol | 1.33/1.72 | 1.15/1.13 | 0.85/1.31 | 0.59/1.46 | 1.04/0.94 | 0.56/1.78 | 0.61/0.93 |
2-methylbutan-1-ol | 0.91/1.55 | 0.87/1.18 | 0.59/1.63 | 0.27/1.64 | 1.09/1.48 | 0.33/1.63 | 0.25/0.68 |
Isoamyl alcohol | 0.04/0.06 | 0.06/0.06 | 0.04/0.05 | 0/0.06 | 0/0 | 0/0.05 | 0/0 |
Butanol | 0.16/0.23 | 0.15/0.25 | 0.11/0.23 | 0/0.26 | 0.4/0.26 | 0.07/0.25 | 0/0.08 |
13-Heptadecyn-1-ol | 0/0.04 | 0.04/0.04 | 0.06/0.04 | 0/0.05 | 0.07/0.04 | 0.07/0 | 0/0 |
1-Octen-3-one | 0.05/0.07 | 0/0.06 | 0/0.07 | 0/0.07 | 0/0.06 | 0/0.08 | 0/0.05 |
Methylheptenone | 0.62/0.8 | 0.58/0.59 | 0.65/0.69 | 0.39/0.73 | 0.97/0.54 | 0.68/0.73 | 0.59/0.7 |
cis-β-farnesene | 0.58/0.77 | 1/0.73 | 1.13/0.74 | 0.8/0.72 | 1.33/0.54 | 1.2/0.73 | 1.29/1.07 |
α-bergamotene | 6.13/0 | 8.78/0 | 4.71/0 | 5.22/0 | 0.73/0 | 8.85/0 | 5.19/0 |
(-)-thujopsene | 0/0.05 | 0/1.94 | 0/0.12 | 0/0.08 | 0/0.09 | 0/0.06 | 0/0.06 |
(E,E)-α-farnesene | 28.9/30.84 | 30.2/27.78 | 29.95/28.69 | 25.58/30.06 | 23.26/27.62 | 26.9/21.12 | 27.83/23.27 |
(4E)-1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohexene | 6.14/7.93 | 9.49/6.1 | 11.97/7.22 | 10.41/7.64 | 14.09/6.13 | 13.56/7.22 | 13.99/13.55 |
Heptyl 2-methyl butanoate | 0/1.75 | 0.09/0.58 | 0/0.12 | 1.1/1.04 | 2.59/0.09 | 0/0.14 | 0/0.19 |
Compound | Relative Content (%) | |||
---|---|---|---|---|
80 d | 90 d | 100 d | 115 d | |
Hexyl acetate | 0/0.03 | 0/0.06 | 0/0.08 | 0/0.09 |
Butyl caprylate | 0/0.04 | 0/0 | 0/0 | 0/0.11 |
Hexyl tiglate | 0.61/0.66 | 0.55/0.5 | 0.68/1.01 | 0.88/0.78 |
Amyl hexanoate | 0.23/0.27 | 0.16/0.14 | 0.28/0.33 | 0.46/0 |
Hexyl hexanoate | 1.2/1.66 | 1/0.76 | 1.63/2.22 | 2.6/2.45 |
Butyl Hexanoate | 0.21/0.31 | 0.13/0.11 | 0.27/0.29 | 0.48/0.49 |
Amyl butyrate | 0.08/0.08 | 0.05/0.05 | 0.08/0.13 | 0.13/0.21 |
Hexyl butyrate | 1.57/1.81 | 1.29/1.01 | 1.8/2.74 | 2.59/3.3 |
Butyl butanoate | 0.14/0.12 | 0.06/0.06 | 0.12/0.39 | 0.21/0.34 |
Propyl butyrate | 0/0.02 | 0/0 | 0/0.06 | 0/0 |
Pentyl propionate | 0/0.08 | 0/0.07 | 0/0.16 | 0/0 |
Hexyl propionate | 0.13/0.36 | 0.1/0.38 | 0.15/0.66 | 0.22/0.22 |
Butyl Isovalerate | 0.32/0.22 | 0.21/0.11 | 0.25/0.32 | 0.3/0.5 |
2-Methylbutyl 2-methylbutanoate | 0.51/0.2 | 0.34/0.28 | 0.46/0.83 | 0.65/0.8 |
Amyl-2-Methylbutyrate | 0.26/0.41 | 0.27/0.31 | 0.2/0.65 | 0.09/0.64 |
hexyl isovalerate | 11.8/18.57 | 12.63/16.18 | 17.86/35.11 | 25.85/28.74 |
utyl 2-methylbutyrate | 0/0 | 0/0 | 0/2.33 | 0/0 |
Propyl 2-Methylbutyrate | 0.03/0.04 | 0.03/0.04 | 0.03/0.11 | 0.04/0.06 |
2-methyl butyl hexanoate | 0.48/0.52 | 0.22/0.19 | 0.41/0.64 | 0.71/0.61 |
Hexyl-2-methyl propionate | 0.12/0 | 0.12/0 | 0.15/0 | 0.18/0.29 |
Octanal | 0.12/0.05 | 0.13/0.1 | 0.13/0.12 | 0.15/0.12 |
Nonanal | 0.4/0.12 | 0.25/0.21 | 0.5/0.35 | 0.89/0.78 |
Hexanal | 3.06/0.94 | 3.12/1.35 | 2.92/1.6 | 2.58/3.41 |
3-Hexenal | 0.05/0 | 0.05/0.07 | 0.08/0 | 0.14/0.18 |
2-Methylpent-4-enal | 0/0.16 | 0/0.11 | 0/0.09 | 0/0.16 |
2-Hexenal | 16/11.61 | 17.06/12.95 | 14.66/16.96 | 10.76/32.49 |
2-Heptenal | 0.09/0.06 | 0.05/0.05 | 0.08/0.08 | 0.14/0.09 |
2,4-Heptadienal | 0.07/0.03 | 0/0 | 0/0.08 | 0.07/0 |
(2E)-2-Octenal | 0.07/0.03 | 0.03/0.03 | 0.05/0.05 | 0/0.1 |
1-Hexanol | 0.28/0.2 | 0.3/0.19 | 0.26/0.29 | 0.21/0.61 |
2-Methyl hexadecane-2-ol | 0.04/0.07 | 0.03/0.15 | 0.07/0.05 | 0.13/0.16 |
2-MMethylbutan-1-ol | 0.88/0.52 | 0.42/0.56 | 0.47/1.04 | 0.54/1.28 |
13-Heptadecyn-1-ol | 0.03/0.04 | 0.04/0.03 | 0.07/0.12 | 0.11/0.12 |
1-Octen-3-one | 0/0.04 | 0/0.13 | 0/0.08 | 0/0.11 |
Methylheptenone | 0.16/0.2 | 0.13/0.14 | 0.17/0.3 | 0.22/0 |
Tetradecane | 0.68/0.48 | 0.75/0.36 | 0.99/0.69 | 1.35/2.52 |
cis-β-farnesene | 0.38/0.21 | 0.39/0.18 | 0.52/0.37 | 0.72/0.42 |
(-)-thujopsene | 0/0.09 | 0.1/0.09 | 0.1/0 | 0.1/0.29 |
(E,E)-α-farnesene | 57.35/56.08 | 56.97/59.08 | 52.67/25.94 | 45.35/9.94 |
1-Hexacosene | 0.18/0.06 | 0.15/0.09 | 0.11/0.05 | 0.09/0.06 |
(4E)-1-methyl-4-(6-methylhept-5-en-2-ylidene)cyclohexene | 2.48/2.11 | 2.88/2.76 | 1.78/3.53 | 1.05/4.32 |
Heptyl 2-methyl butanoate | 0/1.5 | 0/1.11 | 0/0.18 | 0/3.23 |
Fruit Bag Types | Bagging Time | Browning Index | Peel Smoothness Index | Fruit Spot Index | Peel Coloration Index | Chlorophyll Content | Comprehensive Score (Rank) |
---|---|---|---|---|---|---|---|
Double-layer tricolor bags | 50 d | 0.000 | 1.000 | 1.000 | 1.000 | 0.034 | 0.607 (6) |
60 d | 0.399 | 0.946 | 0.986 | 1.000 | 0.003 | 0.667 (2) | |
70 d | 0.376 | 0.879 | 0.957 | 1.000 | 0.000 | 0.643 (3) | |
80 d | 0.379 | 0.577 | 0.929 | 1.000 | 0.020 | 0.581 (8) | |
90 d | 0.538 | 0.517 | 0.786 | 1.000 | 0.010 | 0.570 (10) | |
100 d | 0.807 | 0.459 | 0.501 | 1.000 | 0.098 | 0.573 (9) | |
115 d | 0.880 | 0.426 | 0.117 | 1.000 | 0.054 | 0.495 (12) | |
Special bags | 50 d | 0.640 | 0.732 | 0.927 | 0.232 | 0.273 | 0.561 (11) |
60 d | 0.649 | 0.702 | 0.908 | 0.347 | 0.310 | 0.583 (7) | |
70 d | 0.755 | 0.600 | 0.815 | 0.597 | 0.350 | 0.624 (5) | |
80 d | 0.807 | 0.487 | 0.652 | 0.435 | 0.801 | 0.636 (4) | |
90 d | 0.963 | 0.442 | 0.534 | 0.605 | 1.000 | 0.709 (1) | |
100 d | 0.917 | 0.203 | 0.240 | 0.049 | 0.434 | 0.369 (13) | |
115 d | 1.000 | 0.000 | 0.000 | 0.000 | 0.273 | 0.255 (14) |
Fruit Bag Types | Bagging Time | Soluble Solid Content | Hardness | Total Phenolic | Total Flavonoids | Peroxidase | Aroma Substances Types | Comprehensive Score (Rank) |
---|---|---|---|---|---|---|---|---|
Double-layer tricolor bags | 50 d | 0.230 | 0.088 | 0.000 | 0.000 | 0.000 | 0.769 | 0.181 (14) |
60 d | 0.305 | 0.232 | 0.024 | 0.124 | 0.225 | 0.692 | 0.267 (12) | |
70 d | 0.305 | 0.000 | 0.105 | 0.290 | 0.260 | 0.615 | 0.263 (13) | |
80 d | 0.274 | 0.810 | 0.259 | 0.353 | 0.648 | 0.308 | 0.442 (9) | |
90 d | 0.339 | 0.773 | 0.350 | 0.423 | 0.797 | 0.308 | 0.498 (8) | |
100 d | 1.000 | 0.995 | 0.353 | 0.574 | 0.511 | 0.000 | 0.572 (5) | |
115 d | 0.956 | 0.860 | 0.598 | 0.601 | 0.491 | 0.000 | 0.584 (4) | |
Special bags | 50 d | 0.475 | 0.211 | 0.158 | 0.039 | 0.122 | 0.923 | 0.321 (11) |
60 d | 0.064 | 0.535 | 0.284 | 0.231 | 0.419 | 1.000 | 0.422 (10) | |
70 d | 0.503 | 0.339 | 0.294 | 0.373 | 0.562 | 1.000 | 0.512 (7) | |
80 d | 0.000 | 0.379 | 0.395 | 0.480 | 0.859 | 1.000 | 0.519 (6) | |
90 d | 0.040 | 0.400 | 0.635 | 0.558 | 1.000 | 0.923 | 0.593 (3) | |
100 d | 0.452 | 0.681 | 0.797 | 0.788 | 0.620 | 0.923 | 0.710 (2) | |
115 d | 0.854 | 1.000 | 1.000 | 1.000 | 0.566 | 0.538 | 0.826 (1) |
Fruit Bag Types | Bagging Time | Browning Index | Peel Smoothness Index | Fruit Spot Index | Peel Coloration Index | Chlorophyll Content | Comprehensive Score (Rank) |
---|---|---|---|---|---|---|---|
Double-layer tricolor bags | 80 d | 0.210 | 1.000 | 1.000 | 1.000 | 0.067 | 0.656 (1) |
85 d | 0.346 | 0.694 | 0.939 | 1.000 | 0.000 | 0.596 (2) | |
90 d | 0.000 | 0.497 | 0.815 | 1.000 | 0.251 | 0.513 (6) | |
95 d | 0.372 | 0.163 | 0.622 | 1.000 | 0.608 | 0.553 (3) | |
Special bags | 80 d | 0.663 | 0.493 | 0.238 | 0.283 | 0.646 | 0.465 (7) |
85 d | 0.883 | 0.555 | 0.152 | 0.198 | 0.963 | 0.550 (4) | |
90 d | 1.000 | 0.334 | 0.122 | 0.287 | 1.000 | 0.549 (5) | |
95 d | 0.773 | 0.000 | 0.000 | 0.000 | 0.476 | 0.250 (8) |
Fruit Bag Types | Bagging Time | Soluble Solid Content | Hardness | Total Phenolic | Total Flavonoids | Peroxidase | Aroma Substances Types | Comprehensive Score (Rank) |
---|---|---|---|---|---|---|---|---|
Double-layer tricolor bags | 80 d | 0.000 | 0.000 | 0.000 | 0.000 | 0.016 | 0.000 | 0.003 (8) |
85 d | 0.134 | 0.245 | 0.280 | 0.153 | 0.165 | 0.000 | 0.163 (7) | |
90 d | 0.622 | 0.551 | 0.429 | 0.195 | 0.000 | 0.000 | 0.299 (6) | |
95 d | 0.794 | 0.808 | 0.587 | 0.294 | 0.405 | 0.000 | 0.481 (5) | |
Special bags | 80 d | 0.031 | 0.235 | 0.616 | 0.364 | 0.694 | 1.000 | 0.490 (3) |
85 d | 0.111 | 0.447 | 0.752 | 0.530 | 0.174 | 0.667 | 0.447 (4) | |
90 d | 0.529 | 0.740 | 0.962 | 0.691 | 1.000 | 0.833 | 0.792 (2) | |
95 d | 1.000 | 1.000 | 1.000 | 1.000 | 0.264 | 0.500 | 0.794 (1) |
References
- Ali, M.; Anwar, R.; Yousef, A.; Li, B.; Luvisi, A.; De Bellis, L.; Aprile, A.; Chen, F. Influence of Bagging on the Development and Quality of Fruits. Plants 2021, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Luca, L.P.; Scollo, F.; Distefano, G.; Ferlito, F.; Bennici, S.; Inzirillo, I.; Gentile, A.; La Malfa, S.; Nicolosi, E. Pre-Harvest Bagging of Table Grapes Reduces Accumulations of Agrochemical Residues and Increases Fruit Quality. Agriculture 2023, 13, 1933. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Fan, M.; Zhang, S.; Sun, L.; Zhao, Z. Metabolomic insights into the browning of the peel of bagging ‘Rui Xue’ apple fruit. BMC Plant Biol. 2021, 21, 209. [Google Scholar] [CrossRef] [PubMed]
- Buthelezi, N.M.; Mafeo, T.P.; Mathaba, N. Preharvest bagging as an alternative technique for enhancing fruit quality: A review. HortTechnology 2021, 31, 4–13. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, Z.; Ye, Z. Effect of bagging duration on peach fruit peel color and key protein changes based on iTRAQ quantitation. Sci. Hortic. 2019, 246, 217–226. [Google Scholar] [CrossRef]
- Xu, H.; Chen, J.; Xie, M. Effect of different light transmittance paper bags on fruit quality and antioxidant capacity in loquat. J. Sci. Food Agric. 2010, 90, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Pal, R.; Asrey, R.; Sagar, V.; Rana, M. Pre-harvest fruit bagging influences fruit color and quality of apple cv. Delicious. Agric. Sci. 2013, 4, 443–448. [Google Scholar] [CrossRef]
- Purbey, S.; Kumar, A. Effect of Pre-harvest bagging on quality and yield of litchi (Litchi chinensis Sonn) Fruits. Int. Q. J. Environ. Sci. 2015, 6, 197–201. [Google Scholar]
- Jing, C.; Feng, D.; Zhao, Z.; Wu, X.; Chen, X. Effect of environmental factors on skin pigmentation and taste in three apple cultivars. Acta Physiol. Plant. 2020, 42, 69. [Google Scholar] [CrossRef]
- Shadmani, N.; Ahmad, S.; Saari, N.; Ding, P.; Tajidin, N. Chilling injury incidence and antioxidant enzyme activities of Carica papaya L. ‘Frangi’ as influenced by postharvest hot water treatment and storage temperature. Postharvest Biol. Technol. 2015, 99, 114–119. [Google Scholar] [CrossRef]
- Vicent, V.; Ndoye, F.; Verboven, P.; Nicolai, B.; Alvarez, G. Quality changes kinetics of apple tissue during frozen storage with temperature fluctuations. Int. J. Refrig. 2018, 92, 165–175. [Google Scholar] [CrossRef]
- Zhao, Q. Lignification: Flexibility, biosynthesis, and regulation. Trends Plant Sci. 2016, 21, 713–721. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Gao, J.; Feng, X.; Shi, Z.; Gao, F.; Xu, X.; Yang, L. Inhibitory effect of chlorogenic acid on fruit russeting in ‘Golden Delicious’ apple. Sci. Hortic. 2014, 178, 14–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, R.; Cheng, R. Developmental changes of carbohydrates, organic acids, amino acids, and phenolic compounds in ‘Honeycrisp’ apple flesh. Food Chem. 2010, 123, 1013–1018. [Google Scholar] [CrossRef]
- Abbasi, N.; Chaudhary, M.A.; Ali, M.I.; Ali, I. On tree fruit bagging influences the quality of Guava Harvested at different maturity stages during summer. Int. J. Agric. Biol. 2018, 16, 543–549. [Google Scholar]
- Hudina, M.; Stampar, F.; Orazem, P.; Maja, M.; Veveric, R. Phenolic compounds profile, carbohydrates and external fruit quality of the ‘Concorde’ pear (Pyrus communis L.) after bagging. Rev. Can. Phytotech. 2017, 92, 67–75. [Google Scholar]
- Lin, J.; Wang, Z.; Li, X.; Chang, Y. Effects of bagging twice and room temperature storage on quality of ‘Cuiguan’ pear fruit. Acta Hortic. 2012, 934, 837–840. [Google Scholar] [CrossRef]
- Sharma, R.; Reddy, S.; Jhalegar, M. Pre-harvest fruit bagging: A useful approach for plant protection and improved post–harvest fruit quality-a review. J. Hortic. Sci. Biotechnol. 2014, 89, 101–113. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H. Changes in aroma volatile compounds and ethylene production during ‘Hujingmilu’ peach (Prunus persica L.) fruit development. J. Plant Physiol. Mol. Biol. 2005, 31, 41–46. [Google Scholar]
- Wang, S.; Sun, L.; Wang, H.; Fan, M.; Hao, N.; Meng, Z.; Zhao, Z. A study of the characteristics of browning in bagged Ruixue apple fruit and its relationship to temperature. J. Fruit Sci. 2021, 38, 692–701. (in Chinese). [Google Scholar]
- Wang, H.; Zhang, S.; Fu, Q.; Wang, Z.; Liu, X.J.; Sun, L.; Zhao, Z. Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning. Plant Physiol. 2023, 192, 2102–2122. [Google Scholar] [CrossRef] [PubMed]
- Zude-Sasse, M.; Truppel, I.; Herold, B. An approach to non-destructive apple fruit chlorophyll determination. Postharvest Biol. Technol. 2002, 25, 123–133. [Google Scholar] [CrossRef]
- Liu, X.; Li, D.; Li, Y.; Li, S.; Zhao, Z. Brassinosteroids are involved in volatile compounds biosynthesis related to MdBZR1 in Ruixue (Malus × domestica Borkh.) fruit. Postharvest Biol. Technol. 2022, 189, 111931. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, J.; Ma, R.; Cai, Z.; Yan, J.; Zhang, C. Relationship between the bagging microenvironment and fruit quality in ‘Guibao’ peach (Prunus persica (L.) Batsch). J. Hortic. Sci. Biotechnol. 2015, 90, 303–310. [Google Scholar] [CrossRef]
- Yang, W.; Zhu, X.; Bu, J.; Hu, G.; Wang, H.; Huang, X. Effects of bagging on fruit development and quality in cross-winter off-season longan. Sci. Hortic. 2009, 120, 194–200. [Google Scholar] [CrossRef]
- Islam, M.; Rahman, M.; Akter, M.; Hasan, M.; Uddin, S. Influence of pre-harvest bagging on fruit quality of mango (Mangifera indica L.) cv. Langra. Asian J. Agric. Hortic. Res. 2019, 4, 1–10. [Google Scholar] [CrossRef]
- Sun, J. Effects of Bagging and Bag Removal at Different Times on Quality of Applepear. Agric. Sci. Technol. 2016, 17, 1799–1801. [Google Scholar]
- Hudima, M.; Stampar, F. Bagging of ‘Concorde’ pears (Pyrus communis L.) influences fruit quality. Acta Hortic. 2011, 909, 625–630. [Google Scholar] [CrossRef]
- Liao, G.; He, Y.; Li, X.; Zhong, M.; Huang, C.; Yi, S.; Liu, Q.; Xu, X. Effects of bagging on fruit flavor quality and related gene expression of AsA synthesis in actinidia eriantha. Sci. Hortic. 2019, 256, 108511. [Google Scholar] [CrossRef]
- Huang, C.; Yu, B.; Teng, Y.; Su, J.; Shu, Q.; Cheng, Z.; Zeng, L. Effects of fruit bagging on coloring and related physiology, and qualities of red Chinese sand pears during fruit maturation. Sci. Hortic. 2009, 121, 149–158. [Google Scholar] [CrossRef]
- Hussein, A.; Abdel-Rahman, A.; Ahmed, R. Effectiveness of fruit bagging on yield and fruit quality of pomegranate (Punica granatum L.). Ann. Agric. Sci. Moshtohor 1994, 32, 949–957. [Google Scholar]
- Guan, Y.; Qin, X.; Wei, C.; Feng, Y.; Cheng, Y.; Zhang, Y.; Guan, J. Influence of bagging on fruit quality, incidence of peel browning spots, and lignin content of ‘Huangguan’ Pears. Plants 2024, 13, 516. [Google Scholar] [CrossRef]
- Wang, S.; Gao, H.; Zhang, X. Effects of bagging on pigment, sugar and acid development in ‘Red Fuji’ apple fruits. Acta Hortic. Sin. 2002, 29, 263–265. [Google Scholar]
- Singh, B.; Singh, R.; Singh, G.; Killadi, B. Response of bagging on maturity, ripening and storage behaviour of winter guava. Acta Hortic. 2007, 735, 597–601. [Google Scholar] [CrossRef]
- Teixeira, R.; Boff, M.; Amarante, C.; Steffens, C.; Boff, P. Effects of fruit bagging on pests and diseases control and on quality and maturity of ‘Fuji Suprema’ apples. Bragantia 2011, 70, 688–695. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, Z.; Wang, Y.; Mei, Z.; Niu, J.; Wang, L.; Hui, W. Effects of controlled atmosphere on preservation of Ruixue apples and preliminary study on pericarp browning mechanism. Food Ferment. Ind. 2023, 49, 123–129. (in Chinese). [Google Scholar]
- Ja, N.; Alvarez, E.; Rosa, L.; Martinez, G.; Gonzalez, J.; Rodrigo, G. Effect of harvest date and storage duration on chemical composition, sugar and phenolic profile of ‘Golden Delicious’ apples from northwest Mexico. N. Z. J. Crop Hortic. Sci. 2015, 43, 214–221. [Google Scholar]
- Zhao, J.; Xie, X.; Shen, X.; Wang, Y. Effect of sunlight-exposure on antioxidants and antioxidant enzyme activities in ‘d’Anjou’ pear in relation to superficial scald development. Food Chem. 2016, 210, 18–25. [Google Scholar] [CrossRef]
- Heng, W.; Liu, L.; Wang, M.; Jia, B.; Liu, P.; Ye, Z.; Zhu, L. Differentially expressed genes related to the formation of russet fruit skin in a mutant of ‘Dangshansuli’ pear (Pyrus bretchnederi Rehd.) determined by suppression subtractive hybridization. Euphytica 2014, 196, 285–297. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, N.; Yan, C.; Jin, Q.; Lin, Y.; Cai, Y.; Zhang, J. Bagging for the development of stone cell and metabolism of lignin in Pyrus bretschneideri ‘DangshanSuli’. Acta Hortic. Sin. 2013, 40, 531–539. [Google Scholar]
- Liu, X.; Hao, N.; Feng, R.; Meng, Z.; Li, Y. Transcriptome and metabolite profiling analyses provide insight into volatile compounds of the apple cultivar Ruixue and its parents during fruit development. BMC Plant Biol. 2021, 21, 231. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, H.; Li, L.; Lu, D.; Yang, J. Effects of bagging on “Hanfu” apple aroma compounds. Chin. J. Eco-Agric. 2011, 19, 843–847. [Google Scholar]
- Feng, S.; Yan, C.; Zhang, T.; Zhang, L.; Ji, M.; Wang, F.; Gao, H. Effect of bagging on aroma volatiles and related gene expression in Ruixue apple fruit. Food Sci. 2020, 41, 185–192. (in Chinese). [Google Scholar]
- Li, T.; Xu, Y.; Zhang, L.; Ji, Y.; Tan, D.; Hui, Y.; Wang, A. The Jasmonate-Activated transcription factor MdMYC2 regulates ethylene response factor and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening. Plant Cell 2017, 29, 1316–1334. [Google Scholar] [CrossRef]
- Li, D.; Guo, J.; Ma, H.; Pei, L.; Liu, X.; Wang, H.; Gao, H. Changes in the VOC of Fruits at Different Refrigeration Stages of ‘Ruixue’ and the Participation of Carboxylesterase MdCXE20 in the Catabolism of Volatile Esters. Foods 2023, 12, 1977. [Google Scholar] [CrossRef]
- Huang, G.; Qu, Y.; Li, T.; Yuan, H.; Wang, A.; Tan, D. Comparative Transcriptome Analysis of Actinidia arguta Fruits Reveals the Involvement of Various Transcription Factors in Ripening. Hortic. Plant J. 2018, 4, 35–42. [Google Scholar] [CrossRef]
- Miller, T.; Fellman, J.K.; Mattheis, J.; Mattinson, D. Factors that influence volatile ester biosynthesis in ‘Delicious’ apples. Acta Hortic. 1998, 464, 195–200. [Google Scholar] [CrossRef]
- Jia, H.J.; Araki, A.; Okamoto, G. Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’peach (Prunus persica Batsch). Postharvest Biol. Technol. 2005, 35, 61–68. [Google Scholar] [CrossRef]
- Liu, M.; Ji, H.; Jiang, Q.; Liu, T.; Cao, H.; Zhang, Z. Effects of full shading of clusters from véraison to ripeness on fruit quality and volatile compounds in Cabernet Sauvignon grapes. Food Chem. 2024, 17, 101232. [Google Scholar] [CrossRef]
Years | Bagging Time | Longitudinal (mm) | Lateral (mm) | Sunburn Rate (%) |
---|---|---|---|---|
2021 | 50 days after full bloom (May 31) | 28.65 ± 0.46 | 27.00 ± 0.59 | 0 |
60 days after full bloom (June 10) | 34.75 ± 0.70 | 34.51 ± 0.39 | 0 | |
70 days after full bloom (June 20) | 42.01 ± 0.91 | 41.56 ± 1.04 | 0 | |
80 days after full bloom (June 30) | 51.32 ± 1.33 | 50.87 ± 0.97 | 0 | |
90 days after full bloom (July 10) | 53.15 ± 1.48 | 54.37 ± 1.25 | 0 | |
100 days after full bloom (July 20) | 57.25 ± 1.92 | 59.86 ± 1.64 | 6 | |
115 days after full bloom (August 4) | 59.36 ± 1.78 | 63.29 ± 2.03 | 21 | |
2022 | 80 days after full bloom (June 28) | 52.69 ± 1.37 | 50.18 ± 0.95 | 0 |
85 days after full bloom (July 3) | 54.06 ± 1.05 | 53.29 ± 1.67 | 0 | |
90 days after full bloom (July 8) | 54.63 ± 1.64 | 55.27 ± 1.33 | 0 | |
95 days after full bloom (July 13) | 55.48 ± 1.19 | 56.94 ± 1.26 | 5 |
Fruit Bag Types | Manufacturer | Specification | Material | Light Transmittance (%) |
---|---|---|---|---|
Double-layer tricolor bags | Hongtai Fruit Bags Factory | 150 × 179 mm 4.2 g | Outer paper: Paper with yellow outside and black inside Inner paper: Red waxy paper | 0 |
Special fruit bags | Hongtai Fruit Bags Factory | 155 × 180 mm 5.1 g | Outer paper: Whitewood pulp paper Inner paper: Green waxy paper | 25 |
Fruit Bag Types | Years | Bagging Time | Fruit Weight (g) | Transverse (mm) | Longitudinal (mm) | Fruit Shape Index | L* | a* | b* |
---|---|---|---|---|---|---|---|---|---|
Double-layer tricolor bags | 2021 | 50 d | 258.86 ± 25.39 a | 81.14 ± 2.81 a | 76.13 ± 3.11 a | 0.96 ± 0.04 a | 81.29 ± 0.84 a | −5.25 ± 0.95 a | 30.97 ± 1.45 d |
60 d | 248.40 ± 25.63 a | 81.11 ± 3.94 a | 74.73 ± 3.63 a | 0.91 ± 0.05 a | 80.91 ± 1.09 a | −6.01 ± 0.85 ab | 33.29 ± 1.86 c | ||
70 d | 259.00 ± 20.18 a | 81.90 ± 4.39 a | 75.12 ± 3.24 a | 0.91 ± 0.04 a | 80.95 ± 1.02 a | −6.03 ± 0.65 ab | 33.17 ± 2.04 c | ||
80 d | 254.75 ± 26.02 a | 79.37 ± 4.86 a | 75.37 ± 3.41 a | 0.94 ± 0.08 a | 77.06 ± 0.96 b | −8.33 ± 0.71 c | 39.60 ± 1.22 b | ||
90 d | 249.61 ± 30.95 a | 81.05 ± 2.60 a | 73.63 ± 4.70 a | 0.91 ± 0.04 a | 76.38 ± 2.01 b | −8.21 ± 1.21 c | 38.06 ± 2.05 b | ||
100 d | 260.39 ± 23.11 a | 82.31 ± 2.80 a | 76.22 ± 2.30 a | 0.94 ± 0.03 a | 74.70 ± 1.97 c | −7.10 ± 2.00 bc | 38.97 ± 1.59 b | ||
115 d | 261.39 ± 29.41 a | 81.18 ± 3.87 a | 76.18 ± 3.92 a | 0.95 ± 0.06 a | 74.75 ± 1.40 c | −8.55 ± 2.19 c | 41.55 ± 1.20 a | ||
2022 | 80 d | 271.96 ± 41.52 a | 82.69 ± 4.49 a | 76.53 ± 4.17 a | 0.93 ± 0.04 a | 77.93 ± 0.87 a | −8.27 ± 0.63 a | 36.87 ± 0.85 b | |
85 d | 261.84 ± 33.51 a | 81.84 ± 3.88 a | 77.18 ± 5.11 a | 0.94 ± 0.05 a | 77.59 ± 0.96 a | −8.13 ± 0.46 a | 37.19 ± 1.13 ab | ||
90 d | 262.54 ± 40.64 a | 81.88 ± 5.16 a | 76.89 ± 5.06 a | 0.94 ± 0.05 a | 76.74 ± 1.00 ab | −8.77 ± 0.98 a | 38.57 ± 1.34 ab | ||
95 d | 271.04 ± 39.27 a | 82.73 ± 3.50 a | 78.67 ± 4.37 a | 0.95 ± 0.03 a | 75.30 ± 0.90 b | −8.79 ± 0.99 a | 39.06 ± 1.39 a | ||
Special bags | 2021 | 50 d | 233.53 ± 35.35 a | 79.98 ± 3.76 a | 74.30 ± 5.13 a | 0.93 ± 0.05 a | 74.37 ± 1.35 a | −13.37 ± 1.29 a | 42.49 ± 1.81 c |
60 d | 247.17 ± 37.78 a | 79.77 ± 3.31 a | 76.02 ± 5.94 a | 0.95 ± 0.07 a | 74.42 ± 1.29 a | −14.04 ± 0.86 ab | 42.84 ± 1.51 bc | ||
70 d | 244.47 ± 26.23 a | 80.50 ± 3.39 a | 74.12 ± 3.82 a | 0.92 ± 0.04 a | 73.10 ± 1.71 b | −14.50 ± 0.87 b | 41.48 ± 1.17 c | ||
80 d | 255.97 ± 43.61 a | 81.68 ± 4.80 a | 76.84 ± 6.20 a | 0.94 ± 0.05 a | 72.67 ± 1.15 bc | −14.81 ± 0.87 b | 42.13 ± 1.66 c | ||
90 d | 255.70 ± 35.01 a | 83.01 ± 5.33 a | 76.23 ± 4.30 a | 0.92 ± 0.05 a | 71.95 ± 0.79 c | −14.47 ± 1.36 b | 44.11 ± 1.74 ab | ||
100 d | 270.93 ± 30.39 a | 84.68 ± 4.30 a | 79.89 ± 5.03 a | 0.94 ± 0.06 a | 72.02 ± 0.87 bc | −14.82 ± 0.58 b | 44.04 ± 1.35 ab | ||
115 d | 252.43 ± 32.17 a | 82.82 ± 2.38 a | 75.83 ± 5.36 a | 0.92 ± 0.05 a | 70.83 ± 0.81 d | −14.25 ± 1.07 ab | 45.06 ± 1.78 a | ||
2022 | 80 d | 297.24 ± 47.30 a | 84.50 ± 4.20 a | 81.14 ± 5.58 a | 0.96 ± 0.04 a | 72.94 ± 0.63 a | −14.88 ± 0.61 a | 42.45 ± 0.78 b | |
85 d | 295.80 ± 35.77 a | 84.57 ± 3.14 a | 81.22 ± 5.33 a | 0.96 ± 0.04 a | 72.81 ± 0.37 a | −14.25 ± 0.87 a | 42.78 ± 1.53 ab | ||
90 d | 284.13 ± 31.89 a | 83.47 ± 3.07 a | 78.89 ± 5.16 a | 0.94 ± 0.04 a | 72.52 ± 0.83 ab | −14.50 ± 0.80 a | 43.55 ± 1.07 ab | ||
95 d | 294.91 ± 30.04 a | 83.74 ± 2.68 a | 81.34 ± 2.78 a | 0.97 ± 0.04 a | 71.59 ± 0.58 b | −14.69 ± 0.59 a | 44.35 ± 0.91 a |
Fruit Bag Types | Years | Bagging Time | Chlorophyll a Content (mg·kg−1) | Chlorophyll b Content (mg·kg−1) | Total Chlorophyll Content (mg·kg−1) |
---|---|---|---|---|---|
Double-layer tricolor bags | 2021 | 50 d | 7.83 ± 0.68 b | 12.52 ± 1.43 a | 20.35 ± 1.98 a |
60 d | 7.89 ± 0.29 b | 11.62 ± 1.08 a | 19.50 ± 1.28 a | ||
70 d | 8.07 ± 0.35 b | 11.33 ± 1.00 a | 19.40 ± 1.25 a | ||
80 d | 8.68 ± 0.68 b | 11.30 ± 0.77 a | 19.98 ± 1.45 a | ||
90 d | 7.80 ± 0.25 b | 11.89 ± 0.76 a | 19.68 ± 1.00 a | ||
100 d | 10.12 ± 0.52 a | 12.18 ± 1.55 a | 22.30 ± 1.94 a | ||
115 d | 9.71 ± 0.40 a | 11.25 ± 0.59 a | 20.95 ± 0.97 a | ||
2022 | 80 d | 6.33 ± 0.73 b | 8.22 ± 1.05 b | 14.56 ± 1.78 b | |
85 d | 6.27 ± 0.28 b | 7.46 ± 0.22 b | 13.73 ± 0.49 b | ||
90 d | 6.83 ± 0.53 b | 9.99 ± 0.63 ab | 16.81 ± 1.16 b | ||
95 d | 8.03 ± 0.77 a | 13.17 ± 3.23 a | 21.2 ± 3.80 a | ||
Special bags | 2021 | 50 d | 12.70 ± 1.91 c | 14.84 ± 1.84 c | 27.53 ± 3.73 c |
60 d | 12.35 ± 1.25 c | 16.22 ± 1.26 c | 28.57 ± 0.18 c | ||
70 d | 12.44 ± 1.07 c | 17.35 ± 0.58 c | 29.79 ± 1.40 c | ||
80 d | 18.48 ± 1.19 a | 24.69 ± 2.52 b | 43.17 ± 1.38 b | ||
90 d | 19.38 ± 1.37 a | 29.72 ± 5.39 a | 49.10 ± 6.69 a | ||
100 d | 16.76 ± 1.54 ab | 15.52 ± 1.61 c | 32.28 ± 3.12 c | ||
115 d | 14.33 ± 0.27 bc | 13.18 ± 0.36 c | 27.51 ± 0.58 c | ||
2022 | 80 d | 9.93 ± 0.88 b | 11.74 ± 1.46 a | 21.66 ± 1.77 ab | |
85 d | 12.80 ± 0.29 a | 12.77 ± 0.79 a | 25.56 ± 1.00 a | ||
90 d | 12.95 ± 1.07 a | 13.07 ± 2.51 a | 26.02 ± 3.5 a | ||
95 d | 9.57 ± 0.13 b | 10.00 ± 1.73 a | 19.58 ± 1.84 b |
Years | Fruit Bag Types | Bagging Time | External Quality | Internal Quality | Comprehensive Score | Rank |
---|---|---|---|---|---|---|
2021 | Double-layer tricolor bags | 50 d | 0.303 | 0.091 | 0.394 | 14 |
60 d | 0.333 | 0.134 | 0.467 | 11 | ||
70 d | 0.321 | 0.131 | 0.453 | 12 | ||
80 d | 0.291 | 0.221 | 0.511 | 9 | ||
90 d | 0.285 | 0.249 | 0.534 | 8 | ||
100 d | 0.287 | 0.286 | 0.573 | 3 | ||
115 d | 0.248 | 0.292 | 0.540 | 6 | ||
Special bags | 50 d | 0.280 | 0.161 | 0.441 | 13 | |
60 d | 0.292 | 0.211 | 0.503 | 10 | ||
70 d | 0.312 | 0.256 | 0.568 | 4 | ||
80 d | 0.318 | 0.259 | 0.578 | 2 | ||
90 d | 0.354 | 0.296 | 0.651 | 1 | ||
100 d | 0.184 | 0.355 | 0.540 | 7 | ||
115 d | 0.127 | 0.413 | 0.540 | 5 | ||
2022 | Double-layer tricolor bags | 80 d | 0.328 | 0.001 | 0.329 | 8 |
85 d | 0.298 | 0.081 | 0.379 | 7 | ||
90 d | 0.256 | 0.150 | 0.406 | 6 | ||
95 d | 0.276 | 0.241 | 0.517 | 3 | ||
Special bags | 80 d | 0.232 | 0.245 | 0.477 | 5 | |
85 d | 0.275 | 0.223 | 0.498 | 4 | ||
90 d | 0.274 | 0.396 | 0.670 | 1 | ||
95 d | 0.125 | 0.397 | 0.522 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Feng, Y.; Wang, H.; Liu, X.; Zhao, Z. Effects of Different Pre-Harvest Bagging Times on Fruit Quality of Apple. Foods 2024, 13, 1243. https://doi.org/10.3390/foods13081243
Wang Z, Feng Y, Wang H, Liu X, Zhao Z. Effects of Different Pre-Harvest Bagging Times on Fruit Quality of Apple. Foods. 2024; 13(8):1243. https://doi.org/10.3390/foods13081243
Chicago/Turabian StyleWang, Zidun, Yuchen Feng, Hui Wang, Xiaojie Liu, and Zhengyang Zhao. 2024. "Effects of Different Pre-Harvest Bagging Times on Fruit Quality of Apple" Foods 13, no. 8: 1243. https://doi.org/10.3390/foods13081243
APA StyleWang, Z., Feng, Y., Wang, H., Liu, X., & Zhao, Z. (2024). Effects of Different Pre-Harvest Bagging Times on Fruit Quality of Apple. Foods, 13(8), 1243. https://doi.org/10.3390/foods13081243