Sesame Seeds: A Nutrient-Rich Superfood
Abstract
:1. Introduction
2. The Bioactive Compounds and Health Benefits of Sesame
2.1. Lignans
Lignans in Sesame | Name of Component | Molecular Structure | Quantity/Amount of Raw Sesame Seeds and Sesame Oil | Biological Characteristics | Mechanism | Reference |
---|---|---|---|---|---|---|
Oil-soluble lignans | Sesamin | C20H18O6 | Sesame seed: 0.77–9.3 mg/g Sesame oil: 6.20 mg/g | Antioxidant Properties |
| [50,56,60,61,62,63,64,65] |
Metabolic Health and Prevention of Diabetes |
| |||||
Cytotoxic Activity |
| |||||
Atherosclerosis |
| |||||
Sesamol | C7H6O3 | Sesame seed: 1.20 mg/g Sesame oil: 0.27–3.37 mg/g | Cardioprotective Properties |
| [66,67,68,69,70,71,72,73] | |
Antioxidant Activity |
| |||||
Anti-Inflammatory |
| |||||
Antiangiogenic |
| |||||
Apoptosis Induction |
| |||||
Epigenetic Regulation |
| |||||
Detoxification and Phase II Enzyme Induction |
| |||||
Sesamolin | C20H18O7 | Sesame seed: 4.50 mg/g Sesame oil: 2.45 mg/g | Neuroprotective Activity |
| [51,59,74,75,76] | |
Antileukemic Effects |
| |||||
Antimelanogenesis in Skin Cancer |
| |||||
Sesaminol | C20H18O7 | Sesame seed: 1.40 mg/g Sesame oil: 0.01 mg/g | Anticancer Effects |
| [77,78] | |
Detoxification Pathways |
| |||||
Preventing Parkinson’s Disease |
| |||||
Sesamolinol | C20H20O7 | Cardioprotective Effects |
| [23,79,80] | ||
Hormonal Modulation |
| |||||
Antimicrobial Properties |
| |||||
Pinoresinol | C20H22O6 | Sesame seed: 0.29–0.47 mg/g Sesame oil: - | Hypoglycemic agent |
| [31,81,82,83,84,85] | |
Hepatoprotective |
| |||||
Chemoprevention |
| |||||
Enterolignan Formation |
| |||||
Autophagy Induction |
| |||||
Interaction with Gut Microbiota |
| |||||
Glycosylated water-soluble lignans | Sesaminol Triglucoside (STG) | C38H48O22 | Sesame seed: 0.36–15.60 mg/g | Glucoside Hydrolysis |
| [86,87] |
Pinoresinol Triglucoside (PTG) | C34H42O18 | Not explicitly documented | Autophagy Induction | PTG induces autophagy in ovarian cancer cells (SKOV-3). This is associated with increased expression of LC3 II and Beclin and decreased expression of p62. | [84,88] | |
Mitochondrial Membrane Potential (MMP) Loss | It reduces the MMP of SKOV-3 cells, affecting their mitochondrial function. | |||||
Inhibition of Cell Invasion | It inhibits the invasion capacity of SKOV-3 cells. | |||||
Raf/MEK/ERK Signaling Pathway Inhibition | PTG concentration-dependently inhibits the expression of phospho-MEK and phospho-ERK, key signaling pathway components. | |||||
Tumor Growth Inhibition | In xenografted tumor models in mice, PTG significantly inhibits tumor growth, demonstrating its potential as an ovarian cancer treatment. | |||||
Sesaminol Monoglucoside (SMG) | C26H28O12 | Not explicitly documented | Antioxidant Activity |
| [5,89] | |
Anti-Inflammatory Effects | Modulating inflammatory pathways by inhibiting pro-inflammatory cytokines. | |||||
Cardiovascular Health | Contributing to cardiovascular health by reducing oxidative damage and inflammation. | |||||
Metabolic Regulation | It is impacting lipid metabolism and glucose homeostasis. | |||||
Cancer Prevention | Some studies suggest that SMG may have anticancer potential, although further research is needed. | |||||
Cell Signaling | Influencing cell signaling pathways related to cell growth and differentiation. | |||||
Pinoresinol Monoglucoside (PMG) | C26H32O11 | Not explicitly documented | Metabolism and Bioavailability | PMG would undergo metabolic processes, potentially in the digestive system or the liver, leading to the release of pinoresinol and glucose. The bioavailability of pinoresinol and its metabolites would influence their distribution and effects in the body. | [48,90] | |
Antioxidant Effects | scavenging free radicals and reducing oxidative stress in cells. | |||||
Impact on Lipid Metabolism | Modulating cholesterol levels and the promotion of cardiovascular health. | |||||
Pinoresinol Diglucoside (PDG) | C32H42O16 | Sesame seed: <5 to 232 mg/100 g Sesame oil: Not explicitly documented | Glucoside Hydrolysis | The glucoside structure of PDG may be hydrolyzed in vivo, leading to the release of pinoresinol. Enzymes often mediate this process, and the liberated pinoresinol can exert its biological effects. | [5,47,80] | |
Antioxidant and Cytoprotective Effects |
| |||||
Impact on Lipid Metabolism |
| |||||
Sesaminol Diglucoside (SDG) | C32H38O17 | Sesame seeds: 98 mg/100 g Not explicitly documented | Anti-Inflammatory Properties |
| [5,41,91] | |
Cellular Signaling Pathways |
|
2.1.1. Sesamol
2.1.2. Sesamin
2.1.3. Sesamolin
2.2. Tocopherols
Tocols in Sesame | Name of Component | Molecular Structure | Quantity/Amount of Raw Sesame Seeds and Sesame Oil | Biological Characteristics | Mechanism | Reference |
---|---|---|---|---|---|---|
Tocopherols | α-Tocopherol | C29H50O2 | Sesame seeds: 18.51–49.63 mg/100 g Sesame oil: 71.3 ± 6.4–432.3 ± 86.6 mg/kg | Antioxidant Action |
| [157,158,159,174] |
γ-Tocopherol | C28H48O2 | Sesame seeds: 169–577 mg/kg Sesmae oil: 329–1114 mg/L | Antioxidant properties | Guards against lipid oxidation. | [175] | |
Potential Cancer Prevention | Maintains cell integrity | |||||
Immune Support | Modulates gene expression | |||||
δ-Tocopherol | C27H46O2 | Sesame seeds: 0.1–1.5 mg/100 g Sesame oil: 5–10 mg/100 g | Antioxidant Properties |
| [29,167] | |
Health benefits |
| |||||
Tocotrienols | α-Tocotrienol | C29H44O2 | Sesame seeds: 0.134 mg/100 g Sesame oil: Not detected | Antioxidant Properties |
| [169] |
Gene Modulation |
| |||||
γ-Tocotrienol | C28H42O2 | Sesame seeds: 0.415 mg/100 g Sesame oil: Up to 20 mg/kg | Specific Properties |
| [157] | |
Neuroprotection |
|
2.3. Phytosterols
Phytosterols in Sesame | Molecular Structure | Quantity/Amount of Raw Sesame Seeds and Sesame Oil | Biological Characteristics | Mechanism | Reference |
---|---|---|---|---|---|
β-Sitosterol | C29H50O | Sesame seed: 3.35 mg/g Sesame oil: 2.63 mg/g | Antitumor Effects |
| [29,179,203,204,205] |
Anti-Inflammatory Properties |
| ||||
Antidiabetic |
| ||||
Ameliorative Effects on Prostatic Hyperplasia |
| ||||
Hepatoprotective |
| ||||
Campesterol | C28H48O | Sesame seed: 1.00 mg/g Sesame oil: 1.35 mg/g | Antioxidant Properties |
| [29,206,207] |
Cardiovascular Health |
| ||||
Cholesterol Regulation |
| ||||
Stigmasterol | C29H48O | Sesame seed: 0.37 mg/g Sesame oil: 0.47 mg/g | Antiproliferative Activity |
| [29,208] |
Mitochondrial Regulation and ROS Generation |
| ||||
Autophagy Induction |
| ||||
Sitostanol | C29H52O | Sesame oil: 0.04 mg/g | Mitochondrial Respiration |
| [29,184,209] |
Cholesterol Regulation |
| ||||
Campestanol | C28H50O | Sesame oil: 0.02 mg/g | Enzyme Inhibition |
| [187,210] |
Antiatherogenic Effects |
| ||||
∆5-avenasterol | C29H48O | Sesame oil: 0.82 mg/g | Neutralization Stoichiometry |
| [211,212] |
Antiviral Functions |
| ||||
Δ5-Stigmasterol | C29H48O | The specific amount was not detected | Antitumor Activity |
| [208,213] |
Neuroprotection Against Oxidative Stress |
| ||||
Δ7-avenasterol | C29H48O | The specific amount was not detected | Protection Against Leishmania |
| |
Improving Learning and Memory Ability |
| ||||
Potential Antioxidant Function |
| ||||
Δ7-Stigmastenol | C29H50O | The specific amount was not detected | Gene Expression Analysis |
| [197,214] |
Cholesterol Regulation |
|
2.4. Phytates
2.5. Polyunsaturated Fatty Acids
2.6. Short-Chain Peptides, Protein Hydrolysates, and Their Functional Properties
3. Processing Technology of Sesame
3.1. Heating Method
3.2. Mechanical Pressing
3.3. Aqueous Extraction
3.4. Aqueous Enzymatic Extraction
3.5. Microwave/Ultrasonic-Assisted Extraction
3.6. Irradiation
3.7. High Hydrostatic Pressure
3.8. Supercritical (Subcritical) Extraction
4. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABCA1 | Binding cassette transporter A1 |
ABTS | 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), radical cation |
ACC | Acetyl-CoA carboxylase |
ACE | Antioxidant capacity equivalent |
AD | Alzheimer’s disease |
ALT | Alanine transaminase |
AMPK | AMP-activated protein kinase |
ARE | Antioxidant response element |
AST | Aspartate transaminase |
Aβ | Amyloid-β |
BBB | Blood–brain barrier |
BCAAs | Branched-chain amino acids |
Bcl-2 | B-cell lymphoma 2 |
BDNF | Brain-derived neurotrophic factor |
BUN | Blood urea nitrogen |
CAT | Catalase |
C57BL/6J | Strain of mice used as a universal model for studying diet-induced obesity |
CD36 | Scavenger receptor involved in cholesterol uptake |
CDKs | Cyclin-dependent kinases |
CKD | In chronic kidney disease |
COX-2 | Cyclooxygenase-2 |
DHT | Dihydrotestosterone |
DNA | Deoxyribonucleic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl, radical |
ESRD | End-stage renal disease |
ERK1/2 | Extracellular signal-regulated kinase 1/2 |
ER | Endoplasmic reticulum |
FAO | Food and Agriculture Organization |
FAS | Fatty acid synthase |
FcεRI | The high-affinity receptor for the Fc region of immunoglobulin E |
FoxO | Forkhead box O |
GAE | Gallic acid equivalent |
GSH-Px | Glutathione peroxidase |
HDL-C | High-density lipoprotein cholesterol |
HepG2 | Human liver cell line |
HMG-CoA reductase | 3-hydroxy-3-methylglutaryl-CoA reductase |
HO-1 | Heme oxygenase-1 |
IgE | Immunoglobulin E |
IKKα | Kinase α |
IL-1 | Interleukin 1 |
IL-1β | Interleukin-1 beta |
IL-10 | Interleukin-10 |
IL-6 | Interleukin 6 |
iNOS | Nitric oxide synthase |
JNK | c-Jun N-terminal kinase |
LCAT | Lecithin:cholesterol acyltransferase |
LDL | Low-density lipoprotein |
LDL-C | Low-density lipoprotein cholesterol |
LOX | Lipoxygenase |
LPS | Lipopolysaccharides |
LXRα | Liver X receptor alpha |
MAPK | p38 mitogen-activated protein kinase |
MDA | Malondialdehyde |
MMP | Mitochondrial membrane potential |
mTOR | Mechanistic target of rapamycin |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide |
NAFLD | Non-alcoholic fatty liver disease |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
NSCLC | Non-small cell lung cancer |
p53 | Tumor protein, regulatory protein that is often mutated in human cancers |
PI3K-PKB | Signaling pathway |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
PUFAs | Polyunsaturated fatty acids |
PXR | Pregnane X receptor |
ROS | Reactive oxygen species |
SAMP8 | Senescence-accelerated mouse-prone 8 |
SCFAs | Short-chain fatty acids |
SOD | Superoxide dismutase |
SR-A | Scavenger receptor class A |
SR-BI | Scavenger receptor class B type I |
SREBP-1c | Sterol regulatory element-binding protein 1c |
SIRT1 | Sirtuin 1 |
TLR4 | S gene-encoding Toll-like receptor 4 in humans |
TNF-α | Tumor necrosis factor-alpha |
UVB | Ultraviolet B |
References
- Anilakumar, K.R.; Pal, A.; Khanum, F.; Bawa, A.S. Nutritional, medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. Agric. Conspec. Sci. 2010, 75, 159–168. [Google Scholar]
- Nagar, P.; Agrawal, M.A.K. Sesame (Sesamum indicum L.) seed as a functional food: A review. Pharma Innov. 2022, 519, 507–565. [Google Scholar]
- Yaseen, G.; Ahmad, M.; Zafar, M.; Akram, A.; Sultana, S.; Ahmed, S.N.; Kilic, O. Sesame (Sesamum indicum L.). In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 253–269. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Zitoun, A. Sesame (Sesamum indicum L.) seeds in food, nutrition, and health. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 1029–1036. [Google Scholar] [CrossRef]
- Sharma, L.; Saini, C.S.; Punia, S.; Nain, V.; Sandhu, K.S. Sesame (Sesamum indicum) seed. In Oilseeds: Health Attributes and Food Applications; Tanwar, B., Goyal, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 305–330. [Google Scholar]
- Shah, N. Sesamum indicum (Sesame or Til): Seeds and Oil-A Historical and Scientific Evaluation from Indian Perspective. Asian Agri-History 2016, 20, 3–19. [Google Scholar]
- FAO. Special Report 2022 FAO Crop and Food Supply Assesment Mission (CFSAM) to the Republic of the Sudan; FAO: Rome, Italy, 2022. [Google Scholar]
- FAOSTAT. Statistical Data on Crops, Sesame Seeds, Area, Production Quantity of Tanzania, Africa and the World; FAOSTAT: Rome, Italy, 2022. [Google Scholar]
- Lukurugu, G.A.; Nzunda, J.; Kidunda, B.R.; Chilala, R.; Ngamba, Z.S.; Minja, A.; Kapinga, F.A. Sesame production constraints, variety traits preference in the Southeastern Tanzania: Implication for genetic improvement. J. Agric. Food Res. 2023, 14, 100665. [Google Scholar] [CrossRef]
- Weldemichael, M.Y.; Gebremedhn, H.M. Research advances and prospects of molecular markers in sesame: A review. Plant Biotechnol. Rep. 2023, 17, 585–603. [Google Scholar] [CrossRef]
- Rahman, A.; Akbar, D.; Trotter, T.; Thomson, M.; Timilsina, S.; Bhattarai, S. The prospect of developing sesame industry in Northern Australia through analysing market opportunity. Aust. J. Reg. Stud. 2020, 26, 347–378. [Google Scholar]
- Ma, X.; Wang, Z.; Zheng, C.; Liu, C. A comprehensive review of bioactive compounds and processing technology of sesame seed. Oil Crop Sci. 2022, 7, 88–94. [Google Scholar] [CrossRef]
- Torricelli, M.; Pierboni, E.; Rondini, C.; Altissimi, S.; Haouet, N. Sesame, pistachio, and macadamia nut: Development and validation of new allergenic systems for fast real-time PCR application. Foods 2020, 9, 1085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Langham, D.R.; Miao, H. Economic and academic importance of sesame. In The Sesame Genome. Compendium of Plant Genomes; Miao, H., Zhang, H., Kole, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Myint, D.; Gilani, S.A.; Kawase, M.; Watanabe, K.N. Sustainable sesame (Sesamum indicum L.) production through improved technology: An overview of production, challenges, and opportunities in Myanmar. Sustainability 2020, 12, 3515. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; AlJuhaimi, F.; Özcan, M.M.; Ghafoor, K.; Şimşek, Ş.; Babiker, E.E.; Osman, M.A.; Gassem, M.A.; Salih, H.A. Evaluation of chemical properties, amino acid contents and fatty acid compositions of sesame seed provided from different locations. J. Oleo Sci. 2020, 69, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, Y.; Hüseyin, G. Sesame Seed Protein: Amino Acid, Functional, and Physicochemical Profiles. Foods Raw Mater. 2023, 11, 72–83. [Google Scholar] [CrossRef]
- Agidew, M.G.; Dubale, A.A.; Atlabachew, M.; Abebe, W. Fatty acid composition, total phenolic contents and antioxidant activity of white and black sesame seed varieties from different localities of Ethiopia. Chem. Biol. Technol. Agric. 2021, 8, 1–10. [Google Scholar] [CrossRef]
- Wei, P.; Zhao, F.; Wang, Z.; Wang, Q.; Chai, X.; Hou, G.; Meng, Q. Sesame (Sesamum indicum L.): A comprehensive review of nutritional value, phytochemical composition, health benefits, development of food, and industrial applications. Nutrients 2022, 14, 4079. [Google Scholar] [CrossRef]
- Langyan, S.; Yadava, P.; Sharma, S.; Gupta, N.C.; Bansal, R.; Yadav, R.; Kumar, A. Food and nutraceutical functions of Sesame oil: An underutilized crop for nutritional and health benefits. Food Chem. 2022, 389, 132990. [Google Scholar] [CrossRef] [PubMed]
- Jayaraj, P.; Narasimhulu, C.A.; Rajagopalan, S.; Parthasarathy, S.; Desikan, R. Sesamol: A powerful functional food ingredient from sesame oil for cardioprotection. Food Funct. 2020, 11, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Chandra, P.; Sachan, N. Sesame seed in controlling human health and nutrition. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2020; pp. 183–210. [Google Scholar] [CrossRef]
- Singletary, K.W. Sesame: Potential Health Benefits. Nutr. Today 2022, 57, 271–287. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghosh, P. Benefits of dietary sesame seed and flaxseed to strengthen immune system during COVID-19 pandemic and prevent associated comorbidities related health risks. Ann. Phytomed. 2020, 9, 50–61. [Google Scholar] [CrossRef]
- Hsu, E.; Parthasarathy, S. Anti-inflammatory and antioxidant effects of sesame oil on atherosclerosis: A descriptive literature review. Cureus 2017, 9, e1438. [Google Scholar] [CrossRef]
- Murata, J.; Ono, E.; Yoroizuka, S.; Toyonaga, H.; Shiraishi, A.; Mori, S.; Tera, M.; Azuma, T.; Nagano, A.J.; Nakayasu, M. Oxidative rearrangement of (+)-sesamin by CYP92B14 co-generates twin dietary lignans in sesame. Nat. Commun. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Hu, W.; Hu, Z.; Guan, Y.; Zhang, R. A review of nutritional implications of bioactive compounds of Ginger (Zingiber officinale Roscoe), their biological activities and nano-formulations. Ital. J. Food Sci. 2022, 34, 1–12. [Google Scholar] [CrossRef]
- Wani, S.A.; Naik, H.; Wagay, J.A.; Ganie, N.A.; Mulla, M.Z.; Dar, B. Mentha: A review on its bioactive compounds and potential health benefits. Qual. Assur. Saf. Crops Foods 2022, 14, 154–168. [Google Scholar] [CrossRef]
- Pathak, N.; Bhaduri, A.; Rai, A.K. Sesame: Bioactive compounds and health benefits. In Bioactive Molecules in Food; Springer: Berlin/Heidelberg, Germany, 2019; pp. 181–200. [Google Scholar] [CrossRef]
- Sallam, K.I.; Abd-Elghany, S.M.; Imre, K.; Morar, A.; Herman, V.; Hussein, M.A.; Mahros, M.A. Ensuring safety and improving keeping quality of meatballs by addition of sesame oil and sesamol as natural antimicrobial and antioxidant agents. Food Microbiol. 2021, 99, 103834. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Luo, J.; Nawaz, M.A.; Stockmann, R.; Buckow, R.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Phytochemistry, Bioaccessibility, and Bioactivities of Sesame Seeds: An Overview. Food Rev. Int. 2023, 40, 1–27. [Google Scholar] [CrossRef]
- Esmaeilzadeh Kenari, R.; Razavi, R. Phenolic profile and antioxidant activity of free/bound phenolic compounds of sesame and properties of encapsulated nanoparticles in different wall materials. Food Sci. Nutr. Today 2022, 10, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Geyik, Ö.G.; Tekin-Cakmak, Z.H.; Shamanin, V.P.; Karasu, S.; Pototskaya, I.V.; Shepelev, S.S.; Chursin, A.S.; Morgounov, A.I.; Yaman, M.; Sagdic, O. Effects of phenolic compounds of colored wheats on colorectal cancer cell lines. Qual. Assur. Saf. Crops Foods 2023, 15, 21–31. [Google Scholar] [CrossRef]
- Mohamadi, N.; Meraghni, M.; Meradci, F.; Necib, A.; El Arbi, M.; Elhadef, K.; Smaoui, S.; Bouaziz, M. Investigation and quantification of the potential antioxidant, inflammatory, and antibacterial bioactive molecules of the extracts of Algerian black and green table olive brine. Qual. Assur. Saf. Crops Foods 2023, 15, 92–106. [Google Scholar] [CrossRef]
- Alzubaidi, A.N.; Sekoulopoulos, S.; Pham, J.; Walter, V.; Fuletra, J.G.; Raman, J.D. Incidence and Distribution of New Renal Cell Carcinoma Cases: 27-Year Trends from a Statewide Cancer Registry. J. Kidney Cancer VHL 2022, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Gideon, M.; Rajendran, R.; Mathew, G.; Nair, K. Advancing Treatment Frontiers: Radiofrequency Ablation for Small Renal Mass—Intermediate-Term Results. J. Kidney Cancer VHL 2023, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Lv, J.; Han, T.; Kan, J.; Jin, C.-H.; Liu, J. Hepatic antioxidant and gut ecological modulation properties of long-term intake of tea (Camellia sinensis L.) flower extract in vivo. Qual. Assur. Saf. Crops Foods 2023, 15, 11–21. [Google Scholar] [CrossRef]
- Jurasova, L.; Jurikova, T.; Baron, M.; Sochor, J. Content of selected polyphenolic substances in parts of grapevine. Ital. J. Food Sci. 2023, 35, 17–43. [Google Scholar] [CrossRef]
- Kaşıkçı, M.B.; Bağdatlıoğlu, N. Assessment of the bioaccessibility of phenolic compounds and antioxidant activity in raw and pickled white cabbage and gherkins. Ital. J. Food Sci. 2022, 34, 1–10. [Google Scholar] [CrossRef]
- Zeb, A.; Muhammad, B.; Ullah, F. Characterization of sesame (Sesamum indicum L.) seed oil from Pakistan for phenolic composition, quality characteristics and potential beneficial properties. J. Food Meas. Charact. 2017, 11, 1362–1369. [Google Scholar] [CrossRef]
- Ramos-Sotelo, H.; Figueroa-Pérez, M.G. Use of salicylic acid during cultivation of plants as a strategy to improve its metabolite profile and beneficial health effects. Ital. J. Food Sci. 2023, 35, 79–90. [Google Scholar] [CrossRef]
- Zhao, C.-C.; Zhang, M.; Peng, J.-F.; Ma, Y.-Y.; Zhao, X.-N.; Wen, Z.-Y.; Wang, S.-S.; Shen, A.-L.; Shi, H. Polygonatum polysaccharide attenuates inflammation through inhibiting NLRP3 inflammasome in diabetic cardiomyopathy rats. Ital. J. Food Sci. 2023, 35, 10–18. [Google Scholar] [CrossRef]
- Mekky, R.H.; Abdel-Sattar, E.; Segura-Carretero, A.; Contreras, M.d.M. Phenolic compounds from sesame cake and antioxidant activity: A new insight for agri-food residues’ significance for sustainable development. Foods 2019, 8, 432. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Lv, Y.; Lu, C.; Zhang, B.; Fu, Z.; Huang, Y. Mechanism of Rhizoma Coptidis in epilepsy with network pharmacology. Allergol. Immunopathol. 2022, 50, 138–150. [Google Scholar] [CrossRef]
- Haworth, R. Constituents of natural phenolic resins. Nature 1941, 147, 255–257. [Google Scholar] [CrossRef]
- Aregay, M.G.; Kang, M.; Kim, B.-S.; Lee, Y.-W. Recovery of water-soluble bioactive components from defatted sesame meal using carbon dioxide assisted hydrothermal process. J. Supercrit. Fluids 2021, 168, 105069. [Google Scholar] [CrossRef]
- Moazzami, A.A.; Andersson, R.E.; Kamal-Eldin, A. HPLC analysis of sesaminol glucosides in sesame seeds. J. Agric. Food Chem. 2006, 54, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Andargie, M.; Vinas, M.; Rathgeb, A.; Möller, E.; Karlovsky, P. Lignans of sesame (Sesamum indicum L.): A comprehensive review. Molecules 2021, 26, 883. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Aligiannis, N.; Mitakou, S.; Skaltsounis, L. Recovery of sesamin, sesamolin, and minor lignans from sesame oil using solid support-free liquid–liquid extraction and chromatography techniques and evaluation of their enzymatic inhibition properties. Front. Pharmacol. 2019, 10, 723. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Karrar, E.; Liu, R.; Chang, M.; Wang, X. Comparative effects of sesame lignans (sesamin, sesamolin, and sesamol) on oxidative stress and lipid metabolism in steatosis HepG2 cells. J. Food Biochem. 2022, 46, e14180. [Google Scholar] [CrossRef] [PubMed]
- Jan, K.-C.; Wang, T.-Y.; Hwang, L.S.; Gavahian, M. Biotransformation of sesaminol triglycoside by intestinal microflora of swine supplemented with probiotic or antibiotic diet. Qual. Assur. Saf. Crops Foods 2022, 14, 19–29. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kim, M.-Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef] [PubMed]
- Plaha, N.S.; Awasthi, S.; Sharma, A.; Kaushik, N. Distribution, biosynthesis and therapeutic potential of lignans. 3 Biotech 2022, 12, 255. [Google Scholar] [CrossRef]
- Egawa, K.; Horii, Y.; Misonou, Y.; Yamasaki, I.; Takemoto, D.; Yoshiko, O.; Tomohiro, R.; Shibata, H.; Nagai, K. Sesame lignans increase sympathetic nerve activity and blood flow in rat skeletal muscles. Physiol. Res. 2020, 69, 253. [Google Scholar] [CrossRef] [PubMed]
- Shimoyoshi, S.; Takemoto, D.; Ono, Y.; Kitagawa, Y.; Shibata, H.; Tomono, S.; Unno, K.; Wakabayashi, K. Sesame lignans suppress age-related cognitive decline in senescence-accelerated mice. Nutrients 2019, 11, 1582. [Google Scholar] [CrossRef] [PubMed]
- Dossou, S.S.K.; XU, F.-T.; Dossa, K.; Rong, Z.; Zhao, Y.-Z.; Wang, L.-H. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): A comprehensive review and future prospects. J. Integr. Agric. 2022, 22, 14–30. [Google Scholar] [CrossRef]
- Anju, V.; Busi, S.; Ranganathan, S.; Ampasala, D.R.; Kumar, S.; Suchiang, K.; Kumavath, R.; Dyavaiah, M. Sesamin and sesamolin rescues Caenorhabditis elegans from Pseudomonas aeruginosa infection through the attenuation of quorum sensing regulated virulence factors. Microb. Pathog. 2021, 155, 104912. [Google Scholar] [CrossRef]
- Oikawa, D.; Yamashita, S.; Takahashi, S.; Waki, T.; Kikuchi, K.; Abe, T.; Katayama, T.; Nakayama, T. (+)-Sesamin, a sesame lignan, is a potent inhibitor of gut bacterial tryptophan indole-lyase that is a key enzyme in chronic kidney disease pathogenesis. Biochem. Biophys. Res. Commun. 2022, 590, 158–162. [Google Scholar] [CrossRef]
- Rosalina, R.; Weerapreeyakul, N. An Insight into sesamolin: Physicochemical properties, pharmacological activities, and future research prospects. Molecules 2021, 26, 5849. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, E.; Emami, S.A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Effects of sesame (Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci. Nutr. 2023, 22, 3729–3757. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.; Jin, S.W.; Lee, G.H.; Park, J.S.; Kim, J.Y.; Thai, T.N.; Han, E.H.; Jeong, H.G. Sesamin induces endothelial nitric oxide synthase activation via transient receptor potential vanilloid type 1. J. Agric. Food Chem. 2020, 68, 3474–3484. [Google Scholar] [CrossRef] [PubMed]
- Dalibalta, S.; Majdalawieh, A.F.; Manjikian, H. Health benefits of sesamin on cardiovascular disease and its associated risk factors. Saudi Pharm. J. 2020, 28, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Wanachewin, O.; Pothacharoen, P.; Kongtawelert, P.; Phitak, T. Inhibitory effects of sesamin on human osteoclastogenesis. Arch. Pharm. Res. 2017, 40, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Keratibumrungpong, T.; Srisuthtayanont, W.; Wanachewin, O.; Klangjorhor, J.; Phitak, T.; Pothacharoen, P.; Shwe, T.H.; Kongtawelert, P. Sesamin Attenuates VEGFA-Induced Angiogenesis via Inhibition of Src and FAK Signaling in Chick Chorioallantoic Membrane Model and Human Endothelial EA. hy926 Cells. Biomedicines 2023, 11, 188. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, S.; Liu, Y.; Deng, P.; Huang, J.; He, G. Sesamin induces melanogenesis by microphthalmia-associated transcription factor and tyrosinase up-regulation via cAMP signaling pathway. Acta Biochim. Biophys. Sin. 2011, 43, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Bosebabu, B.; Cheruku, S.P.; Chamallamudi, M.R.; Nampoothiri, M.; Shenoy, R.R.; Nandakumar, K.; Parihar, V.K.; Kumar, N. An appraisal of current pharmacological perspectives of sesamol: A review. Mini Rev. Med. Chem. 2020, 20, 988–1000. [Google Scholar] [CrossRef]
- Gupta, B.; Dalal, P.; Rao, R. Cyclodextrin decorated nanosponges of sesamol: Antioxidant, anti-tyrosinase and photostability assessment. Food Biosci. 2021, 42, 101098. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hemavathy, J.; Gopala Krishna, A. Development of a rapid method for determination of lignans content in sesame oil. J. Food Sci. Technol. 2015, 52, 521–527. [Google Scholar] [CrossRef]
- Ren, B.; Yuan, T.; Zhang, X.; Wang, L.; Pan, J.; Liu, Y.; Zhao, B.; Zhao, W.; Liu, Z.; Liu, X. Protective effects of sesamol on systemic inflammation and cognitive impairment in aging mice. J. Agric. Food Chem. 2020, 68, 3099–3111. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.-Y.; Chien, S.-P.; Hsu, D.-Z.; Liu, M.-Y. Protective effect of sesamol on the pulmonary inflammatory response and lung injury in endotoxemic rats. Food Chem. Toxicol. 2010, 48, 1821–1826. [Google Scholar] [CrossRef]
- Nutakki, M.; Murhekar, K.V.; Sundersingh, S.; Raja, A. A Rare Site of Metachronous Metastases from Renal Cell Carcinoma. J. Kidney Cancer VHL 2024, 11, 1. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Mansour, Z.R. Sesamol, a major lignan in sesame seeds (Sesamum indicum): Anti-cancer properties and mechanisms of action. Eur. J. Pharmacol. 2019, 855, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Bajaj, P.; Singh, B.; Paul, K.; Sharma, P.; Mehra, S.; Kaur, P.; Jasrotia, S.; Kumar, P.; Singh, V. Sesamol as a potent anticancer compound: From chemistry to cellular interactions. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Lee, J.K. Therapeutic effects of sesamolin on leukemia induced by WEHI-3B in model mice. Appl. Biol. Chem. 2021, 64, 1–12. [Google Scholar] [CrossRef]
- Li, Q.-Z.; Zuo, Z.-W.; Liu, Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit. Rev. Food Sci. Nutr. 2023, 63, 12043–12056. [Google Scholar] [CrossRef] [PubMed]
- Divakaran, S.J.; Srivastava, S.; Jahagirdar, A.; Rajendran, R.; Sukhdeo, S.V.; Rajakumari, S. Sesaminol induces brown and beige adipocyte formation through suppression of myogenic program. FASEB J. 2020, 34, 6854–6870. [Google Scholar] [CrossRef] [PubMed]
- Kaji, H.; Matsui-Yuasa, I.; Matsumoto, K.; Omura, A.; Kiyomoto, K.; Kojima-Yuasa, A. Sesaminol prevents Parkinson’s disease by activating the Nrf2-ARE signaling pathway. Heliyon 2020, 6, e05342. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, R.; Lu, X.; Jia, C.; Sun, Q.; Huang, J.; Wei, S.; Ma, L. Enzymatic preparation and structure-activity relationship of sesaminol. J. Oleo Sci. 2021, 70, 1261–1274. [Google Scholar] [CrossRef] [PubMed]
- Osawa, T.; Nagata, M.; Namiki, M.; Fukuda, Y. Sesamolinol, a novel antioxidant isolated from sesame seeds. Agric. Biol. Chem. 1985, 49, 3351–3352. [Google Scholar] [CrossRef]
- Moazzami, A.A.; Andersson, R.E.; Kamal-Eldin, A. Characterization and analysis of sesamolinol diglucoside in sesame seeds. Biosci. Biotechnol. Biochem. 2006, 70, 1478–1481. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.M. Specialty oils: Functional and nutraceutical properties. In Functional Dietary Lipids; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–101. [Google Scholar] [CrossRef]
- Smeds, A.I.; Eklund, P.C.; Sjöholm, R.E.; Willför, S.M.; Nishibe, S.; Deyama, T.; Holmbom, B.R. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J. Agric. Food Chem. 2007, 55, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Kim, J.-K.; Choi, J.-H.; Jung, J.-Y.; Oh, W.-Y.; Kim, D.C.; Lee, H.S.; Kim, Y.S.; Kang, S.S.; Lee, S.-H. Hepatoprotective effect of pinoresinol on carbon tetrachloride–induced hepatic damage in mice. J. Pharmacol. Sci. 2010, 112, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, C.; Liu, L.; Yang, B.; Zhang, Y. Structure identification and fermentation characteristics of pinoresinol diglucoside produced by Phomopsis sp. isolated from Eucommia ulmoides Oliv. Appl. Microbiol. Biotechnol. 2012, 93, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Fu, Y.L.; Zhang, Q.H.; Zhang, C.; Chen, Y. Inhibition of in vitro and in vivo ovarian cancer cell growth by pinoresinol occurs by way of inducing autophagy, inhibition of cell invasion, loss of mitochondrial membrane potential and inhibition Ras/MEK/ERK signalling pathway. JBUON 2019, 24, 709–714. [Google Scholar] [PubMed]
- Nair, A.; Kuwahara, A.; Nagase, A.; Yamaguchi, H.; Yamazaki, T.; Hosoya, M.; Omura, A.; Kiyomoto, K.; Yamaguchi, M.-A.; Shimoyama, T. Purification, gene cloning, and biochemical characterization of a β-glucosidase capable of hydrolyzing sesaminol triglucoside from Paenibacillus sp. KB0549. PLoS ONE 2013, 8, e60538. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, X.; Sun, Y.; Su, D.; Sun, Y.; Hu, B.; Zeng, X. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. J. Agric. Food Chem. 2013, 61, 1868–1877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, J.; Gao, Z.; Yangwu, R.; Jiang, H.; Che, J.; Liu, Y. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components. Appl. Microbiol. Biotechnol. 2015, 99, 4629–4643. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Miao, H.; Ju, M.; Li, C.; Cao, H.; Zhang, H. Nutraceutomics of the Ancient Oilseed Crop Sesame (Sesamum indicum L.). In Compendium of Crop Genome Designing for Nutraceuticals; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 471–501. [Google Scholar] [CrossRef]
- Ryu, S.-N.; Kim, K.-S.; Bang, J.-K.; Lee, B.-H. Quantitative determination of sesaminol glucosides in sesame seed. Korean J. Crop Sci. 1998, 43, 209–213. [Google Scholar]
- Corso, M.P.; Fagundes-Klen, M.R.; Silva, E.A.; Cardozo Filho, L.; Santos, J.N.; Freitas, L.S.; Dariva, C. Extraction of sesame seed (Sesamun indicum L.) oil using compressed propane and supercritical carbon dioxide. J. Supercrit. Fluids 2010, 52, 56–61. [Google Scholar] [CrossRef]
- Castro-González, L.M.; Alvarez-Idaboy, J.R.L.; Galano, A. Computationally designed sesamol derivatives proposed as potent antioxidants. ACS Omega 2020, 5, 9566–9575. [Google Scholar] [CrossRef] [PubMed]
- Budowski, P.; Sesame oil. III. Antioxidant properties of sesamol. JAOCS J. Am. Oil Chem. Soc. 1950, 27, 264–267. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Y.; Qiao, Q.; Zhao, T.; Zhang, W.; Ren, B.; Liu, Q.; Liu, X. Sesamol ameliorates high-fat and high-fructose induced cognitive defects via improving insulin signaling disruption in the central nervous system. Food Funct 2017, 8, 710–719. [Google Scholar] [CrossRef] [PubMed]
- Beegum, P.S.; Pandiselvam, R.; Ramesh, S.; Thube, S.H.; Pandian, T.P.; Khanashyam, A.C.; Manikantan, M.; Hebbar, K. A critical appraisal on the antimicrobial, oral protective, and anti-diabetic functions of coconut and its derivatives. Qual. Assur. Saf. Crops Foods 2022, 14, 86–100. [Google Scholar] [CrossRef]
- Thushara, R.; Hemshekhar, M.; Sunitha, K.; Kumar, M.; Naveen, S.; Kemparaju, K.; Girish, K. Sesamol induces apoptosis in human platelets via reactive oxygen species-mediated mitochondrial damage. Biochimie 2013, 95, 2060–2068. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Tsai, P.-H.; Tseng, K.-F.; Chen, F.-Y.; Yang, W.-C.; Shen, M.-Y. Sesamol ameliorates renal injury-mediated atherosclerosis via inhibition of oxidative stress/IKKα/p53. Antioxidants 2021, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wen, X.; Tang, M.; Peng, X.; Sheng, Q.; Liu, P. Gambogenic acid protects against high glucose-induced damage of renal tubular epithelial cells by inhibiting pyroptosis through regulating the AMPK–TXNIP pathway. Qual. Assur. Saf. Crops Foods 2022, 14, 40–46. [Google Scholar] [CrossRef]
- Ariafar, A.; Ahmed, F.; Khorshidi, A.; Torabi-Nezhad, S.; Hosseini, S.H. Inflammatory Myofibroblastic Tumor of the Right Kidney Mimicking a Locally Advanced Renal Carcinoma: A Case Report. J. Kidney Cancer VHL 2022, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Khaladkar, S.M.; Parripati, S.S.V.K.; Koganti, D.; Dhirawani, S.; Agarwal, U. Renal Cell Carcinoma Arising from Isthmus of Horseshoe K. J. Kidney Cancer VHL 2023, 10, 1. [Google Scholar] [CrossRef]
- Restrepo, J.C.Á.; Millan, D.A.C.; Sabogal, C.A.R.; Bernal, A.F.P.; Donoso, W.D. New trends and evidence for the management of renal angiomyolipoma: A comprehensive narrative review of the literature. J. Kidney Cancer VHL 2022, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Yan, H.-R.; Wang, B.; Liu, B.-C. Macrophage heterogeneity in kidney injury and fibrosis. Front. Immunol. 2021, 12, 681748. [Google Scholar] [CrossRef] [PubMed]
- Larkin, K.; Chua, K.J.; Doppalapudi, S.K.; Smith, C.; Sadimin, E.; Fitzhugh, V.A.; Singer, E.A. Inflammatory Hibernoma of the Renal Hilum Mimicking a Renal Pelvis Tumor. J. Kidney Cancer VHL 2022, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xiao, L.; Cheng, G.; He, J.; Yin, C.; Wang, L.; Wang, Q.; Li, L.; Wei, B.; Weng, Y. Self-maintaining macrophages within the kidney contribute to salt and water balance by modulating kidney sympathetic nerve activity. Kidney Int. 2023, 104, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Drobner, J.; Portal, D.; Runcie, K.; Yang, Y.; Singer, E.A. Systemic Treatment for Advanced and Metastatic Non-Clear Cell Renal Cell Carcinoma: Examining Modern Therapeutic Strategies for a Notoriously Challenging Malignancy. J. Kidney Cancer VHL 2023, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Kong, S.; Ni, W.; Lu, Y.; Li, J.; Huang, Y.; Chen, J.; Lin, K.; Li, Y.; Ke, J. Association of the Systemic Immune-Inflammation Index with Outcomes in Acute Coronary Syndrome Patients with Chronic Kidney Disease. J. Inflamm. Res. 2023, 16, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Kusmartsev, S.; Kwenda, E.; Dominguez-Gutierrez, P.R.; Crispen, P.L.; O’Malley, P. High levels of PD-L1+ and HYAL2+ myeloid-derived suppressor cells in renal cell carcinoma. J. Kidney Cancer VHL 2022, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Fu, P.; Ma, L. Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct. Target Ther. 2023, 8, 129. [Google Scholar] [CrossRef]
- Karayil, V.; Bhaskarashenoy, M.; Sukumaran, G. Leiomyoma of Kidney. J. Kidney Cancer VHL 2023, 10, 29. [Google Scholar] [CrossRef]
- Ramya, N.; Kanchan, M.; Anand, R.; Shirley, S. A Case Report: Mucinous Tubular and Spindle Cell Carcinoma of Kidney with Spindle Cell Predominance Mimicking Mesenchymal Tumour. J. Kidney Cancer VHL 2022, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Wang, S.; Zhou, P.; Ding, F. New insights into immune cell diversity in acute kidney injury. Cell. Mol. Immunol. 2023, 20, 680–682. [Google Scholar] [CrossRef] [PubMed]
- Mitsogiannis, I.C.; Mitsogianni, M.; Papathanassiou, M.; Anagnostou, M.; Tamposis, I.; Mitrakas, L.; Samara, M.; Tzortzis, V.; Vlachostergios, P.J. Current Options for Second-Line Systemic Therapy in Metastatic Renal Cell Carcinoma. J. Kidney Cancer VHL 2022, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Hou, Y.; Cai, A.; Xu, Y.; Yang, W.; Huang, M.; Mou, S. An integrated co-expression network analysis reveals novel genetic biomarkers for immune cell infiltration in chronic kidney disease. Front. Immunol. 2023, 14, 1129524. [Google Scholar] [CrossRef] [PubMed]
- Tseng, K.-F.; Tsai, P.-H.; Wang, J.-S.; Chen, F.-Y.; Shen, M.-Y. Sesamol Attenuates renal inflammation and arrests reactive-oxygen-species-mediated IL-1β secretion via the HO-1-induced inhibition of the IKKα/NFκB pathway in vivo and in vitro. Antioxidants 2022, 11, 2461. [Google Scholar] [CrossRef] [PubMed]
- Schwertner, H.A.; Rios, D.C. Analysis of sesamin, asarinin, and sesamolin by HPLC with photodiode and fluorescent detection and by GC/MS: Application to sesame oil and serum samples. JAOCS J. Am. Oil Chem. Soc. 2012, 89, 1943–1950. [Google Scholar] [CrossRef]
- Wang, M.; Liu, P.; Kong, L.; Xu, N.; Lei, H. Promotive effects of sesamin on proliferation and adhesion of intestinal probiotics and its mechanism of action. Food Chem. Toxicol. 2021, 149, 112049. [Google Scholar] [CrossRef] [PubMed]
- Tsiplakou, E.; Mitsiopoulou, C.; Karaiskou, C.; Simoni, M.; Pappas, A.C.; Righi, F.; Sotirakoglou, K.; Labrou, N.E. Sesame meal, vitamin E and selenium influence goats’ antioxidant status. Antioxidants 2021, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Yousef, S.M.; Abu-Yousef, I.A.; Nasrallah, G.K. Immunomodulatory and anti-inflammatory effects of sesamin: Mechanisms of action and future directions. Crit. Rev. Food Sci. Nutr. 2022, 62, 5081–5112. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zeng, L.; Jiang, G.; Liu, Q. Mechanism of the Protective Effect of Sesamin on Sepsis-Induced Acute Lung Injury. Curr. Top Nutraceutical Res. 2021, 19, 211. [Google Scholar] [CrossRef]
- Cai, J.; Tian, X.; Ren, J.; Lu, S.; Guo, J. Synergistic Effect of Sesamin and γ-Tocotrienol on Promoting Osteoblast Differentiation via AMPK Signaling. Nat. Prod. Commun. 2022, 17, 1934578X221074844. [Google Scholar] [CrossRef]
- Farajbakhsh, A.; Mazloomi, S.M.; Mazidi, M.; Rezaie, P.; Akbarzadeh, M.; Ahmad, S.P.; Ferns, G.; Ofori-Asenso, R.; Babajafari, S. Sesame oil and vitamin E co-administration may improve cardiometabolic risk factors in patients with metabolic syndrome: A randomized clinical trial. Eur. J. Clin. Nutr. 2019, 73, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, F.; Lin, Y.; Li, L.; Chen, M.; Ni, L. A Comprehensive Review on Distribution, Pharmacological Properties, and Mechanisms of Action of Sesamin. J. Chem. 2022, 2022, 4236525. [Google Scholar] [CrossRef]
- Watanabe, H.; Yamaori, S.; Kamijo, S.; Aikawa, K.; Ohmori, S. In vitro inhibitory effects of sesamin on CYP4F2 activity. Biol. Pharm. Bull. 2020, 43, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Peñalvo, J.L.; Hopia, A.; Adlercreutz, H. Effect of sesamin on serum cholesterol and triglycerides levels in LDL receptor-deficient mice. Eur. J. Nutr. 2006, 45, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Udomruk, S.; Kaewmool, C.; Pothacharoen, P.; Phitak, T.; Kongtawelert, P. Sesamin suppresses LPS-induced microglial activation via regulation of TLR4 expression. J. Funct. Foods 2018, 49, 32–43. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, C.; Wu, H.; Sheng, L.; Su, Y.; Zhang, X.; Luan, H.; Sun, G.; Sun, X.; Tian, Y. Anti-hyperlipidemic effects and potential mechanisms of action of the caffeoylquinic acid-rich Pandanus tectorius fruit extract in hamsters fed a high fat-diet. PLoS ONE 2013, 8, e61922. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yu, Y.; Deng, J.; Zhang, C.; Zhang, J.; Cheng, Y.; Luo, X.; Han, B.; Yang, H. Sesamin ameliorates high-fat diet–induced dyslipidemia and kidney injury by reducing oxidative stress. Nutrients 2016, 8, 276. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Ro, H.-S. The anti-atherogenic properties of sesamin are mediated via improved macrophage cholesterol efflux through PPARγ1-LXRα and MAPK signaling. Int. J. Vitam. Nutr. Res. 2014, 84, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Tai, T.-S.; Tien, N.; Shen, H.-Y.; Chu, F.-Y.; Wang, C.C.; Lu, C.-H.; Yu, H.-I.; Kung, F.-P.; Chuang, H.-H.; Lee, Y.-R. Sesamin, a naturally occurring lignan, inhibits ligand-induced lipogenesis through interaction with liver X receptor alpha (LXRα) and pregnane X receptor (PXR). Evid. Based Complement. Altern. Med. 2019, 2019, 9401648. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, H.; Zhang, W.; Qi, W.; Lu, C.; Huang, H.; Yang, Z.; Liu, B.; Zhang, L. Sesamin suppresses NSCLC cell proliferation and induces apoptosis via Akt/p53 pathway. Toxicol. Appl. Pharmacol. 2020, 387, 114848. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Lee, W.-J.; Chu, I.-H.; Hung, W.-C.; Su, N.-W. Formation of samin diastereomers by acid-catalyzed transformation of sesamolin with hydrogen peroxide. J. Agric. Food Chem. 2020, 68, 6430–6438. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, V.R.M.; Chien, S.-P.; Hsu, D.-Z.; Liu, M.-Y. Anti-hepatotoxic effects of 3, 4-methylenedioxyphenol and N-acetylcysteine in acutely acetaminophen-overdosed mice. Hum. Exp. Toxicol. 2011, 30, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Sun, H.; Yang, Y.; Yan, Y. Sesamolin alleviates nonalcoholic fatty liver disease through modulating gut microbiota and metabolites in high-fat and high-fructose diet-fed mice. Int. J. Mol. Sci. 2022, 23, 13853. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K. Sesamolin promotes cytolysis and migration activity of natural killer cells via dendritic cells. Arch. Pharm. Res. 2020, 43, 462–474. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Lee, J.K. Sesamolin affects both natural killer cells and cancer cells in order to create an optimal environment for cancer cell sensitization. Int. Immunopharmacol. 2018, 64, 16–23. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Ahmed, H.I.; Zaky, H.S.; Badr, A.M. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer’s disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. J. Ethnopharmacol. 2021, 267, 113468. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.C.W.; Huang, H.M.; Tzen, J.T.; Jeng, K.C.G. Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J. Neurosci. Res. 2003, 74, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Katayama, S.; Sugiyama, H.; Kushimoto, S.; Uchiyama, Y.; Hirano, M.; Nakamura, S. Effects of sesaminol feeding on brain Aβ accumulation in a senescence-accelerated mouse-prone 8. J. Agric. Food Chem. 2016, 64, 4908–4913. [Google Scholar] [CrossRef] [PubMed]
- Keowkase, R.; Shoomarom, N.; Bunargin, W.; Sitthithaworn, W.; Weerapreeyakul, N. Sesamin and sesamolin reduce amyloid-β toxicity in a transgenic Caenorhabditis elegans. Biomed. Pharmacother. 2018, 107, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, K.; Chojnacka, A.; Górnicka, M. Tocopherols and tocotrienols—Bioactive dietary compounds; what is certain, what is doubt? Int. J. Mol. Sci. 2021, 22, 6222. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Saito, Y.; Jones, L.S.; Shigeri, Y. Chemical reactivities and physical effects in comparison between tocopherols and tocotrienols: Physiological significance and prospects as antioxidants. J. Biosci. Bioeng. 2007, 104, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, S.; Wang, Y.; Luo, S.; Yao, W.; He, H.; Tian, Y.; Li, H.; Zhang, F.; Sun, B. Variation of chlorophyll and carotenoids in different varieties and organs of Chinese kale. Qual. Assur. Saf. Crops Foods 2022, 14, 136–145. [Google Scholar] [CrossRef]
- Patel, R.; Patel, M.; Patel, D.; Yang, C.; Onyechi, A.; Ohemeng-Dapaah, J.; Patel, Z.; Shaikh, S. Impact of Palliative Care Utilization among Kidney Cancer Patients in US Hospitals: A National-Scale Analysis. J. Kidney Cancer VHL 2024, 11, 24–32. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Codini, M.; Cataldi, S.; Fioretti, B.; Brecchia, G.; Albi, E.; Beccari, T. Licium Barbarum cultivated in Italy: Chemical characterization and nutritional evaluation. Ital. J. Food Sci. 2022, 34, 59–65. [Google Scholar] [CrossRef]
- Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food Sci. Food Saf. 2022, 21, 642–688. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.S.; Rocha, J.C.B.; Arellano, D.B.; Pallone, J.A.L. Discrimination of South American grains based on fatty acid. Qual. Assur. Saf. Crops Foods 2022, 14, 30–42. [Google Scholar] [CrossRef]
- El Chami, A.; Conte, P.; Hassoun, G.; Piga, A. Effect of region of cultivation, tree age, and harvest time on the quality of Lebanese virgin olive oil. Ital. J. Food Sci. 2023, 35, 57–71. [Google Scholar] [CrossRef]
- Azzi, A. Many tocopherols, one vitamin E. Mol. Aspects Med. 2018, 61, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.-S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Azzi, A. Tocopherols, tocotrienols and tocomonoenols: Many similar molecules but only one vitamin E. Redox Biol. 2019, 26, 101259. [Google Scholar] [CrossRef] [PubMed]
- Irías-Mata, A.; Sus, N.; Flory, S.; Stock, D.; Woerner, D.; Podszun, M.; Frank, J. α-Tocopherol transfer protein does not regulate the cellular uptake and intracellular distribution of α-and γ-tocopherols and-tocotrienols in cultured liver cells. Redox Biol. 2018, 19, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Papas, A.M. Vitamin E: Tocopherols and tocotrienols. In Antioxidant Status, Diet, Nutrition, and Health; CRC Press: Boca Raton, FL, USA, 2019; pp. 188–210. [Google Scholar]
- Nartea, A.; Lucci, P.; Loizzo, M.R.; Tundis, R.; Leporini, M.; Gervasi, L.; Fanesi, B.; Núñez, O.; Frega, N.G.; Fiorini, D. Is coffee powder extract a possible functional ingredient useful in food and nutraceutical industries? Ital. J. Food Sci. 2022, 34, 140–148. [Google Scholar] [CrossRef]
- Aksoz, E.; Korkut, O.; Aksit, D.; Gokbulut, C. Vitamin E (α-, β+ γ-and δ-tocopherol) levels in plant oils. Flavour. Fragr. J. 2020, 35, 504–510. [Google Scholar] [CrossRef]
- Ali, E.; Hussain, S.; Hussain, N.; Kakar, K.U.; Shah, J.M.; Zaidi, S.H.R.; Jan, M.; Zhang, K.; Khan, M.A.; Imtiaz, M. Tocopherol as plant protector: An overview of Tocopherol biosynthesis enzymes and their role as antioxidant and signaling molecules. Acta Physiol. Plant 2022, 44, 20. [Google Scholar] [CrossRef]
- Siger, A.; Górnaś, P. Free tocopherols and tocotrienols in 82 plant species’ oil: Chemotaxonomic relation as demonstrated by PCA and HCA. Food Res. Int. 2023, 164, 112386. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, B.; Özcan, M.M. Fatty acid composition and tocopherol contents of some sesame seed oils. Iran. J. Chem. Chem. Eng. (IJCCE) 2018, 37, 151–155. [Google Scholar]
- Bopitiya, D.; Madhujith, T. Antioxidant activity and total phenolic content of sesame (Sesamum indicum L.) seed oil. Trop. Agric. Res. 2013, 24, 296–302. [Google Scholar] [CrossRef]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.d.L.; Almeida, F.N.d.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. 2014, 34, 379–385. [Google Scholar] [CrossRef]
- Arai, H.; Kono, N. α-Tocopherol transfer protein (α-TTP). Free Radic. Biol. Med. 2021, 176, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Zhu, H.; Wu, X.; Liu, L.; Ma, X.; Yuan, Y.; Fu, X.; Zhang, L.; Lv, Y.; Li, D. Anti-allergic function of α-Tocopherol is mediated by suppression of PI3K-PKB activity in mast cells in mouse model of allergic rhinitis. Allergol. Immunopathol. 2020, 48, 395–400. [Google Scholar] [CrossRef] [PubMed]
- da Silva Andrade, R.; de Souza, F.I.S.; Aranda, C.S.; Mallozi, M.C.; Ferreira, A.C.; Barreto, T.L.N.; Fonseca, F.L.A.; Sarni, R.O.S.; Solé, D. Antioxidant defense of children and adolescents with atopic dermatitis: Association with disease severity. Allergol. Immunopathol. 2024, 52, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Lin, J.; Wang, Y.; Yan, L.; Ying, L.; Dai, J.; Fu, Z.; Liu, J. Vitamin A–regulated ciliated cells promote airway epithelium repair in an asthma mouse model. Allergol. Immunopathol. 2023, 51, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, D.; Yin, W. lnc-THRIL and miR-125b relate to disease risk, severity, and imbalance of Th1 cells/Th2 cells in allergic rhinitis. Allergol. Immunopathol. 2022, 50, 15–23. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Xu, F.; Min, M.-H.; Chu, S.-H.; Kim, K.-W.; Park, Y.-J. Genome-wide association study of vitamin E using genotyping by sequencing in sesame (Sesamum indicum). Genes Genom. 2019, 41, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Azlina, M.F.; Qodriyah, M.S.; Kamisah, Y. Tocopherol and tocotrienol: Therapeutic potential in animal models of stress. Curr. Drug Targets 2018, 19, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Tzen, J.T. Beneficial components in sesame proteins and oil. In The Sesame Genome; Miao, H., Zhang, H., Kole, C., Eds.; Springer: Cham, Switzerland, 2021; pp. 59–78. [Google Scholar] [CrossRef]
- Ikeda, S.; Toyoshima, K.; Yamashita, K. Dietary sesame seeds elevate α-and γ-tocotrienol concentrations in skin and adipose tissue of rats fed the tocotrienol-rich fraction extracted from palm oil. J. Nutr. 2001, 131, 2892–2897. [Google Scholar] [CrossRef] [PubMed]
- Comitato, R.; Ambra, R.; Virgili, F. Tocotrienols: A family of molecules with specific biological activities. Antioxidants 2017, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K. Enhancing effects on vitamin E activity of sesame lignans. J. Clin. Biochem. Nutr. 2004, 35, 17–28. [Google Scholar] [CrossRef]
- Nagendra Prasad, M.; Sanjay, K.; Prasad, D.; Vijay, N.; Kothari, R.; Nanjunda Swamy, S. A review on nutritional and nutraceutical properties of sesame. J. Nutr. Food Sci. 2012, 2, 1–6. [Google Scholar]
- Moazzami, A.; Kamal-Eldin, A. Sesame seed oil. In Gourmet and Health-Promoting Specialty Oils; Elsevier: Amsterdam, The Netherlands, 2009; pp. 267–282. [Google Scholar] [CrossRef]
- Morris, J.B.; Wang, M.L.; Tonnis, B.D. Variability for oil, protein, lignan, tocopherol, and fatty acid concentrations in eight sesame (Sesamum indicum L.) genotypes. Ind. Crops Prod. 2021, 164, 113355. [Google Scholar] [CrossRef]
- Sadiq, M.; Akram, N.A.; Ashraf, M.; Al-Qurainy, F.; Ahmad, P. Alpha-tocopherol-induced regulation of growth and metabolism in plants under non-stress and stress conditions. J. Plant Growth Regul. 2019, 38, 1325–1340. [Google Scholar] [CrossRef]
- Jannat, B.; Oveisi, M.R.; Sadeghi, N.; Hajimahmoodi, M.; Behzad, M.; Nahavandi, B.; Tehrani, S.; Sadeghi, F.; Oveisi, M. Effect of roasting process on total phenolic compounds and γ-tocopherol contents of Iranian sesame seeds (Sesamum indicum). Iran J. Pharm. Res. IJPR 2013, 12, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Boukid, F.; Pera, J.; Parladé, J.; Castellari, M. Fungal bioconversion of brewery by-products: Assessment of fatty acids and sterols profiles. Qual. Assur. Saf. Crops Foods 2022, 14, 202–211. [Google Scholar] [CrossRef]
- Nattagh-Eshtivani, E.; Barghchi, H.; Pahlavani, N.; Barati, M.; Amiri, Y.; Fadel, A.; Khosravi, M.; Talebi, S.; Arzhang, P.; Ziaei, R. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother. Res. 2022, 36, 299–322. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol. 2021, 11, 599959. [Google Scholar] [CrossRef] [PubMed]
- Vecka, M.; Staňková, B.; Kutová, S.; Tomášová, P.; Tvrzická, E.; Žák, A. Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds, and kernel. SN Appl. Sci. 2019, 1, 1531. [Google Scholar] [CrossRef]
- Devaraj, S.; Jialal, I. The role of dietary supplementation with plant sterols and stanols in the prevention of cardiovascular disease. Nutr. Rev. 2006, 64, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, P.; Bustamante, A.; Echeverría, F.; Sambra, V.; Rincón-Cervera, M.Á.; Farías, C.; Valenzuela, R. Metabolic Benefits of Phytosterols: Chemical, Nutritional, and Functional Aspects. Food Rev. Int. 2023, 1–23. [Google Scholar] [CrossRef]
- Rudzińska, A.; Juchaniuk, P.; Oberda, J.; Wiśniewska, J.; Wojdan, W.; Szklener, K.; Mańdziuk, S. Phytochemicals in Cancer Treatment and Cancer Prevention—Review on Epidemiological Data and Clinical Trials. Nutrients 2023, 15, 1896. [Google Scholar] [CrossRef] [PubMed]
- Colakerol, A.; Sahin, S.; Yazar, R.O.; Temiz, M.Z.; Yuruk, E.; Kandirali, E.; Semercioz, A.; Muslumanoglu, A.Y. The Significance of Serum C-Reactive Protein and Neutrophil–Lymphocyte Ratio in Predicting the Diagnostic Outcomes of Renal Mass Biopsy Procedure. J. Kidney Cancer VHL 2023, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Mehtiev, A.; Misharin, A.Y. Biological activity of phytosterols and their derivatives. Biochem. Moscow Suppl. Ser. B 2008, 2, 1–17. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Han, Y.; McClements, D.J.; Xu, D.; Chen, S. Production, characterization, delivery, and cholesterol-lowering mechanism of phytosterols: A review. J. Agric. Food Chem. 2022, 70, 2483–2494. [Google Scholar] [CrossRef] [PubMed]
- Ying, J.; Zhang, Y.; Yu, K. Phytosterol compositions of enriched products influence their cholesterol-lowering efficacy: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2019, 73, 1579–1593. [Google Scholar] [CrossRef] [PubMed]
- Makhmudova, U.; Schulze, P.C.; Lütjohann, D.; Weingärtner, O. Phytosterols and cardiovascular disease. Curr. Atheroscler. Rep. 2021, 23, 68. [Google Scholar] [CrossRef] [PubMed]
- Chailangka, A.; Leksawasdi, N.; Ruksiriwanich, W.; Jantanasakulwong, K.; Rachtanapun, P.; Sommano, S.R.; Khaneghah, A.M.; Castagnini, J.M.; Barba Orellana, F.J.; Kumar, A. Natural ingredients and probiotics for lowering cholesterol and saturated fat in dairy products: An updated review. Qual. Assur. Saf. Crops Foods 2023, 15, 140–160. [Google Scholar] [CrossRef]
- Blanco-Vaca, F.; Cedó, L.; Julve, J. Phytosterols in cancer: From molecular mechanisms to preventive and therapeutic potentials. Curr. Med. Chem. 2019, 26, 6735–6749. [Google Scholar] [CrossRef] [PubMed]
- Patidar, S.; Menon, A.R.; Sundersingh, S.; Seshadri, R.A.; Raja, A. Sarcomatoid Carcinoma Metastasis to the Colon from a Small Renal Mass: Case Report with Review of Literature. J. Kidney Cancer VHL 2023, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Al-Ezzi, E.; Mittal, A.; Veitch, Z.W.; Zahralliyali, A.; Mejia, N.M.D.; Abdeljalil, O.; Alqaisi, H.; Kumar, V.; Hansen, A.R.; Fallah-Rad, N.; et al. The Survival Outcomes of the Metastatic Nonclear Cell Renal Cell Carcinoma in the Immunotherapy Era: Princess Margaret cancer centre experience. J. Kidney Cancer VHL 2024, 11, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Llop-Talaveron, J.; Leiva-Badosa, E.; Alia-Ramos, P.; Rigo-Bonnin, R.; Virgili-Casas, N.; Farran-Teixidor, L.; Miró-Martín, M.; Garrido-Sanchez, L.; Suárez-Lledó, A.; Badía-Tahull, M.B. Genetic factors associated with alterations in liver function test results in adult hospitalized patients treated with parenteral nutrition: A substudy of a clinical trial. Nutrition 2022, 93, 111507. [Google Scholar] [CrossRef] [PubMed]
- Nzekoue, F.K.; Borsetta, G.; Navarini, L.; Abouelenein, D.; Xiao, J.; Sagratini, G.; Vittori, S.; Caprioli, G.; Angeloni, S. Coffee silverskin: Characterization of B-vitamins, macronutrients, minerals and phytosterols. Food Chem. 2022, 372, 131188. [Google Scholar] [CrossRef] [PubMed]
- Gharby, S.; Harhar, H.; Bouzoubaa, Z.; Asdadi, A.; El Yadini, A.; Charrouf, Z. Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J. Saudi Soc. Agric. Sci. 2017, 16, 105–111. [Google Scholar] [CrossRef]
- Pathak, N.; Rai, A.; Kumari, R.; Bhat, K. Value addition in sesame: A perspective on bioactive components for enhancing utility and profitability. Pharmacogn. Rev. 2014, 8, 147. [Google Scholar] [CrossRef] [PubMed]
- Miedes, D.; Makran, M.; Cilla, A.; Barberá, R.; Garcia-Llatas, G.; Alegría, A. Aging-related gastrointestinal conditions decrease the bioaccessibility of plant sterols in enriched wholemeal rye bread: In vitro static digestion. Food Funct. 2023, 14, 6012–6022. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Jayaraman, S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed. Pharmacother. 2020, 131, 110702. [Google Scholar] [CrossRef] [PubMed]
- Chanioti, S.; Katsouli, M.; Tzia, C. β-Sitosterol as a functional bioactive. In A Centum of Valuable Plant Bioactives; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–212. [Google Scholar] [CrossRef]
- Chen, S.; Wang, R.; Cheng, M.; Wei, G.; Du, Y.; Fan, Y.; Li, J.; Li, H.; Deng, Z. Serum cholesterol-lowering activity of β-sitosterol laurate is attributed to the reduction of both cholesterol absorption and bile acids reabsorption in hamsters. J. Agric. Food Chem. 2020, 68, 10003–10014. [Google Scholar] [CrossRef] [PubMed]
- Benkiran, S.; Zinedine, A.; Aziz, T.; Rocha, J.M.; Ayam, I.M.; Raoui, S.M.; Chabir, R.; Errachidi, F.; Alharbi, M.; Albekairi, T.H. Wound-healing potentiation in mice treated with phenolic extracts of Moringa oleifera leaves planted at different climatic areas. Ital. J. Food Sci. 2024, 36, 28. [Google Scholar] [CrossRef]
- Deme, T.; Haki, G.D.; Retta, N.; Woldegiorgis, A.; Geleta, M.; Mateos, H.; Lewandowski, P.A. Sterols as a biomarker in tracing niger and sesame seeds oils adulterated with palm oil. J. Heliyon. 2021, 7, e06797. [Google Scholar] [CrossRef] [PubMed]
- Sudeep, H.; Thomas, J.V.; Shyamprasad, K. A double blind, placebo-controlled randomized comparative study on the efficacy of phytosterol-enriched and conventional saw palmetto oil in mitigating benign prostate hyperplasia and androgen deficiency. BMC Urol. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Wong, H.-S.; Chen, J.-H.; Leong, P.-K.; Leung, H.-Y.; Chan, W.-M.; Ko, K.-M. β-Sitosterol protects against carbon tetrachloride hepatotoxicity but not gentamicin nephrotoxicity in rats via the induction of mitochondrial glutathione redox cycling. Molecules 2014, 19, 17649–17662. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi, H.; Eslahi, A.; Ariafar, A.; Ahmed, F.; Monabati, A. Primary Rhabdomyosarcoma of Kidney with Local Recurrence and Liver Metastasis in Adults: A Case Report. J. Kidney Cancer VHL 2022, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Sarwat, N.; Ahmad, I.; Mobashar, A.; Sharif, A.; Shabbir, A.; Waqas, A.C. Mechanistic evaluation of antiarthritic and anti-inflammatory effect of campesterol ester derivatives in complete freund’s adjuvant-induced arthritic rats. Front. Pharmacol. 2023, 14, 1346054. [Google Scholar] [CrossRef]
- Luo, J.; Yang, H.; Song, B.-L. Mechanisms and regulation of cholesterol homeostasis. Nat. Rev. Mol. Cell Biol. 2020, 21, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, J.; Zhu, L.; Wang, X.; Meng, F.; Xia, L.; Zhang, H. Advances in Stigmasterol on its anti-tumor effect and mechanism of action. Front. Oncol. 2022, 12, 1101289. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, E.B.; Konings, M.; Schaart, G.; Groen, A.K.; Lütjohann, D.; van Marken Lichtenbelt, W.D.; Schrauwen, P.; Plat, J. In vitro effects of sitosterol and sitostanol on mitochondrial respiration in human brown adipocytes, myotubes and hepatocytes. Eur. J. Nutr. 2020, 59, 2039–2045. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef] [PubMed]
- Burton, D.R. Antiviral neutralizing antibodies: From in vitro to in vivo activity. Nat. Rev. Immunol. 2023, 23, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Nokhsorov, V.V.; Dudareva, L.V.; Semenova, N.V.; Sofronova, V.E. The Composition and the Content of ∆-5 Sterols, Fatty Acids, and the Activity of Acyl-Lipid Desaturases in the Shoots of Ephedra monosperma, Introduced in the Botanical Garden of the Cryolithozone of Yakutia. Horticulturae 2023, 9, 858. [Google Scholar] [CrossRef]
- Pratiwi, R.; Nantasenamat, C.; Ruankham, W.; Suwanjang, W.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Mechanisms and neuroprotective activities of stigmasterol against oxidative stress-induced neuronal cell death via sirtuin family. Front. Nutr. 2021, 8, 648995. [Google Scholar] [CrossRef] [PubMed]
- Drira, M.; Jabeur, H.; Marrakchi, F.; Bouaziz, M. Delta-7-stigmastenol: Quantification and isomeric formation during chemical refining of olive pomace oil and optimization of the neutralization step. Eur. Food Res. Technol. 2018, 244, 2231–2241. [Google Scholar] [CrossRef]
- Nassar, M.; Nassar, R.; Maki, H.; Al-Yagoob, A.; Hachim, M.; Senok, A.; Williams, D.; Hiraishi, N. Phytic acid: Properties and potential applications in dentistry. Front. Mater. 2021, 8, 638909. [Google Scholar] [CrossRef]
- Phescatcha, T.; Tukkeeree, S.; Rohrer, J. Determination of Phytic Acid in Soybeans and Black Sesame Seeds. Dionex Application Note, 25 July 2012. [Google Scholar]
- Touma, J.; Dominguez, S.; La Vieille, S.; Remington, B.C.; Baumert, J.L.; Théolier, J.; Godefroy, S.B. Sesame as an allergen in Lebanese food products: Occurrence, consumption and quantitative risk assessment. Food Chem. Toxicol. 2021, 156, 112511. [Google Scholar] [CrossRef] [PubMed]
- Cahoon, E.B.; Li-Beisson, Y. Plant unusual fatty acids: Learning from the less common. Curr. Opin. Plant Biol. 2020, 55, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Gunstone, F.D. Fatty Acid and Lipid Chemistry; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Mukhametov, A.; Mamayeva, L.; Yerbulekova, M.; Aitkhozhayeva, G. Fatty acid profile of functional emulsion-based food products containing conventional and unconventional ingredients. Ital. J. Food Sci. 2022, 34, 89–97. [Google Scholar] [CrossRef]
- Horrillo, A.; Díaz-Caro, C.; Crespo-Cebada, E.; Tejerina, D.; Mesías, F.J.; Rodríguez-Ledesma, A.; García-Torres, S. Perceptions of Spanish consumers towards novel lamb burgers enriched with natural antioxidants and healthy fatty acids. Ital. J. Food Sci. 2022, 34, 11–24. [Google Scholar] [CrossRef]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary polyunsaturated fatty acids (PUFAs): Uses and potential health benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.; Theobald, H. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Arevalo, A.; Patel, N.; Muraki, P.; Ohtake, S.; Bratslavsky, G.; Clark, C.; Mann, J.; Iliopoulos, O.; Jonasch, E.; Srinivasan, R. Understanding the Impact of Belzutifan on Treatment Strategies for Patients with VHL. J. Kidney Cancer VHL 2022, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef]
- Mondal, N.; Bhat, K.; Srivastava, P. Variation in fatty acid composition in Indian germplasm of sesame. J. Am. Oil Chem. Soc. 2010, 87, 1263–1269. [Google Scholar] [CrossRef]
- Trad, S.; Chaabani, E.; Aidi Wannes, W.; Dakhlaoui, S.; Nait Mohamed, S.; Khammessi, S.; Hammami, M.; Bourgou, S.; Saidani Tounsi, M.; Fabiano-Tixier, A.-S. Quality of Edible Sesame Oil as Obtained by Green Solvents: In Silico versus Experimental Screening Approaches. Foods 2023, 12, 3263. [Google Scholar] [CrossRef] [PubMed]
- Karatzi, K.; Stamatelopoulos, K.; Lykka, M.; Mantzouratou, P.; Skalidi, S.; Zakopoulos, N.; Papamichael, C.; Sidossis, L.S. Sesame oil consumption exerts a beneficial effect on endothelial function in hypertensive men. Eur. J. Prev. Cardiol. 2013, 20, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Agostoni, C.; Visioli, F. Dietary Fatty Acids and Inflammation: Focus on the n-6 Series. Int. J. Mol. Sci. 2023, 24, 4567. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Polyunsaturated fatty acids and metabolic health: Novel insights. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Antonogeorgos, G.; Mandrapylia, M.; Liakou, E.; Koutsokera, A.; Drakontaeidis, P.; Thanasia, M.; Ellwood, P.; García-Marcos, L.; Sardeli, O.; Priftis, K.N. Hierarchical analysis of Mediterranean Dietary pattern on atopic diseases’ prevalence in adolescence: The Greek Global Asthma Network study. Allergol. Immunopathol. 2022, 50, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Hibbeln, J.R.; Nieminen, L.R.; Blasbalg, T.L.; Riggs, J.A.; Lands, W.E. Healthy intakes of n− 3 and n–6 fatty acids: Estimations considering worldwide diversity. Am. J. Clin. Nutr. 2006, 83, 1483S–1493S. [Google Scholar] [CrossRef] [PubMed]
- Liput, K.P.; Lepczyński, A.; Ogłuszka, M.; Nawrocka, A.; Poławska, E.; Grzesiak, A.; Ślaska, B.; Pareek, C.S.; Czarnik, U.; Pierzchała, M. Effects of dietary n–3 and n–6 polyunsaturated fatty acids in inflammation and cancerogenesis. Int. J. Mol. Sci. 2021, 22, 6965. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Zamora, D.; Faurot, K.R.; MacIntosh, B.; Horowitz, M.; Keyes, G.S.; Yuan, Z.-X.; Miller, V.; Lynch, C.; Honvoh, G. Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: Randomized controlled trial. BMJ 2021, 374. [Google Scholar] [CrossRef]
- Yang, L.; Yang, C.; Chu, C.; Wan, M.; Xu, D.; Pan, D.; Xia, H.; Wang, S.K.; Shu, G.; Chen, S. Beneficial effects of monounsaturated fatty acid-rich blended oils with an appropriate polyunsaturated/saturated fatty acid ratio and a low n-6/n-3 fatty acid ratio on the health of rats. J. Sci. Food Agric. 2022, 102, 7172–7185. [Google Scholar] [CrossRef] [PubMed]
- Hama, J.R. Comparison of fatty acid profile changes between unroasted and roasted brown sesame (Sesamum indicum L.) seeds oil. Int. J. Food Prop. 2017, 20, 957–967. [Google Scholar] [CrossRef]
- Kurt, C. Variation in oil content and fatty acid composition of sesame accessions from different origins. Grasas Aceites 2018, 69, e241. [Google Scholar] [CrossRef]
- Uzun, B.; Arslan, Ç.; Furat, Ş. Variation in fatty acid compositions, oil content and oil yield in a germplasm collection of sesame (Sesamum indicum L.). J. Am. Oil Chem. Soc. 2008, 85, 1135–1142. [Google Scholar] [CrossRef]
- Bhunia, R.K.; Chakraborty, A.; Kaur, R.; Gayatri, T.; Bhat, K.; Basu, A.; Maiti, M.K.; Sen, S.K. Analysis of fatty acid and lignan composition of Indian germplasm of sesame to evaluate their nutritional merits. J. Am. Oil Chem. Soc. 2015, 92, 65–76. [Google Scholar] [CrossRef]
- Deming, T.J. Synthetic polypeptides for biomedical applications. Prog. Polym. Sci. 2007, 32, 858–875. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Ding, J.; Chen, X. Controlled synthesis of polypeptides. Chin. Chem. Lett. 2020, 31, 3001–3014. [Google Scholar] [CrossRef]
- Kiewiet, M.B.; Faas, M.M.; De Vos, P. Immunomodulatory protein hydrolysates and their application. Nutrients 2018, 10, 904. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Curr. Opin. Food Sci. 2015, 1, 28–37. [Google Scholar] [CrossRef]
- Nasri, M. Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A review. Adv. Food Nutr. Res. 2017, 81, 109–159. [Google Scholar] [CrossRef] [PubMed]
- Escamilla-Silva, E.M.; Guzmán-Maldonado, S.H.; Cano-Medinal, A.; González-Alatorre, G. Simplified process for the production of sesame protein concentrate. Differential scanning calorimetry and nutritional, physicochemical and functional properties. J. Sci. Food Agric. 2003, 83, 972–979. [Google Scholar] [CrossRef]
- Dench, J.E.; Rivas, R.N.; Caygill, J.C. Selected functional properties of sesame (Sesamum indicum L.) flour and two protein isolates. J. Sci. Food Agric. 1981, 32, 557–564. [Google Scholar] [CrossRef]
- Bhattacharya, C.; Deshpande, B.; Pandey, B.; Paroha, S. Effect of ageing on storage in biochemical and antioxidant characterization of sesame (Sesamum indicum L.) seeds. Indo Am. J. Pharm. Res. 2014, 4, 384–389. [Google Scholar]
- Bandyopadhyay, K.; Ghosh, S. Preparation and characterization of papain-modified sesame (Sesamum indicum L.) protein isolates. J. Agric. Food Chem. 2002, 50, 6854–6857. [Google Scholar] [CrossRef] [PubMed]
- Aondona, M.M.; Ikya, J.K.; Ukeyima, M.T.; Gborigo, T.W.J.; Aluko, R.E.; Girgih, A.T. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J. Food Biochem. 2021, 45, e13587. [Google Scholar] [CrossRef] [PubMed]
- Hamitri-Guerfi, F.; Ouahrani, S.; Benbouriche, A.; Bey, M.B.; Boulekbache-Makhlouf, L.; Madani, K. Impact of the extraction method on physico-chemical proprieties, phytochemicals and biological activity of sesame seeds oil. Ann. Univ. Dunarea De Jos Galati. Fascicle VI-Food Technol. 2020, 44, 82–103. [Google Scholar] [CrossRef]
- El-Geddawy, M.; Sorour, M.; Abou-El-Hawa, S.; Taha, E. Effect of domestic processing and microwave heating on phenolic compounds and tannins in some oil seeds. SVU-Int. J. Agric. Sci. 2019, 1, 23–32. [Google Scholar] [CrossRef]
- Konsoula, Z.; Liakopoulou-Kyriakides, M. Effect of endogenous antioxidants of sesame seeds and sesame oil to the thermal stability of edible vegetable oils. LWT 2010, 43, 1379–1386. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Uslu, N.; Özcan, M.M.; Juhaimi, F.A.; Ghafoor, K.; Babiker, E.E.; Osman, M.A.; Alqah, H.A. Effect of conventional oven roasting treatment on the physicochemical quality attributes of sesame seeds obtained from different locations. Food Chem. 2021, 338, 128109. [Google Scholar] [CrossRef] [PubMed]
- Elkhaleefa, A.; Shigidi, I. Optimization of sesame oil extraction process conditions. Adv. Chem. Eng. Sci. 2015, 5, 305. [Google Scholar] [CrossRef]
- Eom, S.J.; Zu, H.D.; Lee, J.; Kang, M.-C.; Park, J.; Song, K.-M.; Lee, N.H. Development of an ultrasonic system for industrial extraction of unheated sesame oil cake. Food Chem. 2021, 354, 129582. [Google Scholar] [CrossRef] [PubMed]
- Dasanayaka, B.P.; Li, Z.; Pramod, S.N.; Chen, Y.; Khan, M.U.; Lin, H. A review on food processing and preparation methods for altering fish allergenicity. Crit. Rev. Food Sci. Nutr. 2022, 62, 1951–1970. [Google Scholar] [CrossRef] [PubMed]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food processing for the improvement of plant proteins digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.C.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N. Food processing and allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Besler, M.; Steinhart, H.; Paschke, A. Stability of food allergens and allergenicity of processed foods. J. Chromatogr. B Biomed. Appl. 2001, 756, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Pi, X.; Sun, Y.; Fu, G.; Wu, Z.; Cheng, J. Effect of processing on soybean allergens and their allergenicity. Trends Food Sci. Technol. 2021, 118, 316–327. [Google Scholar] [CrossRef]
- Pi, X.; Sun, Y.; Guo, X.; Chen, Q.; Cheng, J.; Guo, M. Effects of thermal sterilization on the allergenicity of soybeans. LWT 2022, 154, 112678. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Li, K.; Li, X.; Yang, A.; Tong, P.; Chen, H. Allergenicity assessment on thermally processed peanut influenced by extraction and assessment methods. Food Chem. 2019, 281, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Achouri, A.; Boye, J.I. Thermal processing, salt and high pressure treatment effects on molecular structure and antigenicity of sesame protein isolate. Food Res. Int. 2013, 53, 240–251. [Google Scholar] [CrossRef]
- Ahmadian-Kouchaksaraei, Z.; Varidi, M.; Varidi, M.J.; Pourazarang, H. Influence of processing conditions on the physicochemical and sensory properties of sesame milk: A novel nutritional beverage. LWT 2014, 57, 299–305. [Google Scholar] [CrossRef]
- Chung, S.-Y.; Champagne, E.T. Association of end-product adducts with increased IgE binding of roasted peanuts. J. Agric. Food Chem. 2001, 49, 3911–3916. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Zhang, G.; Fu, J.; Zhang, B. Advancement of the preparation methods and biological activity of peptides from sesame oil byproducts: A review. Int. J. Food Prop. 2020, 23, 2189–2200. [Google Scholar] [CrossRef]
- Martínez, M.L.; Bordón, M.G.; Lallana, R.L.; Ribotta, P.D.; Maestri, D.M. Optimization of sesame oil extraction by screw-pressing at low temperature. Food Bioproc. Tech. 2017, 10, 1113–1121. [Google Scholar] [CrossRef]
- Yin, W.-T.; Ma, X.-T.; Li, S.-J.; Liu, H.-M.; Shi, R. Comparison of key aroma-active compounds between roasted and cold-pressed sesame oils. Food Res. Int. 2021, 150, 110794. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Yang, R.; Hua, X.; Zhao, W.; Tong, Y.; Zhang, W. Improvement of the yield and flavour quality of sesame oil from aqueous extraction process by moisture conditioning before roasting. Int. J. Food Sci. Technol. 2019, 54, 471–479. [Google Scholar] [CrossRef]
- Lv, M.; Wu, W. Optimization of an improved aqueous method for the production of high quality white sesame oil and de-oiled meal. Grasas Aceites 2020, 71, e349. [Google Scholar] [CrossRef]
- Hou, L.X.; Shang, X.L.; Wang, X.; Liu, J. Application of enzyme in aqueous extraction of sesame oil. Eur. Food Res. Technol. 2013, 236, 1027–1030. [Google Scholar] [CrossRef]
- Fasuan, T.O.; Omobuwajo, T.O.; Gbadamosi, S.O. Optimization of simultaneous recovery of oil and protein from sesame (Sesamum indicum) seed. J. Food Process. Preserv. 2018, 42, e13341. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Q.; Huang, L. Study on extraction of oil from black sesame by microwave-assisted aqueous enzymatic method. Storage Process 2019, 19, 95–101. [Google Scholar]
- de Aquino, D.S.; Fanhani, A.; Stevanato, N.; da Silva, C. Sunflower oil from enzymatic aqueous extraction process: Maximization of free oil yield and oil characterization. J. Food Process Eng. 2019, 42, e13169. [Google Scholar] [CrossRef]
- Lertbuaban, P.; Muangrat, R. Effect of Roasting and Vacuum Microwave Drying Pretreatment on the Yield and Chemical Properties of Black Sesame Seed Oil Extracted by using Screw Press. 2023. Available online: https://rsucon.rsu.ac.th/proceedings (accessed on 28 April 2023).
- Sarma, L.; Chakraborty, S.; Duary, R.K. Solvent-based microwave-assisted extraction and identification of bioactive compounds from Sesamum indicum leaves using particle swarm optimization-integrated response surface methodology. Pharmacogn. Mag. 2018, 14, 275–283. [Google Scholar] [CrossRef]
- Zoumpoulakis, P.; Sinanoglou, V.J.; Batrinou, A.; Strati, I.F.; Miniadis-Meimaroglou, S.; Sflomos, K. A combined methodology to detect γ-irradiated white sesame seeds and evaluate the effects on fat content, physicochemical properties and protein allergenicity. Food Chem. 2012, 131, 713–721. [Google Scholar] [CrossRef]
- Pi, X.; Yang, Y.; Sun, Y.; Wang, X.; Wan, Y.; Fu, G.; Li, X.; Cheng, J. Food irradiation: A promising technology to produce hypoallergenic food with high quality. Crit. Rev. Food Sci. Nutr. 2021, 62, 6698–6713. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Hu, C.; Gao, J.; Li, X.; Wu, Z.; Yang, A.; Chen, H. A potential practical approach to reduce Ara h 6 allergenicity by gamma irradiation. Food Chem. 2013, 136, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.R.S.; Medeiros, N.G.; Rodrigues, A.M.; Araujo, M.E.; Machado, N.T.; Santos, A.G.; Santos, I.R.; Gomes-Leal, W.; Junior, R.N.C. Black sesame (Sesamum indicum L.) seeds extracts by CO2 supercritical fluid extraction: Isotherms of global yield, kinetics data, total fatty acids, phytosterols and neuroprotective effects. J. Supercrit. Fluids 2014, 93, 49–55. [Google Scholar] [CrossRef]
- Mostashari, P.; Marszałek, K.; Aliyeva, A.; Mousavi Khaneghah, A. The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023, 28, 2658. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.K.; Zheng, L.; Liu, R.J.; Chang, M.; Jin, Q.Z.; Wang, X.G. Chemical characterization, oxidative stability, and in vitro antioxidant capacity of sesame oils extracted by supercritical and subcritical techniques and conventional methods: A comparative study using chemometrics. Eur. J. Lipid Sci. Technol. 2018, 120, 1700326. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, K.; Qin, Y.; Yu, J. A simple and green ultrasonic-assisted liquid–liquid microextraction technique based on deep eutectic solvents for the HPLC analysis of sesamol in sesame oils. Anal. Methods 2017, 9, 4184–4189. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostashari, P.; Mousavi Khaneghah, A. Sesame Seeds: A Nutrient-Rich Superfood. Foods 2024, 13, 1153. https://doi.org/10.3390/foods13081153
Mostashari P, Mousavi Khaneghah A. Sesame Seeds: A Nutrient-Rich Superfood. Foods. 2024; 13(8):1153. https://doi.org/10.3390/foods13081153
Chicago/Turabian StyleMostashari, Parisa, and Amin Mousavi Khaneghah. 2024. "Sesame Seeds: A Nutrient-Rich Superfood" Foods 13, no. 8: 1153. https://doi.org/10.3390/foods13081153