Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis
Abstract
:1. Introduction
2. Challenges and Sources of Error in Current Research Studies
2.1. Analytical Methods
2.2. Experimental Design
2.3. AI/ML/Chemometrics Pipelines
2.4. Model Validation
2.5. Analyst Perspective
3. How to Address the Challenges
3.1. Sensor/Hardware Development
3.2. Dedicated Chemometrics Approaches for Further Analysis
3.3. Artificial Intelligence-Driven Methodology for Rapid Food Analysis
3.4. Model Validation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulze, B.; Jeon, Y.; Kaserzon, S.; Heffernan, A.L.; Dewapriya, P.; O’Brien, J.; Gomez Ramos, M.J.; Ghorbani Gorji, S.; Mueller, J.F.; Thomas, K.V.; et al. An Assessment of Quality Assurance/Quality Control Efforts in High Resolution Mass Spectrometry Non-Target Workflows for Analysis of Environmental Samples. TrAC Trends Anal. Chem. 2020, 133, 116063. [Google Scholar] [CrossRef]
- Kutsanedzie, F.Y.H.H.; Guo, Z.; Chen, Q. Advances in Nondestructive Methods for Meat Quality and Safety Monitoring. Food Rev. Int. 2019, 35, 536–562. [Google Scholar] [CrossRef]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What Are the Scientific Challenges in Moving from Targeted to Non-Targeted Methods for Food Fraud Testing and How Can They Be Addressed?—Spectroscopy Case Study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Sørensen, K.M.; van den Berg, F.; Engelsen, S.B. NIR Data Exploration and Regression by Chemometrics—A Primer; Springer: Singapore, 2021; ISBN 9789811586484. [Google Scholar]
- Frank, I.E.; Kowalski, B.R. Chemometrics. Anal. Chem. 1982, 54, 232–243. [Google Scholar] [CrossRef]
- Akulich, F.; Anahideh, H.; Sheyyab, M.; Ambre, D. Explainable Predictive Modeling for Limited Spectral Data. Chemom. Intell. Lab. Syst. 2022, 225, 104572. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Liu, F.; Qiu, Z.; He, Y. Application of Deep Learning in Food: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1793–1811. [Google Scholar] [CrossRef] [PubMed]
- Reinholds, I.; Bartkevics, V.; Silvis, I.C.J.; van Ruth, S.M.; Esslinger, S. Analytical Techniques Combined with Chemometrics for Authentication and Determination of Contaminants in Condiments: A Review. J. Food Compos. Anal. 2015, 44, 56–72. [Google Scholar] [CrossRef]
- Jia, W.; van Ruth, S.; Scollan, N.; Koidis, A. Hyperspectral Imaging (HSI) for Meat Quality Evaluation across the Supply Chain: Current and Future Trends. Curr. Res. Food Sci. 2022, 5, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Szymańska, E.; Gerretzen, J.; Engel, J.; Geurts, B.; Blanchet, L.; Buydens, L.M.C. Chemometrics and Qualitative Analysis Have a Vibrant Relationship. TrAC Trends Anal. Chem. 2015, 69, 34–51. [Google Scholar] [CrossRef]
- Rothe, S.; Kudszus, B.; Söffker, D. Does Classifier Fusion Improve the Overall Performance? Numerical Analysis of Data and Fusion Method Characteristics Influencing Classifier Fusion Performance. Entropy 2019, 21, 866. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial Intelligence: A Powerful Paradigm for Scientific Research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef] [PubMed]
- Danezis, G.P.; Tsagkaris, A.S.; Camin, F.; Brusic, V.; Georgiou, C.A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. [Google Scholar] [CrossRef]
- Ropodi, A.I.; Panagou, E.Z.; Nychas, G.J.E. Data Mining Derived from Food Analyses Using Non-Invasive/Non-Destructive Analytical Techniques; Determination of Food Authenticity, Quality & Safety in Tandem with Computer Science Disciplines. Trends Food Sci. Technol. 2016, 50, 11–25. [Google Scholar] [CrossRef]
- Gallo, M.; Ferranti, P. The Evolution of Analytical Chemistry Methods in Foodomics. J. Chromatogr. A 2016, 1428, 3–15. [Google Scholar] [CrossRef]
- Aparicio, R.; Aparicio-Ruíz, R. Authentication of Vegetable Oils by Chromatographic Techniques. J. Chromatogr. A 2000, 881, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Capuano, E.; Boerrigter-Eenling, R.; van der Veer, G.; van Ruth, S.M. Analytical Authentication of Organic Products: An Overview of Markers. J. Sci. Food Agric. 2013, 93, 12–28. [Google Scholar] [CrossRef]
- Do, T.K.T.; Hadji-Minaglou, F.; Antoniotti, S.; Fernandez, X. Authenticity of Essential Oils. TrAC Trends Anal. Chem. 2015, 66, 146–157. [Google Scholar] [CrossRef]
- Cozzolino, D. Recent Trends on the Use of Infrared Spectroscopy to Trace and Authenticate Natural and Agricultural Food Products. Appl. Spectrosc. Rev. 2012, 47, 518–530. [Google Scholar] [CrossRef]
- Wójcicki, K.; Khmelinskii, I.; Sikorski, M.; Sikorska, E. Near and Mid Infrared Spectroscopy and Multivariate Data Analysis in Studies of Oxidation of Edible Oils. Food Chem. 2015, 187, 416–423. [Google Scholar] [CrossRef]
- Black, C.; Chevallier, O.P.; Elliott, C.T. The Current and Potential Applications of Ambient Mass Spectrometry in Detecting Food Fraud. TrAC Trends Anal. Chem. 2016, 82, 268–278. [Google Scholar] [CrossRef]
- Bassbasi, M.; De Luca, M.; Ioele, G.; Oussama, A.; Ragno, G. Prediction of the Geographical Origin of Butters by Partial Least Square Discriminant Analysis (PLS-DA) Applied to Infrared Spectroscopy (FTIR) Data. J. Food Compos. Anal. 2014, 33, 210–215. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsagkaris, A.S.; Brusic, V.; Georgiou, C.A. Food Authentication: State of the Art and Prospects. Curr. Opin. Food Sci. 2016, 10, 22–31. [Google Scholar] [CrossRef]
- Washburn, K.E.; Stormo, S.K.; Skjelvareid, M.H.; Heia, K. Non-Invasive Assessment of Packaged Cod Freeze-Thaw History by Hyperspectral Imaging. J. Food Eng. 2017, 205, 64–73. [Google Scholar] [CrossRef]
- Han, Q.; Peller, J.; Erasmus, S.W.; Elliott, C.T.; van Ruth, S.M. Interpreting the Variation in Particle Size of Ground Spice by High-Resolution Visual and Spectral Imaging: A Ginger Case Study. Food Res. Int. 2023, 170, 113023. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, M.; Wang, P.; Chen, J.; Yang, S.; Luo, P.; Gao, X. Detection and Quantitation of Adulterated Paprika Samples Using Second-Order HPLC-FLD Fingerprints and Chemometrics. Foods 2022, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Musio, B.; Todisco, S.; Antonicelli, M.; Garino, C.; Arlorio, M.; Mastrorilli, P.; Latronico, M.; Gallo, V. Non-Targeted NMR Method to Assess the Authenticity of Saffron and Trace the Agronomic Practices Applied for Its Production. Appl. Sci. 2022, 12, 2583. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Manousi, N.; Klaoudatos, D.; Spanos, T.; Topi, V.; Zachariadis, G.A. Rare Earths as Authenticity Markers for the Discrimination of Greek and Turkish Pistachios Using Elemental Metabolomics and Chemometrics. Foods 2021, 10, 349. [Google Scholar] [CrossRef]
- Rivera-Pérez, A.; Romero-González, R.; Garrido Frenich, A. Fingerprinting Based on Gas Chromatography-Orbitrap High-Resolution Mass Spectrometry and Chemometrics to Reveal Geographical Origin, Processing, and Volatile Markers for Thyme Authentication. Food Chem. 2022, 393, 133377. [Google Scholar] [CrossRef]
- Hai, C.; Chen, H.; Suo, Y.; Guan, Y.; Wang, S.; Lan, W.; Long, W.; Yang, X.; Yang, J.; Fu, H. Geographical Origin and Species Identification of Lilii Bulbus Using C/N/H/O Stable Isotopes and Multi-Elemental Combined Chemometrics. J. Food Compos. Anal. 2023, 116, 105062. [Google Scholar] [CrossRef]
- Nunes, C.A.; Alvarenga, V.O.; de Souza Sant’Ana, A.; Santos, J.S.; Granato, D. The Use of Statistical Software in Food Science and Technology: Advantages, Limitations and Misuses. Food Res. Int. 2015, 75, 270–280. [Google Scholar] [CrossRef]
- Abdel-Rahman, A.I.; Lim, G.J. A Nonlinear Partial Least Squares Algorithm Using Quadratic Fuzzy Inference System. J. Chemom. 2009, 23, 530–537. [Google Scholar] [CrossRef]
- Reid, L.M.; O’Donnell, C.P.; Downey, G. Recent Technological Advances for the Determination of Food Authenticity. Trends Food Sci. Technol. 2006, 17, 344–353. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.P.; Huang, C.C.; Shang, H.; Pan, S.Y.; Li, X.J. Application of Vis/NIR Spectroscopy for Chinese Liquor Discrimination. Food Anal. Methods 2014, 7, 1337–1344. [Google Scholar] [CrossRef]
- Li, S.; Shan, Y.; Zhu, X.; Zhang, X.; Ling, G. Detection of Honey Adulteration by High Fructose Corn Syrup and Maltose Syrup Using Raman Spectroscopy. J. Food Compos. Anal. 2012, 28, 69–74. [Google Scholar] [CrossRef]
- Velásquez, C.; Prieto, F.; Palou, L.; Cubero, S.; Blasco, J.; Aleixos, N. New Model for the Automatic Detection of Anthracnose in Mango Fruits Based on Vis/NIR Hyperspectral Imaging and Discriminant Analysis. J. Food Meas. Charact. 2023, 18, 560–570. [Google Scholar] [CrossRef]
- Kabir, M.H.; Guindo, M.L.; Chen, R.; Liu, F. Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques. Foods 2021, 10, 2767. [Google Scholar] [CrossRef] [PubMed]
- Georgouli, K.; Martinez Del Rincon, J.; Koidis, A. Continuous Statistical Modelling for Rapid Detection of Adulteration of Extra Virgin Olive Oil Using Mid Infrared and Raman Spectroscopic Data. Food Chem. 2017, 217, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Bizzani, M.; William Menezes Flores, D.; Alberto Colnago, L.; David Ferreira, M. Monitoring of Soluble Pectin Content in Orange Juice by Means of MIR and TD-NMR Spectroscopy Combined with Machine Learning. Food Chem. 2020, 332, 127383. [Google Scholar] [CrossRef]
- Daszykowski, M.; Orzel, J.; Wrobel, M.S.; Czarnik-Matusewicz, H.; Walczak, B. Improvement of Classification Using Robust Soft Classification Rules for Near-Infrared Reflectance Spectral Data. Chemom. Intell. Lab. Syst. 2011, 109, 86–93. [Google Scholar] [CrossRef]
- Karunathilaka, S.R.; Farris, S.; Mossoba, M.M.; Moore, J.C.; Yakes, B.J. Non-Targeted Detection of Milk Powder Adulteration Using Raman Spectroscopy and Chemometrics: Melamine Case Study. Food Addit. Contam. Part A 2017, 34, 170–182. [Google Scholar] [CrossRef]
- Oroian, M.; Ropciuc, S.; Paduret, S. Honey Adulteration Detection Using Raman Spectroscopy. Food Anal. Methods 2018, 11, 959–968. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Wu, C.; Sun, D.W. Nondestructive Measurement and Fingerprint Analysis of Soluble Solid Content of Tea Soft Drink Based on Vis/NIR Spectroscopy. J. Food Eng. 2007, 82, 316–323. [Google Scholar] [CrossRef]
- Cui, H.; Wang, S.; Yang, X.; Zhang, W.; Chen, M.; Wu, Y.; Li, S.; Li, L.; Cai, D.; Guo, B.; et al. Predictive Models for Assessing the Risk of Fusarium Pseudograminearum Mycotoxin Contamination in Post-Harvest Wheat with Multi-Parameter Integrated Sensors. Food Chem. X 2022, 16, 100472. [Google Scholar] [CrossRef]
- Dachoupakan Sirisomboon, C.; Putthang, R.; Sirisomboon, P. Application of near Infrared Spectroscopy to Detect Aflatoxigenic Fungal Contamination in Rice. Food Control 2013, 33, 207–214. [Google Scholar] [CrossRef]
- Kashif, M.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Abubakar, M.; Ahmad, S.; Ali, S.; Hyat, H.; Bashir, S.; Batool, F.; et al. Surface-Enhanced Raman Spectroscopy for Identification of Food Processing Bacteria. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 261, 119989. [Google Scholar] [CrossRef] [PubMed]
- Okere, E.E.; Arendse, E.; Nieuwoudt, H.; Perold, W.J.; Opara, U.L. Non-Destructive Evaluation of the Quality Characteristics of Pomegranate Kernel Oil by Fourier Transform Near-Infrared and Mid-Infrared Spectroscopy. Front. Plant Sci. 2022, 13, 867555. [Google Scholar] [CrossRef]
- Gong, Z.; Deng, D.; Sun, X.; Liu, J.; Ouyang, Y. Non-Destructive Detection of Moisture Content for Ginkgo Biloba Fruit with Terahertz Spectrum and Image: A Preliminary Study. Infrared Phys. Technol. 2022, 120, 103997. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, T.; Zhang, L.; Zhang, P. Development of a Portable Field Imaging Spectrometer: Application for the Identification of Sun-Dried and Sulfur-Fumigated Chinese Herbals. Appl. Spectrosc. 2016, 70, 879–887. [Google Scholar] [CrossRef]
- Folli, G.S.; Santos, L.P.; Santos, F.D.; Cunha, P.H.P.; Schaffel, I.F.; Borghi, F.T.; Barros, I.H.A.S.; Pires, A.A.; Ribeiro, A.V.F.N.; Romão, W.; et al. Food Analysis by Portable NIR Spectrometer. Food Chem. Adv. 2022, 1, 100074. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, Y.; Zhang, B.; Wang, X. Quantitative Analysis of Adulteration of Extra Virgin Olive Oil Using Raman Spectroscopy Improved by Bayesian Framework Least Squares Support Vector Machines. Anal. Methods 2012, 4, 2772–2777. [Google Scholar] [CrossRef]
- Wu, X.M.; Zuo, Z.T.; Zhang, Q.Z.; Wang, Y.Z. FT-MIR and UV–Vis Data Fusion Strategy for Origins Discrimination of Wild Paris Polyphylla Smith Var. Yunnanensis. Vib. Spectrosc. 2018, 96, 125–136. [Google Scholar] [CrossRef]
- Yang, S.Z.; Li, C.; Li, C.; Wang, Z.Q.; Huang, L.L.; Ding, Q. The Differences in the Dried Tangerine Peels Stored for Different Years Revealed by Terahertz Spectroscopy and Imaging. Mod. Food Sci. Technol. 2020, 35, 258–266. [Google Scholar] [CrossRef]
- Cruz-Tirado, J.P.; Fernández Pierna, J.A.; Rogez, H.; Barbin, D.F.; Baeten, V. Authentication of Cocoa (Theobroma cacao) Bean Hybrids by NIR-Hyperspectral Imaging and Chemometrics. Food Control 2020, 118, 107445. [Google Scholar] [CrossRef]
- Barbon, S.; da Costa Barbon, A.P.A.; Mantovani, R.G.; Barbin, D.F. Machine Learning Applied to Near-Infrared Spectra for Chicken Meat Classification. J. Spectrosc. 2018, 2018, 8949741. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, P.; Wu, Y.; Yan, X.; Ye, C.; Liang, W.; Yan, M.; Xu, X.; Jiang, H. Identification of Foodborne Pathogenic Bacteria Using Confocal Raman Microspectroscopy and Chemometrics. Front. Microbiol. 2022, 13, 874658. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; He, C.; Xie, M.; Luo, H.; Wang, Y.; Zhang, J. Rapid Screen of Aflatoxin-Contaminated Peanut Oil Using Fourier Transform Infrared Spectroscopy Combined with Multivariate Decision Tree. Int. J. Food Sci. Technol. 2018, 53, 2386–2393. [Google Scholar] [CrossRef]
- Ren, A.; Zahid, A.; Zoha, A.; Shah, S.A.; Imran, M.A.; Alomainy, A.; Abbasi, Q.H. Machine Learning Driven Approach towards the Quality Assessment of Fresh Fruits Using Non-Invasive Sensing. IEEE Sens. J. 2020, 20, 2075–2083. [Google Scholar] [CrossRef]
- Ren, G.; Wang, Y.; Ning, J.; Zhang, Z. Using Near-Infrared Hyperspectral Imaging with Multiple Decision Tree Methods to Delineate Black Tea Quality. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 237, 118407. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tan, Z.; Liu, J.; Xu, Z.; Du, Z. Determination of the Food Dye Indigotine in Cream by Near-Infrared Spectroscopy Technology Combined with Random Forest Model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117551. [Google Scholar] [CrossRef]
- Amjad, A.; Ullah, R.; Khan, S.; Bilal, M.; Khan, A. Raman Spectroscopy Based Analysis of Milk Using Random Forest Classification. Vib. Spectrosc. 2018, 99, 124–129. [Google Scholar] [CrossRef]
- Li, Y.; Logan, N.; Quinn, B.; Hong, Y.; Birse, N.; Zhu, H.; Haughey, S.; Elliott, C.T.; Wu, D. Fingerprinting Black Tea: When Spectroscopy Meets Machine Learning a Novel Workflow for Geographical Origin Identification. Food Chem. 2024, 438, 138029. [Google Scholar] [CrossRef]
- Friska, J.; Navaneetha Velammal, M.; Rajeshwari, A.; Hannah Blessy, P. Random Forest (RF) Based Identification of Rice Powder Mixture Using Terahertz Spectroscopy. J. Phys. Conf. Ser. 2021, 1979, 012056. [Google Scholar] [CrossRef]
- Soni, A.; Al-Sarayreh, M.; Reis, M.M.; Brightwell, G. Hyperspectral Imaging and Deep Learning for Quantification of Clostridium Sporogenes Spores in Food Products Using 1D- Convolutional Neural Networks and Random Forest Model. Food Res. Int. 2021, 147, 110577. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Wang, Z.; Chang, T.; Li, K.; Xu, W.; Wu, Y.; Yang, H.; Jiang, D. To Estimate Performance of Artificial Neural Network Model Based on Terahertz Spectrum: Gelatin Identification as an Example. Front. Nutr. 2022, 9, 925717. [Google Scholar] [CrossRef] [PubMed]
- Lu, R. Nondestructive Measurement of Firmness and Soluble Solids Content for Apple Fruit Using Hyperspectral Scattering Images. Sens. Instrum. Food Qual. Saf. 2007, 1, 19–27. [Google Scholar] [CrossRef]
- Son, S.; Kim, D.; Choul Choi, M.; Lee, J.; Kim, B.; Min Choi, C.; Kim, S. Weight Interpretation of Artificial Neural Network Model for Analysis of Rice (Oryza sativa L.) with near-Infrared Spectroscopy. Food Chem. X 2022, 15, 100430. [Google Scholar] [CrossRef] [PubMed]
- Özbalci, B.; Boyaci, I.H.; Topcu, A.; Kadilar, C.; Tamer, U. Rapid Analysis of Sugars in Honey by Processing Raman Spectrum Using Chemometric Methods and Artificial Neural Networks. Food Chem. 2013, 136, 1444–1452. [Google Scholar] [CrossRef]
- Qi, L.; Zhao, M.; Zhao, J.; Tang, Y. Preliminary Investigation of Terahertz Spectroscopy to Predict Pork Freshness Non-Destructively. Food Sci. Technol. 2019, 39, 563–570. [Google Scholar] [CrossRef]
- Cui, P.; Yu, Y.; Zhao, J.; Miao, P.; Xue, Q.; Liu, C.; Li, Z. Hyperspectral Imaging Combined with Artificial Intelligence Techniques to Explore the Drying Behavior of Natural Lonicerae Japonicae Flos Extracts. Measurement 2023, 218, 113246. [Google Scholar] [CrossRef]
- Qi, H.; Shen, C.; Chen, G.; Zhang, J.; Chen, F.; Li, H.; Zhang, C. Rapid and Non-Destructive Determination of Soluble Solid Content of Crown Pear by Visible/near-Infrared Spectroscopy with Deep Learning Regression. J. Food Compos. Anal. 2023, 123, 105585. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Haruna, S.A.; Zareef, M.; Chen, Q.; Ding, Z.; Yan, Y. Au-Ag OHCs-Based SERS Sensor Coupled with Deep Learning CNN Algorithm to Quantify Thiram and Pymetrozine in Tea. Food Chem. 2023, 428, 136798. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, J.; Lin, L.; Zhang, J.; Zhu, J.; Yao, L.; Wang, S.; Du, J.; Wu, Z. Mid-Infrared Spectra Feature Extraction and Visualization by Convolutional Neural Network for Sugar Adulteration Identification of Honey and Real-World Application. LWT 2021, 140, 110856. [Google Scholar] [CrossRef]
- Chen, F.; Shen, Y.; Li, G.; Ai, M.; Wang, L.; Xiong, X.; Tao, D. Classification of Wheat Grain Varieties Using Terahertz Spectroscopy and Convolutional Neural Network. J. Food Compos. Anal. 2024, 19, 106060. [Google Scholar] [CrossRef]
- Li, P.; Tang, S.; Chen, S.; Tian, X.; Zhong, N. Hyperspectral Imaging Combined with Convolutional Neural Network for Accurately Detecting Adulteration in Atlantic Salmon. Food Control 2023, 147, 109573. [Google Scholar] [CrossRef]
- Zuo, E.; Sun, L.; Yan, J.; Chen, C.; Chen, C.; Lv, X. Rapidly Detecting Fennel Origin of the Near-Infrared Spectroscopy Based on Extreme Learning Machine. Sci. Rep. 2022, 12, 13593. [Google Scholar] [CrossRef]
- Zhao, Y.-J.; Zhang, Z.; Zhang, Y.; Ni, X.-F.; Wang, H.-Y. Identification of Infant Rice Cereal Based on Raman Spectroscopy Combined with an Extreme Learning Machine Algorithm. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4539298 (accessed on 1 February 2024).
- Hou, X.; Jie, Z.; Wang, J.; Liu, X.; Ye, N. Application of Terahertz Spectroscopy Combined with Feature Improvement Algorithm for the Identification of Adulterated Rice Seeds. Infrared Phys. Technol. 2023, 131, 104694. [Google Scholar] [CrossRef]
- Cheng, J.; Sun, J.; Yao, K.; Xu, M.; Wang, S.; Fu, L. Development of Multi-Disturbance Bagging Extreme Learning Machine Method for Cadmium Content Prediction of Rape Leaf Using Hyperspectral Imaging Technology. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121479. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Busto, O. Data Fusion Methodologies for Food and Beverage Authentication and Quality Assessment—A Review. Anal. Chim. Acta 2015, 891, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marini, F. Artificial Neural Networks in Foodstuff Analyses: Trends and Perspectives A Review. Anal. Chim. Acta 2009, 635, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Nørgaard, L.; Mørup, M. Non-Linear Calibration Models for near Infrared Spectroscopy. Anal. Chim. Acta 2014, 813, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Rokach, L. Ensemble-Based Classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Sáiz-Abajo, M.J.; Mevik, B.H.; Segtnan, V.H.; Næs, T. Ensemble Methods and Data Augmentation by Noise Addition Applied to the Analysis of Spectroscopic Data. Anal. Chim. Acta 2005, 533, 147–159. [Google Scholar] [CrossRef]
- Diaz-Chito, K.; Georgouli, K.; Koidis, A.; Martinez del Rincon, J. Incremental Model Learning for Spectroscopy-Based Food Analysis. Chemom. Intell. Lab. Syst. 2017, 167, 123–131. [Google Scholar] [CrossRef]
- Gosselin, R.; Vieu, L.; Loukil, F.; Benoit, A. Privacy and Security in Federated Learning: A Survey. Appl. Sci. 2022, 12, 9901. [Google Scholar] [CrossRef]
- Khashei, M.; Zeinal Hamadani, A.; Bijari, M. A Novel Hybrid Classification Model of Artificial Neural Networks and Multiple Linear Regression Models. Expert Syst. Appl. 2012, 39, 2606–2620. [Google Scholar] [CrossRef]
- López, M.I.; Callao, M.P.; Ruisánchez, I. A Tutorial on the Validation of Qualitative Methods: From the Univariate to the Multivariate Approach. Anal. Chim. Acta 2015, 891, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Bansal, A.; Sarma, G.S.; Rawal, R.K. Chemometrics Tools Used in Analytical Chemistry: An Overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef]
- Gouvinhas, I.; De Almeida, J.M.M.M.; Carvalho, T.; Machado, N.; Barros, A.I.R.N.A. Discrimination and Characterisation of Extra Virgin Olive Oils from Three Cultivars in Different Maturation Stages Using Fourier Transform Infrared Spectroscopy in Tandem with Chemometrics. Food Chem. 2015, 174, 226–232. [Google Scholar] [CrossRef]
- Borràs, E.; Ferré, J.; Boqué, R.; Mestres, M.; Aceña, L.; Calvo, A.; Busto, O. Prediction of Olive Oil Sensory Descriptors Using Instrumental Data Fusion and Partial Least Squares (PLS) Regression. Talanta 2016, 155, 116–123. [Google Scholar] [CrossRef]
- Baumann, K. Cross-Validation as the Objective Function for Variable-Selection Techniques. TrAC Trends Anal. Chem. 2003, 22, 395–406. [Google Scholar] [CrossRef]
- Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric Methods in Data Processing of Mass Spectrometry-Based Metabolomics: A Review. Anal. Chim. Acta 2016, 914, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and Limitations of Non-Targeted Fingerprinting for Authentication of Food in Official Control. Food Res. Int. 2014, 60, 189–204. [Google Scholar] [CrossRef]
- Breznau, N.; Rinke, E.M.; Wuttke, A.; Nguyen, H.H.V.; Adem, M.; Adriaans, J.; Alvarez-Benjumea, A.; Andersen, H.K.; Auer, D.; Azevedo, F.; et al. Observing Many Researchers Using the Same Data and Hypothesis Reveals a Hidden Universe of Uncertainty. Proc. Natl. Acad. Sci. USA 2022, 119, e2203150119. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.W.; Kessler, W.; Zikulnig-Rusch, E. A Critical Summary of Spectroscopic Techniques and Their Robustness in Industrial PAT Applications. Chem. Ing. Tech. 2016, 88, 710–721. [Google Scholar] [CrossRef]
- Skov, T.; Honoré, A.H.; Jensen, H.M.; Næs, T.; Engelsen, S.B. Chemometrics in Foodomics: Handling Data Structures from Multiple Analytical Platforms. TrAC Trends Anal. Chem. 2014, 60, 71–79. [Google Scholar] [CrossRef]
- Granato, D.; Ares, G. Mathematical and Statistical Methods in Food Science and Technology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 1–513. [Google Scholar] [CrossRef]
- Pérez-Marín, D.C.; Garrido-Varo, A.; Guerrero-Ginel, J.E.; Gómez-Cabrera, A. Near-Infrared Reflectance Spectroscopy (NIRS) for the Mandatory Labelling of Compound Feedingstuffs: Chemical Composition and Open-Declaration. Anim. Feed. Sci. Technol. 2004, 116, 333–349. [Google Scholar] [CrossRef]
- Dong, J.; Zhuang, D.; Huang, Y.; Fu, J. Advances in Multi-Sensor Data Fusion: Algorithms and Applications. Sensors 2009, 9, 7771–7784. [Google Scholar] [CrossRef]
- Xu, Y.; Koidis, A.; Tian, X.; Xu, S.; Xu, X.; Wei, X.; Jiang, A.; Lei, H. Bayesian Fusion Model Enhanced Codfish Classification Using Near Infrared and Raman Spectrum. Foods 2022, 11, 4100. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, W.; Zhuang, H.; Yoon, S.C.; Jiang, H. Fusion of Spectra and Texture Data of Hyperspectral Imaging for the Prediction of the Water-Holding Capacity of Fresh Chicken Breast Filets. Appl. Sci. 2018, 8, 640. [Google Scholar] [CrossRef]
- Kucha, C.T.; Liu, L.; Ngadi, M.; Gariépy, C. Anisotropic Effect on the Predictability of Intramuscular Fat Content in Pork by Hyperspectral Imaging and Chemometrics. Meat Sci. 2021, 176, 108458. [Google Scholar] [CrossRef] [PubMed]
- Gredell, D.A.; Schroeder, A.R.; Belk, K.E.; Broeckling, C.D.; Heuberger, A.L.; Kim, S.Y.; King, D.A.; Shackelford, S.D.; Sharp, J.L.; Wheeler, T.L.; et al. Comparison of Machine Learning Algorithms for Predictive Modeling of Beef Attributes Using Rapid Evaporative Ionization Mass Spectrometry (REIMS) Data. Sci. Rep. 2019, 9, 5721. [Google Scholar] [CrossRef] [PubMed]
- Czabanski, R.; Jezewski, M.; Leski, J. Introduction to Fuzzy Systems. Stud. Fuzziness Soft Comput. 2017, 356, 23–43. [Google Scholar] [CrossRef]
- Peris-Díaz, M.D.; Krężel, A. A Guide to Good Practice in Chemometric Methods for Vibrational Spectroscopy, Electrochemistry, and Hyphenated Mass Spectrometry. TrAC Trends Anal. Chem. 2021, 135, 116157. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Zhang, Y.; Feng, Y.; Liu, J.; Zhu, H. Artificial Intelligence in Food Safety: A Decade Review and Bibliometric Analysis. Foods 2023, 12, 1242. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Passos, D.; Marini, F.; Xu, J.; Amigo, J.M.; Gowen, A.A.; Jansen, J.J.; Biancolillo, A.; Roger, J.M.; Rutledge, D.N.; et al. Deep Learning for Near-Infrared Spectral Data Modelling: Hypes and Benefits. TrAC Trends Anal. Chem. 2022, 157, 116804. [Google Scholar] [CrossRef]
- Dora, M.; Kumar, A.; Mangla, S.K.; Pant, A.; Kamal, M.M. Critical Success Factors Influencing Artificial Intelligence Adoption in Food Supply Chains. Int. J. Prod. Res. 2022, 60, 4621–4640. [Google Scholar] [CrossRef]
- Kudashkina, K.; Corradini, M.G.; Thirunathan, P.; Yada, R.Y.; Fraser, E.D.G. Artificial Intelligence Technology in Food Safety: A Behavioral Approach. Trends Food Sci. Technol. 2022, 123, 376–381. [Google Scholar] [CrossRef]
- Georgouli, K.; Osorio, M.T.; Martinez Del Rincon, J.; Koidis, A. Data Augmentation in Food Science: Synthesising Spectroscopic Data of Vegetable Oils for Performance Enhancement. J. Chemom. 2018, 32, e3004. [Google Scholar] [CrossRef]
- Rutan, S.C.; De Noord, O.E.; Andréa, R.R. Characterization of the Sources of Variation Affecting Near-Infrared Spectroscopy Using Chemometric Methods. Anal. Chem. 1998, 70, 3198–3201. [Google Scholar] [CrossRef]
- Moisés, A.G.; Pascual, I.V.; González, J.J.I.; Zamarreño, C.R. Data Augmentation Techniques for Machine Learning Applied to Optical Spectroscopy Datasets in Agrifood Applications: A Comprehensive Review. Sensors 2023, 23, 8562. [Google Scholar] [CrossRef] [PubMed]
- Segtnan, V.H.; Mevik, B.H.; Isaksson, T.; Næs, T. Low-Cost Approaches to Robust Temperature Compensation in Near-Infrared Calibration and Prediction Situations. Appl. Spectrosc. 2005, 59, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Wei, Y.; An, D. Near-Infrared Hyperspectral Imaging Technology Combined with Deep Convolutional Generative Adversarial Network to Predict Oil Content of Single Maize Kernel. Food Chem. 2022, 370, 131047. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.K.; Dupont, M.; Elbourne, A.; Gangadoo, S.; Pathirannahalage, P.R.; Cheeseman, S.; Chapman, J.; Cozzolino, D. From Academia to Reality Check: A Theoretical Framework on the Use of Chemometric in Food Sciences. Foods 2019, 8, 164. [Google Scholar] [CrossRef]
- Okolo, C.A.; Kilcawley, K.N.; O’Connor, C. Recent Advances in Whiskey Analysis for Authentication, Discrimination, and Quality Control. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4957–4992. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Advances in Neural Information Processing Systems, Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 5999–6009. [Google Scholar]
Chemometrics | Technique | Applications | Performance (as Reported) | Refs |
---|---|---|---|---|
LDA | NIR | Alcohol degree of Chinese liquor | R2 = 0.96 | [34] |
LDA | Raman | Adulterants (fructose corn syrup and maltose syrup) in honey | Accuracy = 91% | [35] |
QDA | HSI | Detection of anthracnose in mango fruits | KAPPA = 90% | [36] |
KNN | NIR | Geographic origin discrimination of millet | Discrimination rate = 0.99 | [37] |
KNN | Raman | Detection of adulteration of extra virgin olive oil | Classification rate = 0.79 | [38] |
KNN | MIR | Monitoring of soluble pectin content in orange juice | Accuracy = 85% | [39] |
SIMCA | NIR | Identification of the types of fat added to feed | Sensitivities = 100% | [40] |
SIMCA | Raman | Detection of milk powder adulteration | Accuracy = 97% | [41] |
PCR | Raman | Honey adulteration | Accuracy = 96.54% | [42] |
MLR | NIR | Soluble solids content of tea soft drinks | R2 = 0.98 | [43] |
MLR | MIR | Mycotoxin deoxynivalenol (DON) in wheat | R2 = 0.99 | [44] |
PLS | NIR | Aflatoxigenic fungal contamination in rice | R2 = 0.67 | [45] |
PLS | SERS | Identification of food processing bacteria | Accuracy = 99% | [46] |
PLS | MIR | Quality characteristics in pomegranate kernel oil | R2 = 0.91 | [47] |
PLS | THz | Detection of moisture content for Ginkgo biloba fruit | R2 = 0.78 | [48] |
PLS | HSI | Identification of sun-dried and sulphur-fumigated herbals | Sensitivity = 96% | [49] |
SVM | NIR | Adulteration of food products (extra-virgin-olive oil, honey, milk, and yogurt) | Accuracy = 0.90–1.00 | [50] |
SVM | Raman | Adulteration of extra virgin olive oil | R2 = 0.99 | [51] |
SVM | MIR | Discrimination of wild Paris Polyphylla Smith var. yunnanensis | Accuracy = 87% | [52] |
SVM | THz | Use in dried tangerine peels | Accuracy = 94% | [53] |
SVM | HSI | Authentication of Theobroma cacao bean hybrids | Prediction error = 3.8–23.1% | [54] |
DT | NIR | Poultry quality classification | Precision = 0.74 | [55] |
DT | Raman | Identification of foodborne pathogenic bacteria | Correct recognition ratio = 0.98 | [56] |
DT | MIR | Rapid screening of aflatoxin-contaminated peanut oil | Sensitivity = 100% | [57] |
DT | THz | Moisture content in fruits and vegetables | Accuracy > 94% | [58] |
DT | HSI | Evaluation of subjective tea quality | R2 = 93% | [59] |
RF | NIR | Determination of the food dye indigotine in cream | R2 = 0.94; RPD = 4.09 | [60] |
RF | Raman | Classification of milk products from cows, buffalos, and goats | Accuracy > 94% | [61] |
RF | MIR | Identification of the geographical origin of black tea | Accuracy = 100% | [62] |
RF | THz | Identification of rice powder mixtures | Accuracy = 98% | [63] |
RF | HSI | Quantification of Clostridium sporogenes spores in food products | Accuracy = 80% | [64] |
FNN | THz | Prediction of gelatin of various animal origins | Accuracy = 100% | [65] |
FNN | HSI | Measurement of firmness and soluble solids content for apples | R2 = 0.76, 0.79 | [66] |
ANN | NIR | Measurement of carbohydrates and moisture in rice | R2 = 0.98, 0.97 | [67] |
ANN | Raman | Rapid analysis of sugars in honey | R2 > 0.96 | [68] |
ANN | THz | Prediction of the freshness of pork | RMSEP = 9.9% | [69] |
ANN | HSI | Prediction of moisture content in Lonicerae Japonicae Flos | RPD = 4.42 | [70] |
CNN | NIR | Determination of the soluble solid content of crown pear | R2 = 0.96 | [71] |
CNN | SERS | Quantification of thiram and pymetrozine in tea | R2 = 0.99, 0.98 | [72] |
CNN | MIR | Identification of sugar adulteration in honey | Accuracy = 100% | [73] |
CNN | THz | Classification of wheat grain varieties | Accuracy = 98% | [74] |
CNN | HSI | Quantitative adulteration in Atlantic salmon | R2 = 0.99 | [75] |
ELM | NIR | Detection of fennel origin | Accuracy = 100% | [76] |
ELM | Raman | Identification of infant rice cereal | Accuracy = 99% | [77] |
ELM | THz | Identification of adulterated rice seeds | Accuracy = 100% | [78] |
ELM | HSI | Prediction of the cadmium content in rape leaf | R2 = 0.98 | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, W.; Georgouli, K.; Martinez-Del Rincon, J.; Koidis, A. Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis. Foods 2024, 13, 846. https://doi.org/10.3390/foods13060846
Jia W, Georgouli K, Martinez-Del Rincon J, Koidis A. Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis. Foods. 2024; 13(6):846. https://doi.org/10.3390/foods13060846
Chicago/Turabian StyleJia, Wenyang, Konstantia Georgouli, Jesus Martinez-Del Rincon, and Anastasios Koidis. 2024. "Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis" Foods 13, no. 6: 846. https://doi.org/10.3390/foods13060846
APA StyleJia, W., Georgouli, K., Martinez-Del Rincon, J., & Koidis, A. (2024). Challenges in the Use of AI-Driven Non-Destructive Spectroscopic Tools for Rapid Food Analysis. Foods, 13(6), 846. https://doi.org/10.3390/foods13060846