Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. The Sampling of Xuanwei Ham
2.3. Determination of pH, Moisture Content, Water Activity (aw), and NaCl Content
2.4. Determination of Texture Profile
2.5. Determination of Colour
2.6. Sensory Evaluation
2.7. Determination of Electronic-Nose
2.8. Determination of Thiobarbituric Acid Reactive Substances
2.9. Determination of Volatile Compounds
2.10. Determination of Microbial Diversity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation of Xuanwei Ham
3.2. Moisture, aw, pH, and NaCl Content Analysis
3.3. Lipid Oxidation Analysis
3.4. Textural Profile Analysis
3.5. Colour Analysis
3.6. E-Nose Analysis
3.7. Analysis of Volatile Compounds
3.7.1. Volatile Compounds Content
3.7.2. Major Volatile Compounds Analysis
3.8. Microbial Diversity Analysis
3.8.1. Bacterial Diversity Analysis
3.8.2. Fungal Diversity Analysis
3.8.3. LDA Analysis of Differential Microorganisms among Hams
3.9. Correlation Analysis between Microbial and Volatile Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Ma, P.; Jiang, D.; Peng, Q.; Yang, H. The natural microflora of Xuanwei ham and the no-mouldy ham production. J. Food Eng. 2006, 77, 103–111. [Google Scholar] [CrossRef]
- Guo, J.; Xu, F.; Xie, Y.; Chen, B.; Wang, Y.; Nie, W.; Zhou, K.; Zhou, H.; Xu, B. Effect of Xuanwei Ham Proteins with Different Ripening Periods on Lipid Metabolism, Oxidative Stress, and Gut Microbiota in Mice. Mol. Nutr. Food Res. 2022, 66, 2101020. [Google Scholar] [CrossRef]
- Guo, J.; Wang, Y.; Li, P.; Wu, W.; Xu, F.; Zhou, K.; Xu, B. The modulatory effects on enterohepatic cholesterol metabolism of novel cholesterol-lowering peptides from gastrointestinal digestion of Xuanwei ham. Food Res. Int. 2023, 173, 113391. [Google Scholar] [CrossRef]
- Xing, L.; Hu, Y.; Hu, H.; Ge, Q.; Zhou, G.; Zhang, W. Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chem. 2016, 194, 951–958. [Google Scholar] [CrossRef]
- Pugliese, C.; Sirtori, F.; Skrlep, M.; Piasentier, E.; Calamai, L.; Franci, O.; Candek-Potokar, M. The effect of ripening time on the chemical, textural, volatile and sensorial traits of Bicep femoris and Semimembranosus muscles of the Slovenian dry-cured ham Kraski prsut. Meat Sci. 2015, 100, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Morales, R.; Guerrero, L.; Serra, X.; Gou, P. Instrumental evaluation of defective texture in dry-cured hams. Meat Sci. 2007, 76, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Andrés, A.I.; Cava, R.; Ventanas, J.; Muriel, E.; Ruiz, J. Lipid oxidative changes throughout the ripening of dry-cured Iberian hams with different salt contents and processing conditions. Food Chem. 2004, 84, 375–381. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, Y.; Sun, Y.; Pan, D.; Ou, C.; Dang, Y.; Wang, Y.; Cao, J.; Wang, D. 1H NMR and multivariate data analysis of the differences of metabolites in five types of dry-cured hams. Food Res. Int. 2018, 113, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhan, G.; Pan, D.; Zhou, G.; Wang, Y.; He, J.; Cao, J. Charactering the spoilage mechanism of “three sticks” of Jinhua ham. Food Sci. Hum. Wellness 2022, 11, 1322–1330. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Pan, D.; Geng, F.; Zhou, C.; Cao, J. Insight into the relationship between microorganism communities and flavor quality of Chinese dry-cured boneless ham with different quality grades. Food Biosci. 2022, 50, 102174. [Google Scholar] [CrossRef]
- Hinrichsen, L.; Pedersen, S.B. Relationship among flavor, volatile compounds, chemical changes, and microflora in Italian-type dry-cured ham during processing. J. Agr. Food Chem. 1995, 43, 2932–2940. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Crit. Rev. Food Sci. Nutr. 1998, 38, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Fulladosa, E.; Garriga, M.; Martín, B.; Guàrdia, M.; García-Regueiro, J.; Arnau, J. Volatile profile and microbiological characterization of hollow defect in dry-cured ham. Meat Sci. 2010, 86, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Z.; Ji, L.; Zhang, J.; Zhao, Z.; Zhang, R.; Bai, T.; Hou, B.; Wang, W. Flavor Composition and Microbial Community Structure of Mianning Ham. Front. Microbiol. 2020, 11, 623775. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, W.; Zhang, Y.; Li, M.; Zhang, J.; Ji, L.; Zhao, Z.; Zhang, R.; Chen, L. Characterization of Quality Properties in Spoiled Mianning Ham. Foods 2022, 11, 1713. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Le, Y.; Zheng, Y.; Wang, J.; Li, G.; Bai, Y.; Li, C.; Xu, X.; Zhou, G.; Cao, J. Characterizing the effect of free amino acids and volatile compounds on excessive bitterness and sourness in defective dry-cured ham. LWT 2020, 123, 109071. [Google Scholar] [CrossRef]
- Oguntoyinbo, F. Monitoring of marine Bacillus diversity among the bacteria community of sea water. Afr. J. Biotechnol. 2007, 6, 193–219. [Google Scholar]
- Ghelardi, E.; Celandroni, F.; Salvetti, S.; Barsotti, C.; Baggiani, A.; Senesi, S. Identification and characterization of toxigenic Bacillus cereus isolates responsible for two food-poisoning outbreaks. FEMS Microbiol. Lett. 2002, 208, 129–134. [Google Scholar] [CrossRef]
- Fernández-No, I.; Böhme, K.; Díaz-Bao, M.; Cepeda, A.; Barros-Velázquez, J.; Calo-Mata, P. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting. Food Microbiol. 2013, 33, 235–242. [Google Scholar] [CrossRef]
- van Baar, B.L. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry. FEMS Microbiol. Rev. 2000, 24, 193–219. [Google Scholar] [CrossRef]
- García, C.; Martín, A.; Timón, M.; órdoba, J. Microbial populations and volatile compounds in the ‘bone taint’ spoilage of dry cured ham. Lett. Appl. Microbiol. 2000, 30, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.; Latty, J.B. A numerical taxonomic study of Pseudomonas strains from spoiled meat. J. Appl. Microbiol. 1982, 52, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liu, X.; Yang, X.; Qian, Y.; Zhang, X. Microbial ecology of Trichiurus lepturus of haitail pretreated by high hydrostatic pressure during cold storage based on phenotypic and 16S rRNA gene analysis. Trans. Chin. Soc. Agric. Eng. 2016, 32, 307–314. [Google Scholar] [CrossRef]
- Landeta, G.; Reverón, I.; Carrascosa, A.V.; de las Rivas, B.; Muñoz, R. Use of recA gene sequence analysis for the identification of Staphylococcus equorum strains predominant on dry-cured hams. Food Microbiol. 2011, 28, 1205–1210. [Google Scholar] [CrossRef]
- Deng, J.; Xu, H.; Li, X.; Wu, Y.; Xu, B. Correlation of characteristic flavor and microbial community in Jinhua ham during the post-ripening stage. LWT 2022, 171, 114067. [Google Scholar] [CrossRef]
- Ji, J.; Liu, Y.; Ma, Y. Variations of polycyclic aromatic hydrocarbons in vegetable oils during seed roasting pre-treatment. Polycycl. Aromat. Compd. 2022, 42, 2447–2460. [Google Scholar] [CrossRef]
- Pando Bedriñana, R.; Rodríguez Madrera, R.; Picinelli Lobo, A. Production of New Ciders: Chemical and Sensory Profiles. In Natural Products in Beverages: Botany, Phytochemistry, Pharmacology and Processing; Springer: Cham, Switzerland, 2023; pp. 1–43. [Google Scholar] [CrossRef]
- Martínez-Onandi, N.; Rivas-Cañedo, A.; Ávila, M.; Garde, S.; Nuñez, M.; Picon, A. Influence of physicochemical characteristics and high pressure processing on the volatile fraction of Iberian dry-cured ham. Meat Sci. 2017, 131, 40–47. [Google Scholar] [CrossRef]
- Yang, Z.; He, Y.; Liao, G.; Ding, X.; Lü, D.; Zhang, L.; Tian, M.; Ge, C.; Wang, G. Comparative analysis of characteristic volatile compounds in five types of Yunnan dry-cured hams by HS-GC-IMS and HS-SPME-GC-MS. Food Sci. Anim. Prod. 2023, 1, 9240022. [Google Scholar] [CrossRef]
- Huang, A.; Sirisansaneeyakul, S.; Ge, C.; Chen, Z.; Huang, Q.; Qin, W.; Chisti, Y. Physicochemical Changes During Processing of Chinese Xuanwei Ham. Agric. Nat. Resour. 2011, 45, 539–550. [Google Scholar]
- Marusic Radovcic, N.; Poljanec, I.; Petricevic, S.; Mora, L.; Medic, H. Influence of Muscle Type on Physicochemical Parameters, Lipolysis, Proteolysis, and Volatile Compounds throughout the Processing of Smoked Dry-Cured Ham. Foods 2021, 10, 1228. [Google Scholar] [CrossRef]
- Gamela, R.; Barrera, E.; Duarte, Á.; Boschetti, W.; da Silva, M.; Vale, M.; Dessuy, M. Fast sequential determination of Zn, Fe, Mg, Ca, Na, and K in infant formulas by high-resolution continuum source flame atomic absorption spectrometry using ultrasound-assisted extraction. Food Anal. Methods 2019, 12, 1420–1428. [Google Scholar] [CrossRef]
- Liao, R.; Xia, Q.; Zhou, C.; Geng, F.; Wang, Y.; Sun, Y.; He, J.; Pan, D.; Cao, J. LC-MS/MS-based metabolomics and sensory evaluation characterize metabolites and texture of normal and spoiled dry-cured hams. Food Chem. 2022, 371, 131156. [Google Scholar] [CrossRef] [PubMed]
- Hersleth, M.; Lengard, V.; Verbeke, W.; Guerrero, L.; Næs, T. Consumers’ acceptance of innovations in dry-cured ham: Impact of reduced salt content, prolonged aging time and new origin. Food Qual. Prefer. 2011, 22, 31–41. [Google Scholar] [CrossRef]
- Yao, L.; Ma, D.; Guo, X. Identification and classification of Jinhua ham by electronic nose. J. Food Sci. Biotechnol. 2012, 10, 1051–1056. [Google Scholar]
- Yin, X.; Lv, Y.; Wen, R.; Wang, Y.; Chen, Q.; Kong, B. Characterization of selected Harbin red sausages on the basis of their flavour profiles using HS-SPME-GC/MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108345. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiong, Y. Inhibition of lipid oxidation in cooked beef patties by hydrolyzed potato protein is related to its reducing and radical scavenging ability. J. Agr. Food. Chem. 2005, 53, 9186–9192. [Google Scholar] [CrossRef]
- Chen, C.; Cheng, G.; Liu, Y.; Yi, Y.; Chen, D.; Zhang, L.; Wang, X.; Cao, J. Correlation between microorganisms and flavor of Chinese fermented sour bamboo shoot: Roles of Lactococcus and Lactobacillus in flavor formation. Food Biosci. 2022, 50, 101994. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, H.; Kong, B.; Wang, Y.; Chen, Q. The succession and correlation of the bacterial community and flavour characteristics of Harbin dry sausages during fermentation. LWT 2021, 138, 110689. [Google Scholar] [CrossRef]
- Martín, A.; Benito, M.J.; Aranda, E.; Ruiz-Moyano, S.; Córdoba, J.J.; Córdoba, M.G. Characterization by volatile compounds of microbial deep spoilage in Iberian dry-cured ham. J. Food Sci. 2010, 75, M360–M365. [Google Scholar] [CrossRef]
- Blanco, D.; Ariño, A.; Conchello, P.; Perez, C.; Yangüela, J.; Herrera, A. Physico-chemical characterization of “Bone Taint” in Spanish dry-cured hams. J. Food Prot. 1997, 60, 667–672. [Google Scholar] [CrossRef]
- Martinez-Onandi, N.; Rivas-Canedo, A.; Nunez, M.; Picon, A. Effect of chemical composition and high pressure processing on the volatile fraction of Serrano dry-cured ham. Meat Sci. 2016, 111, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhou, Y.; Wang, G.; Zhu, R.; Ge, C.; Liao, G. Changes in the physicochemical properties and volatile flavor compounds of dry-cured Chinese Laowo ham during processing. J. Food Process. Preserv. 2020, 44, e14593. [Google Scholar] [CrossRef]
- Bosse, R.; Müller, A.; Gibis, M.; Weiss, A.; Schmidt, H.; Weiss, J. Recent advances in cured raw ham manufacture. Crit. Rev. Food Sci. Nutr. 2018, 58, 610–630. [Google Scholar] [CrossRef]
- Lin, F.; Cai, F.; Luo, B.; Gu, R.; Ahmed, S.; Long, C. Variation of Microbiological and Biochemical Profiles of Laowo Dry-Cured Ham, an Indigenous Fermented Food, during Ripening by GC-TOF-MS and UPLC-QTOF-MS. J. Agr. Food Chem. 2020, 68, 8925–8935. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Effect of pH24, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Sci. 2006, 72, 185–194. [Google Scholar] [CrossRef]
- Morrissey, P.; Sheehy, P.; Galvin, K.; Kerry, J.; Buckley, D. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86. [Google Scholar] [CrossRef]
- Kanatt, S.; Chander, R.; Sharma, A. Effect of radiation processing on the quality of chilled meat products. Meat Sci. 2005, 69, 269–275. [Google Scholar] [CrossRef]
- Gao, R.; Liu, H.; Li, Y.; Liu, H.; Zhou, Y.; Yuan, L. Correlation between dominant bacterial community and non-volatile organic compounds during the fermentation of shrimp sauces. Food Sci. Hum. Wellness 2023, 12, 233–241. [Google Scholar] [CrossRef]
- Aguirrezábal, M.; Mateo, J.; Domínguez, M.; Zumalacárregui, J. The effect of paprika, garlic and salt on rancidity in dry sausages. Meat Sci. 2000, 54, 77–81. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M.; Sanz, Y. Dry-cured ham flavour: Enzymatic generation and process influence. Food Chem. 1997, 59, 523–530. [Google Scholar] [CrossRef]
- Marušić Radovčić, N.; Mikulić, A.; Turk, M.; Medić, H. Differentiation of Bicep femoris and Semimembranosus muscles of smoked dry-cured ham by quality parameters. Hrvat. Časopis Prehrambenu Tehnol. Biotehnol. Nutr. 2019, 14, 4–9. [Google Scholar] [CrossRef]
- Yang, Q.; Sun, D.; Cheng, W. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process. J. Food Eng. 2017, 192, 53–60. [Google Scholar] [CrossRef]
- Serra, X.; Ruiz-Ramírez, J.; Arnau, J.; Gou, P. Texture parameters of dry-cured ham m. biceps femoris samples dried at different levels as a function of water activity and water content. Meat Sci. 2005, 69, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Ramirez, J.; Arnau, J.; Serra, X.; Gou, P. Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Sci. 2005, 70, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Barretto, T.; Pollonio, M.; Telis-Romero, J.; da Silva Barretto, A.C. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Sci. 2018, 145, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. Food Control 2014, 43, 263–269. [Google Scholar] [CrossRef]
- Bozkurt, H.; Bayram, M. Colour and textural attributes of sucuk during ripening. Meat Sci. 2006, 73, 344–350. [Google Scholar] [CrossRef]
- Andronikov, D.; Gašperlin, L.; Polak, T.; Žlender, B. Texture and quality parameters of slovenian dry-cured ham kraški pršut according to mass and salt levels. Food Technol. Biotechnol. 2013, 51, 112–122. [Google Scholar]
- Seong, P.; Park, K.; Kang, S.; Kang, G.; Cho, S.; Park, B.; Van Ba, H. Effect of particular breed on the chemical composition, texture, color, and sensorial characteristics of dry-cured ham. Asian-australas. J. Anim. Sci. 2014, 27, 1164. [Google Scholar] [CrossRef]
- Pérez-Palacios, T.; Ruiz, J.; Martín, D.; Barat, J.; Antequera, T. Pre-cure freezing effect on physicochemical, texture and sensory characteristics of Iberian ham. Food Sci. Technol. Int. 2011, 17, 127–133. [Google Scholar] [CrossRef]
- Lindahl, G.; Lundström, K.; Tornberg, E. Contribution of pigment content, myoglobin forms and internal reflectance to the colour of pork loin and ham from pure breed pigs. Meat Sci. 2001, 59, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Andrés, A.; Ventanas, S.; Ventanas, J.; Cava, R.; Ruiz, J. Physicochemical changes throughout the ripening of dry cured hams with different salt content and processing conditions. Eur. Food Res. Technol. 2005, 221, 30–35. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, S.; Ockerman, H. Lipid oxidation and color change of salted pork patties. Meat Sci. 2007, 75, 71–77. [Google Scholar] [CrossRef]
- Gou, P.; Morales, R.; Serra, X.; Guàrdia, M.D.; Arnau, J. Effect of a 10-day ageing at 30 C on the texture of dry-cured hams processed at temperatures up to 18 C in relation to raw meat pH and salting time. Meat Sci. 2008, 80, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Cilla, I.; Martinez, L.; Beltran, J.; Roncales, P. Factors affecting acceptability of dry-cured ham throughout extended maturation under “bodega” conditions. Meat Sci. 2005, 69, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Gandemer, G. Lipids in muscles and adipose tissues, changes during processing and sensory properties of meat products. Meat Sci. 2002, 62, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Purrinos, L.; Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Development of volatile compounds during the manufacture of dry-cured “Lacón”, a Spanish traditional meat product. J. Food Sci. 2011, 76, C89–C97. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Liu, Y.; Zhu, J.; Zhou, G. Changes in the volatile flavour components of Jinhua ham during the traditional ageing process. Int. J. Food Sci. Technol. 2006, 41, 1033–1039. [Google Scholar] [CrossRef]
- Van Ba, H.; Ryu, K.; Lan, N.; Hwang, I. Influence of particular breed on meat quality parameters, sensory characteristics, and volatile components. Food Sci. Biotechnol. 2013, 22, 651–658. [Google Scholar] [CrossRef]
- Forss, D. Odor and flavor compounds from lipids. Progress Chem. Fats Other Lipids 1973, 13, 177–258. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.; D’Souza, L.; Teranishi, R.; Buttery, R. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef]
- Shahidi, F. Flavor of Meat, Meat Products and Seafoods; Springer: Berlin, Germany, 1998. [Google Scholar]
- Berdague, J.; Denoyer, C.; Le Quere, J.; Semon, E. Volatile components of dry-cured ham. J. Agr. Food Chem. 1991, 39, 1257–1261. [Google Scholar] [CrossRef]
- Carrapiso, A.; Martín, L.; Jurado, Á.; García, C. Characterisation of the most odour-active compounds of bone tainted dry-cured Iberian ham. Meat Sci. 2010, 85, 54–58. [Google Scholar] [CrossRef]
- Petricevic, S.; Marusic Radovcic, N.; Lukic, K.; Listes, E.; Medic, H. Differentiation of dry-cured hams from different processing methods by means of volatile compounds, physico-chemical and sensory analysis. Meat Sci. 2018, 137, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Marusic Radovcic, N.; Vidacek, S.; Janci, T.; Medic, H. Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham. J. Food Sci. Technol. 2016, 53, 4093–4105. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Juan, M.; Flores, M.; Toldrá, F. Generation of volatile flavour compounds as affected by the chemical composition of different dry-cured ham sections. Eur. Food Res. Technol. 2006, 222, 658–666. [Google Scholar] [CrossRef]
- Armenteros, M.; Toldra, F.; Aristoy, M.-C.; Ventanas, J.; Estevez, M. Effect of the partial replacement of sodium chloride by other salts on the formation of volatile compounds during ripening of dry-cured ham. J. Agr. Food Chem. 2012, 60, 7607–7615. [Google Scholar] [CrossRef] [PubMed]
- García-González, D.; Tena, N.; Aparicio-Ruiz, R.; Morales, M. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, G.; Buratti, S.; Laureati, M.; Pagliarini, E. Evolution of physicochemical, morphological and aromatic characteristics of Italian PDO dry-cured hams during processing. Eur. Food Res. Technol. 2015, 242, 1117–1127. [Google Scholar] [CrossRef]
- Guo, X.; Lu, S.; Wang, Y.; Dong, J.; Ji, H.; Wang, Q. Correlations among flavor compounds, lipid oxidation indices, and endogenous enzyme activity during the processing of Xinjiang dry-cured mutton ham. J. Food Process. Preserv. 2019, 43, e14199. [Google Scholar] [CrossRef]
- Wang, X.; Fan, W.; Xu, Y. Comparison on aroma compounds in Chinese soy sauce and strong aroma type liquors by gas chromatography–olfactometry, chemical quantitative and odor activity values analysis. Eur. Food Res. Technol. 2014, 239, 813–825. [Google Scholar] [CrossRef]
- Sirtori, F.; Dimauro, C.; Bozzi, R.; Aquilani, C.; Franci, O.; Calamai, L.; Pezzati, A.; Pugliese, C. Evolution of volatile compounds and physical, chemical and sensory characteristics of Toscano PDO ham from fresh to dry-cured product. Eur. Food Res. Technol. 2019, 246, 409–424. [Google Scholar] [CrossRef]
- Andrade, M.; Córdoba, J.; Sánchez, B.; Casado, E.; Rodríguez, M. Evaluation and selection of yeasts isolated from dry-cured Iberian ham by their volatile compound production. Food Chem. 2009, 113, 457–463. [Google Scholar] [CrossRef]
- Saraiva, C.; Oliveira, I.; Silva, J.; Martins, C.; Ventanas, J.; García, C. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef. J. Food Sci. Technol. 2015, 52, 3887–3898. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Ventanas, J.; Cava, R.; Andrés, A.; García, C. Volatile compounds of dry-cured Iberian ham as affected by the length of the curing process. Meat Sci. 1999, 52, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Córdoba, J.; Aranda, E.; Córdoba, M.; Asensio, M.A. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 2006, 110, 8–18. [Google Scholar] [CrossRef]
- Bota, G.; Harrington, P. Direct detection of trimethylamine in meat food products using ion mobility spectrometry. Talanta 2006, 68, 629–635. [Google Scholar] [CrossRef]
- Amoore, J.; Forrester, L. Specific anosmia to trimethylamine: The fishy primary odor. J. Chem. Ecol. 1976, 2, 49–56. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of different drying methods on the myosin structure, amino acid composition, protein digestibility and volatile profile of squid fillets. Food Chem. 2015, 171, 168–176. [Google Scholar] [CrossRef]
- Zhou, Q.; Wintersteen, C.; Cadwallader, K. Identification and quantification of aroma-active components that contribute to the distinct malty flavor of buckwheat honey. J. Agr. Food Chem. 2002, 50, 2016–2021. [Google Scholar] [CrossRef]
- Etschmann, M.; Kötter, P.; Hauf, J.; Bluemke, W.; Entian, K.-D.; Schrader, J. Production of the aroma chemicals 3-(methylthio)-1-propanol and 3-(methylthio)-propylacetate with yeasts. Appl. Microbiol. Biotechnol. 2008, 80, 579–587. [Google Scholar] [CrossRef]
- Forney, C.; Jordan, M. Anaerobic production of methanethiol and other compounds by Brassica vegetables. HortScience 1999, 34, 696–699. [Google Scholar] [CrossRef]
- Hoven, V.; Rattanakaran, K.; Tanaka, Y. Determination of chemical components that cause mal-odor from natural rubber. Rubber Chem. Technol. 2003, 76, 1128–1144. [Google Scholar] [CrossRef]
- Tewari, A.; Singh, S.; Singh, R. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J. Food Sci. Technol. 2015, 52, 1796–1801. [Google Scholar] [CrossRef]
- Kong, L.; Yu, S.; Yuan, X.; Li, C.; Yu, P.; Wang, J.; Guo, H.; Wu, S.; Ye, Q.; Lei, T. An investigation on the occurrence and molecular characterization of Bacillus cereus in meat and meat products in China. Foodborne Pathog. Dis. 2021, 18, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Shangwu, Z. Progresses in the Research of Putrefactive Microorganisms in Spoiled Dry-cured Ham. J. Food Ferment. Ind. 2006, 32, 93. [Google Scholar]
- Zhang, X.; Dang, X.; Wang, Y.; Sun, T.; Wang, Y.; Yu, H.; Yang, W. Diversity and composition of microbiota during fermentation of traditional Nuodeng ham. J. Microbiol. 2021, 59, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Marusic, N.; Vidacek, S.; Janci, T.; Petrak, T.; Medic, H. Determination of volatile compounds and qu ality parameters of traditional Istrian dry-cured ham. Meat Sci. 2014, 96, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Youssef, F.; Singab, A. An updated review on the secondary metabolites and biological activities of Aspergillus ruber and Aspergillus flavus and exploring the cytotoxic potential of their isolated compounds using virtual screening. Evid. Based Complement. Altern. Med. 2021, 2021, 8860784. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Huang, T.; Peng, F.; Huang, J.; Liu, Z.; Peng, Z.; Xie, M.; Xiong, T. The microbial succession and their correlation with the dynamics of flavor compounds involved in the natural fermentation of suansun, a traditional Chinese fermented bamboo shoots. Food Res. Int. 2022, 157, 111216. [Google Scholar] [CrossRef] [PubMed]
- Petrova, I.; Aasen, I.; Rustad, T.; Eikevik, T. Manufacture of dry-cured ham: A review. Part 1. Biochemical changes during the technological process. Eur. Food Res. Technol. 2015, 241, 587–599. [Google Scholar] [CrossRef]
- Huan, Y.; Zhou, G.; Xu, X.; Liu, Y.; Wang, L. Study on the flavor characteristics of Jinhua ham of different grades. Food Sci. 2006, 27, 39–45. [Google Scholar]
- Tan, L.; Grewal, P. Pathogenicity of Moraxella osloensis, a bacterium associated with the nematode Phasmarhabditis hermaphrodita, to the slug Deroceras reticulatum. Appl. Environ. Microbiol. 2001, 67, 5010–5016. [Google Scholar] [CrossRef] [PubMed]
Parameters | Normal Ham | Spoiled Ham | ||
---|---|---|---|---|
BF | SM | BF | SM | |
Moisture (g/100g) | 46.88 ± 0.21 Ba | 39.44 ± 0.59 Bb | 56.32 ± 4.06 Aa | 49.98 ± 2.37 Ab |
aw | 0.75 ± 0.00 Ba | 0.74 ± 0.00 Ba | 0.88 ± 0.00 Aa | 0.87 ± 0.00 Aa |
pH | 5.74 ± 0.01 Bb | 5.79 ± 0.01 Ba | 6.63 ± 0.01 Ab | 6.45 ± 0.01 Aa |
NaCl (% of dry matter) | 14.09 ± 2.10 Aa | 9.44 ± 0.68 Ab | 9.92 ± 1.12 Ba | 6.31 ± 0.88 Bb |
TBARS (mg MDA/kg) | 0.31 ± 0.00 Bb | 0.46 ± 0.01 Ba | 1.84 ± 0.01 Ab | 1.98 ± 0.01 Aa |
Parameters | Normal Ham | Spoiled Ham | ||
---|---|---|---|---|
BF | SM | BF | SM | |
Texture | ||||
Hardness (N) | 148.80 ± 3.43 Ab | 242.01 ± 11.92 Aa | 71.76 ± 4.21 Bb | 78.52 ± 0.12 Ba |
Springiness (mm) | 0.40 ± 0.03 Aa | 0.41 ± 0.05 Aa | 0.26 ± 0.05 Ba | 0.29 ± 0.02 Ba |
Cohesiveness | 0.49 ± 0.01 Aa | 0.39 ± 0.06 Ab | 0.46 ± 0.01 Aa | 0.42 ± 0.02 Ab |
Chewiness (N × mm) | 30.18 ± 3.55 Aa | 39.20 ± 13.14 Aa | 10.62 ± 1.44 Bb | 13.91 ± 1.15 Ba |
Resilience | 0.19 ± 0.02 Aa | 0.18 ± 0.03 Aa | 0.19 ± 0.01 Aa | 0.17 ± 0.02 Aa |
Colour | ||||
L* | 43.26 ± 0.06 Ba | 37.56 ± 0.08 Bb | 47.09 ± 0.03 Aa | 41.62 ± 0.09 Ab |
a* | 19.56 ± 0.16 Ba | 16.32 ± 0.32 Bb | 23.06 ± 0.07 Aa | 20.15 ± 0.19 Ab |
b* | 15.82 ± 0.35 Ba | 12.33 ± 0.12 Bb | 19.32 ± 0.62 Aa | 15.73 ± 0.39 Ab |
Volatile Compounds | RI | Normal Ham | Spoiled Ham | |||
---|---|---|---|---|---|---|
BF | SM | BF | SM | |||
Alcohols | ||||||
1 | Methanethiol | 672 | ND | ND | 12.85 ± 1.01 a | 5.99 ± 0.60 b |
2 | Isopropyl alcohol | 928 | ND | 0.39 ± 0.09 | ND | ND |
3 | Ethanol | 934 | 105.84 ± 35.04 Aa | 46.96 ± 4.61 Bb | 106.28 ± 25.72 Ab | 170 ± 29.96 Aa |
4 | 2-Butanol | 1030 | 3.35 ± 3.39 | ND | ND | ND |
5 | 3-Pentanol | 1117 | 0.51 ± 0.13 B | ND | 2.28 ± 0.8 Aa | 1.28 ± 0.24 a |
6 | 2-Pentanol | 1129 | 9.75 ± 3.59 Aa | 1.53 ± 0.20 Bb | 3.6 ± 0.2 Ba | 2.48 ± 0.48 Ab |
7 | Butanol | 1151 | 8.94 ± 2.02 Aa | 1.63 ± 0.32 Ab | 2.24 ± 0.64 Ba | 2.2 ± 0.56 Aa |
8 | 1,3-Pentenol | 1165 | 10.12 ± 3.58 Aa | 4.53 ± 0.50 Aa | 10.56 ± 2.8 Aa | 6 ± 1.64 Aa |
9 | Isoamyl alcohol | 1212 | 6.13 ± 1.88 Ba | 7.75 ± 0.38 Ba | 47.92 ± 4.24 Aa | 22.68 ± 3.64 Ab |
10 | 3-Methyl butenol | 1251 | ND | 1.63 ± 0.39 | ND | ND |
11 | Pentanol | 1255 | 99.00 ± 30.43 Aa | 6.55 ± 0.31 Bb | 47.28 ± 12.2 Aa | 24.16 ± 4.6 Ab |
12 | 2-Ethyl butanol | 1305 | 2.69 ± 0.86 | ND | ND | ND |
13 | Hexanol | 1356 | ND | ND | 123.76 ± 11 a | 75.28 ± 16.32 b |
14 | 3-Octenol | 1456 | 31.83 ± 3.12 Ba | 8.69 ± 3.27 Bb | 36.4 ± 4.88 Aa | 29.52 ± 6 Aa |
15 | Heptanol | 1460 | 6.50 ± 2.93 Aa | 7.56 ± 4.29 Aa | 7.16 ± 1.48 Aa | 6.96 ± 1.36 Aa |
16 | Benzyl alcohol | 1508 | ND | ND | 1.76 ± 0.52 | ND |
17 | Octanol | 1564 | 7.07 ± 1.58 Ba | 4.37 ± 1.17 Ba | 20.52 ± 3.32 Aa | 19.2 ± 4.32 Aa |
18 | 2,3-Butanediol | 1580 | 24.66 ± 3.23 Ab | 45.42 ± 3.65 Aa | 11.6 ± 2.2 Ba | 9.96 ± 2.28 Ba |
19 | Trans-2-Octenol | 1620 | 9.29 ± 3.70 A | ND | 3.48 ± 0.44 Aa | 2.56 ± 0.44 a |
20 | 2-Phenylethanol | 1912 | ND | 0.79 ± 0.31 B | 5.16 ± 1.32 a | 4.4 ± 1.2 Aa |
21 | Dodecanol | 1999 | ND | ND | 1.88 ± 0.72 a | 3.6 ± 1.48 a |
Total | 325.65 ± 95.48 Aa | 137.82 ± 18.98 Bb | 444.73 ± 72.49 Aa | 386.27 ± 75.12 Aa | ||
Esters | ||||||
22 | Methyl propionate | 905 | ND | ND | 2.65 ± 0.85 | ND |
23 | Methyl isobutyrate | 920 | ND | 1.18 ± 0.23 | 3.60 ± 0.93 | ND |
24 | Ethyl propionate | 949 | 1.2 ± 0.12 | ND | ND | ND |
25 | Isobutyl acetate | 960 | 1.64 ± 0.32 | ND | ND | 2.6 ± 0.28 |
26 | Methyl butyrate | 983 | 1.44 ± 0.16 Bb | 6.27 ± 1.27 Aa | 14.67 ± 3.35 Aa | 1.2 ± 0.48 Bb |
27 | Methyl 2-methyl butyrate | 1009 | 2.08 ± 0.12 Ba | 2.76 ± 0.59 Aa | 8.65 ± 0.34 Aa | 3.48 ± 0.56 Ab |
28 | Methyl isovalerate | 1018 | 6.96 ± 0.4 Aa | 4.59 ± 0.96 b | 14.47 ± 0.80 B | ND |
29 | Ethyl butyrate | 1036 | ND | ND | 7.02 ± 0.28 | ND |
30 | Ethyl 2-methyl butyrate | 1053 | 4.12 ± 0.4 Aa | 0.32 ± 0.04 Bb | 3.46 ± 0.85 Ab | 6.28 ± 0.92 Aa |
31 | Ethyl isovalerate | 1070 | 7 ± 0.32 Aa | ND | 6.09 ± 0.88 Ab | 10.8 ± 1 a |
32 | Methyl pentanoate | 1089 | 2.96 ± 0.4 Ba | 1.35 ± 0.51 b | 19.86 ± 0.88 A | ND |
33 | Ethyl pentanoate | 1137 | ND | ND | 7.24 ± 4.49 | ND |
34 | Methyl caproate | 1187 | 8.72 ± 1.2 Aa | 7.10 ± 0.87 Aa | 10.26 ± 0.18 Aa | 4.69 ± 0.48 Bb |
35 | Ethyl caproate | 1234 | 8.2 ± 1 Aa | 1.93 ± 0.53 Ab | 17.57 ± 2.20 Ba | 16.48 ± 2.2 Ba |
36 | Ethyl caprylate | 1434 | 2.12 ± 0.72 A | ND | 1.43 ± 0.02 Ab | 3.76 ± 0.16 a |
37 | Gamma-caprolactone | 1687 | 6.8 ± 0.56 Ba | 1.24 ± 0.30 Bb | 14.48 ± 3.07 Ab | 7.08 ± 0.92 Aa |
38 | γ-Oenantholacton | 1789 | ND | ND | 3.10 ± 0.52 | ND |
39 | Gamma-octalactone | 1903 | 4.32 ± 0.64 A | ND | 2.78 ± 0.87 Bb | 5.44 ± 0.6 a |
40 | Gamma-nonanoic lactone | 2018 | ND | 0.72 ± 0.19 | ND | ND |
Total | 57.56 ± 6.36 Ba | 27.45 ± 5.50 Bb | 137.32 ± 20.50 Aa | 61.81 ± 7.6 Ab | ||
Aldehydes | ||||||
41 | Butyraldehyde | 900 | 9.95 ± 0.34 a | 5.27 ± 0.57 b | ND | ND |
42 | 2-Methyl butanal | 910 | 22.02 ± 0.71 Aa | 15.24 ± 0.16 Ab | 10.36 ± 0.28 Ba | 8.96 ± 0.48 Bb |
43 | 3-Methyl butanal | 913 | 26.66 ± 0.65 Aa | 18.46 ± 0.40 Ab | 12.32 ± 0.96 Ba | 13.16 ± 0.56 Ba |
44 | Pentanal | 958 | ND | ND | 8.28 ± 2.68 a | 5.16 ± 1 a |
45 | Hexanal | 1082 | 81.34 ± 8.08 Ba | 22.66 ± 0.74 Bb | 206.46 ± 5.32 Aa | 136.72 ± 10.08 Ab |
46 | Heptanal | 1182 | 13.81 ± 0.77 Ba | 8.18 ± 1.52 Bb | 43.28 ± 2.56 Aa | 36.24 ± 0.6 Aa |
47 | Octanal | 1286 | 20.61 ± 0.32 Ba | 15.35 ± 0.84 Bb | 59.52 ± 4.88 Aa | 52.52 ± 2.76 Aa |
48 | (E)-2-Heptenal | 1318 | 6.82 ± 2.02 | ND | ND | ND |
49 | Nonanal | 1390 | 36.74 ± 0.74 Bb | 49.75 ± 0.99 Ba | 143.04 ± 7.88 Aa | 175.96 ± 20.36 Aa |
50 | (E)-2-Octenal | 1422 | 1.26 ± 0.55 | ND | ND | ND |
51 | 3-(Methylthio)propionaldehyde | 1446 | 7.30 ± 2.28 a | 2.23 ± 1.23 b | ND | ND |
52 | Decanal | 1495 | 2.37 ± 0.47 a | 1.83 ± 0.13 Aa | ND | 1.92 ± 0.68 A |
53 | Benzaldehyde | 1511 | 19.89 ± 0.91 Aa | 10.76 ± 0.77 Ab | 10.4 ± 0.6 Ba | 7.24 ± 0.2 Bb |
54 | Phenylacetaldehyde | 1631 | 12.53 ± 0.80 Ab | 14.97 ± 0.75 Aa | 4.68 ± 0.64 Ba | 4.96 ± 0.92 Ba |
55 | 3-Heptylacrolein | 1637 | 2.25 ± 1.16 | ND | ND | ND |
Total | 263.57 ± 15.79 Ba | 164.7 ± 8.09 Bb | 498.34 ± 25.8 Aa | 420.72 ± 37.64 Ab | ||
Acids | ||||||
56 | Acetic acid | 1463 | ND | ND | ND | 8.19 ± 3.62 |
57 | Butyric acid | 1659 | ND | ND | ND | 3.99 ± 0.59 |
58 | Isovaleric acid | 1688 | ND | ND | 20.99 ± 5.87 a | 15.77 ± 0.18 a |
59 | Valeric acid | 1767 | ND | ND | 15.08 ± 4.51 a | 7.21 ± 1.44 b |
60 | Hexanoic acid | 1880 | 4.12 ± 1.88 Ba | 4.24 ± 1.48 Ba | 93.68 ± 5.05 Aa | 66.53 ± 10.36 Ab |
61 | Heptanoic acid | 1986 | ND | ND | ND | 2.7 ± 0.81 |
62 | Octanoic acid | 2107 | ND | ND | 6.11 ± 0.49 b | 9.35 ± 1.21 a |
63 | Capric acid | 2327 | ND | ND | 5.27 ± 1.71 b | 11.58 ± 0.89 a |
64 | Myristic acid | 2717 | ND | ND | 16.17 ± 3.25 a | 13.98 ± 4.88 a |
Total | 4.12 ± 1.88 Ba | 4.24 ± 1.48 Ba | 157.31 ± 20.87 Aa | 139.31 ± 23.98 Ab | ||
Ketones | ||||||
65 | Acetone | 806 | 11.22 ± 7.91 a | 6.56 ± 0.91 a | ND | ND |
66 | 2-Pentanone | 974 | 49.62 ± 7.02 a | 13.02 ± 2.52 b | ND | ND |
67 | 4-Methyl-3-hexanone | 1074 | ND | 0.78 ± 0.37 | ND | ND |
68 | 2-Heptanone | 1176 | ND | ND | 25.72 ± 4.2 a | 16.84 ± 2.8 a |
69 | 3-Hydroxy-2-butanone | 1281 | 7.16 ± 0.17 Ba | 5.77 ± 0.38 Ab | 10.68 ± 0.12 Aa | 6.96 ± 0.76 Ab |
70 | Methyl hepten | 1335 | 10.16 ± 0.69 Aa | 3.58 ± 0.21 Ab | 4.48 ± 0.56 Ba | 4.24 ± 0.8 Aa |
71 | Hydroxy-2-butanone | 1365 | 0.91 ± 0.15 | ND | ND | ND |
Total | 79.06 ± 15.93 Aa | 29.7 ± 4.39 Ab | 40.88 ± 4.88 Ba | 28.04 ± 4.36 Ab | ||
Alkanes | ||||||
72 | 3-Methylnonane | 961 | 4.53 ± 2.41 | ND | ND | ND |
73 | Isododecane | 1157 | ND | ND | ND | 1.72 ± 0.32 |
74 | Hexadecanal | 2133 | 7.89 ± 2.65 a | 5.58 ± 3.31 a | ND | ND |
Total | 12.42 ± 5.07 a | 5.58 ± 3.31 Aa | ND | 1.72 ± 0.32 B | ||
Pyrazines | ||||||
75 | 2-Methylpyrazine | 1263 | 3.04 ± 0.72 a | 1.88 ± 0.36 b | ND | ND |
76 | 2,6-Dimethylpyrazine | 1325 | 8.52 ± 0.04 a | 5.08 ± 7.4 b | ND | ND |
77 | 2-Ehtyl-6-methylpirazine | 1381 | 1.4 ± 0.2 a | ND | ND | 1.17 ± 0.64 a |
78 | 2,3,5-Trimethylpyrazine | 1402 | 19.96 ± 1.36 a | 12.4 ± 2.36 b | ND | 1.81 ± 0.73 c |
Total | 32.92 ± 2.32 a | 19.36 ± 10.12 Ab | ND | 2.97 ± 1.35 B | ||
Aromatic | ||||||
79 | Ethylbenzene | 1121 | 1.76 ± 0.00 B | ND | 3.56 ± 0.76 Aa | 3.28 ± 0.72 a |
80 | P-Xylene | 1137 | ND | 1.39 ± 0.62 a | 4.8 ± 1.28 Ab | 3.64 ± 1.16 B |
81 | O-Xylene | 1176 | 1.56 ± 0.10 Aa | 0.68 ± 0.29 Aa | 8.92 ± 0.68 Bb | 8.48 ± 2 Ba |
82 | Phenol | 2008 | 6.76 ± 0.48 a | 3.8 ± 1.28 b | ND | ND |
Total | 3.32 ± 0.10 Ba | 2.07 ± 0.91 Ba | 24.04 ± 3.2 Aa | 19.2 ± 5.16 Ab | ||
Terpenes | ||||||
83 | Cyclooctatetraene | 1316 | 8.44 ± 0.92 | ND | ND | ND |
84 | Longifolene | 1378 | 6.64 ± 0.96 a | 7.56 ± 1.32 a | ND | ND |
85 | Trans-2-Octenol | 1399 | 3.48 ± 0.44 a | 2.56 ± 0.44 a | ND | ND |
Total | 18.92 ± 2.32 a | 10.12 ± 1.76 b | ND | ND | ||
Others | ||||||
86 | Trimethylamine | 633 | ND | ND | 5.09 ± 3.62 b | 13.05 ± 1.61 a |
87 | Carbon disulphide | 713 | 9.63 ± 0.66 Aa | 2.73 ± 0.37 Bb | 1.88 ± 0.28 Bb | 4.92 ± 0.08 Aa |
88 | 2-Pentylfuran | 1230 | 1.10 ± 0.27 Ba | 0.75 ± 0.28 Ba | 3.64 ± 0.84 Aa | 2.64 ± 0.2 Aa |
89 | Hexanenitrile | 1293 | 5.29 ± 1.46 a | 2.30 ± 0.55 b | ND | ND |
Total | 16.01 ± 2.38 Aa | 5.77 ± 1.20 Bb | 10.61 ± 4.74 Bb | 20.61 ± 1.69 Aa |
Volatile Compounds | OTV (µg/kg) | Normal Ham | Spoiled Ham | |||
---|---|---|---|---|---|---|
BF | SM | BF | SM | |||
1 | Trimethylamine | 0.032 | 0 | 0 | 159.06 | 407.81 |
2 | Methanethiol | 0.07 | 0 | 0 | 183.61 | 85.57 |
3 | Methyl 2-methyl butyrate | 1 | 2.08 | 2.76 | 8.65 | 3.48 |
4 | 3-Methyl butanal | 0.1 | 266.64 | 184.59 | 123.2 | 131.6 |
5 | Methyl isobutyrate | 1.9 | 0 | 0 | 1.9 | 0 |
6 | 2-Pentanone | 28 | 1.77 | 0 | 0 | 0 |
7 | Methyl butyrate | 7.1 | 0 | 0 | 2.07 | 0 |
8 | Methyl isovalerate | 2.2 | 3.16 | 2.08 | 6.58 | 0 |
9 | Ethyl butyrate | 0.04 | 0 | 0 | 175.6 | 0 |
10 | Ethyl isovalerate | 3 | 2.33 | 0 | 2.03 | 3.6 |
11 | Hexanal | 0.28 | 290.5 | 80.93 | 737.36 | 488.28 |
12 | Methyl pentanoate | 2.2 | 1.34 | 0 | 9.02 | 0 |
13 | Ethyl pentanoate | 0.11 | 0 | 0 | 65.82 | 0 |
14 | Heptanal | 3 | 4.6 | 2.73 | 14.43 | 12.08 |
15 | Methyl caproate | 10 | 0 | 0 | 1.26 | 0 |
16 | Octanal | 0.7 | 29.44 | 21.93 | 85.03 | 75.03 |
17 | Carbon disulphide | 0.34 | 87.15 | 8.03 | 5.53 | 14.92 |
18 | 3-(Methylthio)propionaldehyde | 0.63 | 11.59 | 3.53 | 0 | 0 |
19 | 3-Octenol | 2 | 15.91 | 4.35 | 18.2 | 14.76 |
20 | Heptanol | 4.8 | 1.35 | 1.57 | 1.49 | 1.45 |
21 | Acetic acid | 6 | 0 | 0 | 0 | 1.09 |
22 | Decanal | 0.4 | 5.93 | 4.58 | 0 | 4.8 |
23 | Octanol | 2.7 | 2.52 | 1.56 | 7.33 | 6.86 |
24 | Valeric acid | 0.037 | 0 | 0 | 412.97 | 194.86 |
25 | Hexanoic acid | 0.6 | 6.87 | 7.07 | 156.13 | 110.88 |
26 | Phenol | 5.6 | 1.23 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yin, X.; Zhang, L.; Wang, X.; Zhang, J.; Wen, R.; Cao, J. Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods 2024, 13, 776. https://doi.org/10.3390/foods13050776
Wang H, Yin X, Zhang L, Wang X, Zhang J, Wen R, Cao J. Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods. 2024; 13(5):776. https://doi.org/10.3390/foods13050776
Chicago/Turabian StyleWang, Haoyi, Xiaoyu Yin, Lu Zhang, Xuejiao Wang, Jiliang Zhang, Rongxin Wen, and Jianxin Cao. 2024. "Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham" Foods 13, no. 5: 776. https://doi.org/10.3390/foods13050776
APA StyleWang, H., Yin, X., Zhang, L., Wang, X., Zhang, J., Wen, R., & Cao, J. (2024). Insight into the Relationship between the Causes of Off-Odour and Microorganism Communities in Xuanwei Ham. Foods, 13(5), 776. https://doi.org/10.3390/foods13050776