Biotechnological Utilization of Agro-Industrial Residues and By-Products—Sustainable Production of Biosurfactants
Abstract
:1. Introduction
2. Surfactants vs. Biosurfactants
2.1. Adventages and Disadventages
2.2. Classification of Biosurfactants
3. Agro-Industrial Residues and By-Products for Biosurfactant Production
3.1. Clasification of Agro-Industrial Residues and By-Products
3.2. Agro-Industrial Residue and By-Product Selection Criteria
4. Sustainable Production of Biosurfactants from Agro-Industrial Residues and By-Products
5. Current State and Future Perspectives of Biosurfactant Production
5.1. Biosurfactant Market
5.2. Dynamics of Biosurfactant Market
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Madeira, J.; Contesini, F.J.; Calzado, F.; Rubio, M.V.; Zubieta, M.P.; Lopes, D.B.; de Melo, R.R. Agro-Industrial Residues and Microbial Enzymes: An Overview on the Eco-Friendly Bioconversion into High Value-Added Products. In Biotechnology of Microbial Enzymes; Brahmachari, G., Ed.; Elsevier: London, UK, 2017; pp. 475–511. [Google Scholar] [CrossRef]
- Bajić, B.; Vučurović, D.; Vasić, Ð.; Jevtić-Mučibabić, R.; Dodić, S. Biotechnological Production of Sustainable Microbial Proteins from Agro-Industrial Residues and By-Products. Foods 2023, 12, 107. [Google Scholar] [CrossRef]
- Nigam, P.; Pandey, A. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Matei, E.; Râpă, M.; Predescu, A.M.; Ţurcanu, A.A.; Vidu, R.; Predescu, C.; Bobirica, C.; Bobirica, L.; Orbeci, C. Valorization of Agri-Food Wastes as Sustainable Eco-Materials for Wastewater Treatment: Current State and New Perspectives. Materials 2021, 14, 4581. [Google Scholar] [CrossRef]
- Azelee, N.I.W.; Manas, N.H.A.; Dailin, D.J.; Ramli, A.N.M.; Shaarani, S.M. Biological Treatment of Agro-Industrial Waste. In Valorisation of Agro-industrial Residues—Volume I: Biological Approaches. Applied Environmental Science and Engineering for a Sustainable Future; Zakaria, Z., Boopathy, R., Dib, J., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Petruccioli, M.; Raviv, M.; Di Silvestro, R.; Dinelli, G. Agriculture and Agro-Industrial Wastes, Byproducts, and Wastewaters: Origin, Characteristics, and Potential in Bio-Based-Compounds Production. In Comprehensive Biotechnology, 2nd ed.; Murray, M.-Y., Ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 531–545. [Google Scholar] [CrossRef]
- Rodríguez-Félix, F.; Corte-Tarazón, J.A.; Rochín-Wong, S.; Fernández-Quiroz, J.D.; Garzón-García, A.M.; Santos-Sauceda, I.; Plascencia-Martínez, D.F.; Chan-Chan, L.H.; Vásquez-López, C.; Barreras-Urbina, C.G.; et al. Physicochemical, structural, mechanical and antioxidant properties of zein films incorporated with no-ultrafiltered and ultrafiltered betalains extract from the beetroot (Beta vulgaris) bagasse with potential application as active food packaging. J. Food Eng. 2022, 334, 111153. [Google Scholar] [CrossRef]
- Dias, M.A.M.; Nitschke, M. Bacterial-derived surfactants: An update on general aspects and forthcoming applications. Braz. J. Microbiol. 2023, 54, 103–123. [Google Scholar] [CrossRef]
- Satpute, S.K.; Płaza, G.A.; Banpurkar, A.G. Biosurfactants’ Production from Renewable Natural Resources: Example of Innovative and Smart Technology in Circular Bioeconomy. Manag. Syst. Prod. Eng. 2017, 1, 46–54. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.; Ng, H.Y.; Wong, J.W.C.; Kim, S. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef] [PubMed]
- Rončević, Z.; Bajić, B.; Dodić, S.; Grahovac, J.; Pajović-Šćepanović, R.; Dodić, J. Optimization of bioethanol production from soybean molasses using different strains of Saccharomyces cerevisiae. Hem. Ind. 2019, 73, 1–12. [Google Scholar] [CrossRef]
- Rodrigues, B.C.G.; de Mello, B.S.; Araujo, M.L.G.C.; da Silva, G.H.R.; Sarti, A. Soybean molasses as feedstock for sustainable generation of biomethane using high-rate anaerobic reactor. J. Environ. Chem. Eng. 2021, 9, 105226. [Google Scholar] [CrossRef]
- de Oliveira, J.M.; Michelon, M.; Burkert, C.A.V. Biotechnological potential of soybean molasses for the production of extracellular polymers by diazotrophic bacteria. Biocatal. Agric. Biotechnol. 2020, 25, 101609. [Google Scholar] [CrossRef]
- Nigam, P.; Vogel, M. Bioconversion of sugar industry by-products—Molasses and sugar beet pulp for single cell protein production by yeasts. Biomass Bioenergy 1991, 1, 339–345. [Google Scholar] [CrossRef]
- Dodić, S.; Popov, S.; Dodić, J.; Ranković, J.; Zavargo, Z.; Jevtić-Mučibabić, R. Bioethanol production from thick juice as intermediate of sugar beet processing. Biomass Bioenergy 2009, 33, 822–827. [Google Scholar] [CrossRef]
- Vučurović, V.; Razmovski, R. Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production. Ind. Crops Prod. 2012, 39, 128–134. [Google Scholar] [CrossRef]
- Sagir, E.; Alipour, S.; Elkahlout, K.; Koku, H.; Gunduz, U.; Eroglu, I.; Yucel, M. Biological hydrogen production from sugar beet molasses by agar immobilized R. capsulatus in a panel photobioreactor. Int. J. Hydrogen Energy 2018, 43, 14987–14995. [Google Scholar] [CrossRef]
- Berlowska, J.; Pielech-Przybylska, K.; Balcerek, M.; Cieciura, W.; Borowski, S.; Kregiel, D. Integrated Bioethanol Fermentation/Anaerobic Digestion for Valorization of Sugar Beet Pulp. Energies 2017, 10, 1255. [Google Scholar] [CrossRef]
- Jovanović, M.; Vučurović, D.; Bajić, B.; Dodić, S.; Vlajkov, V.; Jevtić-Mučibabić, R. Optimization of simultaneous cellulase and xylanase production by submerged and solid-state fermentation of wheat chaff. J. Serb. Chem. Soc. 2020, 85, 177–189. [Google Scholar] [CrossRef]
- Krull, S.; Eidt, L.; Hevekerl, A.; Kuenz, A.; Prüße, U. Itaconic acid production from wheat chaff by Aspergillus terreus. Process Biochem. 2017, 63, 169–176. [Google Scholar] [CrossRef]
- Kotarska, K.; Dziemianowicz, W.; Świerczyńska, A. Study on the Sequential Combination of Bioethanol and Biogas Production from Corn Straw. Molecules 2019, 24, 4558. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Li, S.; Fu, Y.; Tai, C.; Huang, H. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour. Technol. 2010, 101, 6262–6264. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zou, D.; Ma, H.; Ji, Y.; Wang, X. Simultaneous Saccharification and Fermentation of Corn Straw to Lactic Acid. Chem. Biochem. Eng. Q. 2010, 24, 371–376. [Google Scholar]
- Garde, A.; Jonsson, G.; Schmidt, A.S.; Ahring, B.K. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour. Technol. 2002, 81, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef]
- Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Domínguez, J.M.; Belo, I. Combined bioremediation and enzyme production by Aspergillus sp. in olive mill and winery wastewaters. Int. Biodeterior. Biodegrad. 2016, 110, 16–23. [Google Scholar] [CrossRef]
- Bajić, B.; Vučurović, D.; Dodić, S.; Rončević, Z.; Grahovac, J.; Dodić, J. The biotechnological production of xanthan on vegetable oil industry wastewaters (Part I): Modelling and optimization. Chem. Ind. Chem. Eng. Q. 2017, 23, 329–339. [Google Scholar] [CrossRef]
- Rončević, Z.; Grahovac, J.; Dodić, S.; Vučurović, D.; Dodić, J. Utilisation of winery wastewater for xanthan production in stirred tank bioreactor: Bioprocess modelling and optimization. Food Bioprod. Process. 2019, 117, 113–125. [Google Scholar] [CrossRef]
- Ayadi, K.; Meziane, M.; Rouam, D.; Bouziane, M.N.; El-Miloudi, K. Olive Mill Wastewater for Bioethanol Production using Immobilised Cells. Kem. Ind. 2022, 71, 21–28. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, M.; Yang, Z. Biomass production of yeast isolate from salad oil manufacturing wastewater. Bioresour. Technol. 2005, 96, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Makkar, R.S.; Cameotra, S.S.; Banat, I.M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 2011, 1, 5. [Google Scholar] [CrossRef]
- Mohanty, S.S.; Koul, Y.; Varjani, S.; Pandey, A.; Ngo, H.H.; Chang, J.; Wong, J.W.C.; Bui, X. A critical review on various feedstocks as sustainable substrates for biosurfactants production: A way towards cleaner production. Microb. Cell Factories 2021, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.S.; Mohanakrishna, G.; Hemavathy, R.V.; Rangasamy, G.; Aminabhavi, T.M. Sustainable production of biosurfactants via valorisation of industrial wastes as alternate feedstocks. Chemosphere 2023, 312, 137326. [Google Scholar] [CrossRef]
- Abbot, V.; Paliwal, D.; Sharma, A.; Sharma, P. A review on the physicochemical and biological applications of biosurfactants in biotechnology and pharmaceuticals. Heliyon 2022, 8, e10149. [Google Scholar] [CrossRef]
- Rebello, S.; Asok, A.K.; Mundayoor, S.; Jisha, M.S. Surfactants: Toxicity, Remediation and Green Surfactants. Environ. Chem. Lett. 2014, 12, 275–287. [Google Scholar] [CrossRef]
- Sharma, J.; Sundar, D.; Srivastava, P. Advantages and Disadvantages of Biosurfactants over Other Synthetic Surfactants. In Advancements in Biosurfactants Research; Aslam, R., Mobin, M., Aslam, J., Zehra, S., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Jahan, R.; Bodratti, A.M.; Tsianou, M.; Alexandridis, P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv. Colloid Interface Sci. 2020, 275, 102061. [Google Scholar] [CrossRef] [PubMed]
- Moldes, A.B.; Rodríguez-López, L.; Rincón-Fontán, M.; López-Prieto, A.; Vecino, X.; Cruz, J.M. Synthetic and Bio-Derived Surfactants Versus Microbial Biosurfactants in the Cosmetic Industry: An Overview. Int. J. Mol. Sci. 2021, 22, 2371. [Google Scholar] [CrossRef]
- Kashif, A.; Rehman, R.; Fuwad, A.; Shahid, M.K.; Dayarathne, H.N.P.; Jamal, A.; Aftab, M.N.; Mainali, B.; Choi, Y. Current advances in the classification, production, properties and applications of microbial biosurfactants—A critical review. Adv. Colloid Interface Sci. 2022, 306, 102718. [Google Scholar] [CrossRef] [PubMed]
- Sarubbo, L.A.; Silva, M.G.C.; Durval, I.J.B.; Bezerra, K.G.O.; Ribeiro, B.G.; Silva, I.A.; Twigg, M.S.; Banat, I.M. Biosurfactants: Production, properties, applications, trends, and general perspectives. Biochem. Eng. J. 2022, 181, 108377. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Selvarajan, R.; Chikere, C.B. Microbial Surfactants: The Next Generation Multifunctional Biomolecules for Applications in the Petroleum Industry and Its Associated Environmental Remediation. Microorganisms 2019, 7, 581. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.D.C.F.S.; Almeida, D.G.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Applications of Biosurfactants in the Petroleum Industry and the Remediation of Oil Spills. Int. J. Mol. Sci. 2014, 15, 12523–12542. [Google Scholar] [CrossRef]
- Sales da Silva, I.G.; Gomes de Almeida, F.C.; Padilha da Rocha e Silva, N.M.; Casazza, A.A.; Converti, A.; Asfora Sarubbo, L. Soil Bioremediation: Overview of Technologies and Trends. Energies 2020, 13, 4664. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; Rtimi, S. Preparation, characterization and application of biosurfactant in various industries: A critical review on progress, challenges and perspectives. Environ. Technol. Innov. 2021, 24, 102090. [Google Scholar] [CrossRef]
- Foley, P.; Beach, E.S.; Zimmerman, J.B. Derivation and Synthesis of Renewable Surfactants. Chem. Soc. Rev. 2012, 41, 1499–1518. [Google Scholar] [CrossRef] [PubMed]
- Kłosowska-Chomiczewska, I.E.; Mędrzycka, K.; Karpenko, E. Biosurfactants—Biodegradability, toxicity, efficiency in comparison with synthetic surfactants. Adv. Chem. Mech. Eng. 2013, 2, 1–9. [Google Scholar]
- Das, A.J.; Kumar, R. Production of biosurfactant from agro-industrial waste by Bacillus safensis J2 and exploring its oil recovery efficiency and role in restoration of diesel contaminated soil. Environ. Technol. Innov. 2019, 16, 100450. [Google Scholar] [CrossRef]
- Geys, R.; Soetaert, W.; Van Bogaert, I. Biotechnological opportunities in biosurfactant production. Curr. Opin. Biotechnol. 2014, 30, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Singha, L.P.; Shukla, P. Biotechnological potential of microbial bio-surfactants, their significance, and diverse applications. FEMS Microbes 2023, 4, xtad015. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, R.; Rajasekaran, M.; Venkatesan, S.K.; Uddin, M. New Trends in the Biomanufacturing of Green Surfactants: Biobased Surfactants and Biosurfactants. In Next Generation Biomanufacturing Technologies; Rathinam, N.K., Sani, R.K., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2019; pp. 243–260. [Google Scholar] [CrossRef]
- Sharma, D. Biosurfactants or Chemical Surfactants? In Biosurfactants: Greener Surface-Active Agents for Sustainable Future; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Begum, W.; Saha, B.; Mandal, U. A comprehensive review on production of bio-surfactants by bio-degradation of waste carbohydrate feedstocks: An approach towards sustainable development. RSC Adv. 2023, 13, 25599–25615. [Google Scholar] [CrossRef]
- Zihare, L.; Spalvins, K.; Blumberga, D. Multi criteria analysis for products derived from agro-industrial by-products. Energy Procedia 2018, 147, 452–457. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Singh Duhan, J. Agro-industrial wastes and their utilization using solid state fermentation: A review Background. Bioresour. Bioprocess 2018, 5, 1. [Google Scholar] [CrossRef]
- Raut, N.A.; Kokare, D.M.; Randive, K.R.; Bhanvase, B.A.; Dhoble, S.J. Introduction: Fundamentals of waste removal technologies. In 360-Degree Waste Management, Volume 1; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–16. [Google Scholar] [CrossRef]
- Cuadrado-Osorio, P.D.; Ramírez-Mejía, J.M.; Mejía-Avellaneda, L.F.; Mesa, L.; Bautista, E.J. Agro-industrial residues for microbial bioproducts: A key booster for bioeconomy. Bioresour. Technol. Rep. 2022, 20, 101232. [Google Scholar] [CrossRef]
- George, S.; Jayachandran, K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. J. Appl. Microbiol. 2013, 114, 373–383. [Google Scholar] [CrossRef]
- Nurfarahin, A.H.; Mohamed, M.S.; Phang, L.Y. Culture Medium Development for Microbial-Derived Surfactants Production—An Overview. Molecules 2018, 23, 1049. [Google Scholar] [CrossRef]
- Grahovac, J.; Rončević, Z. Environmental impacts of the confectionary industry. In Environmental Impact of Agro-Food Industry and Food Consumption; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Smith, J.E. Biotechnology, 4th ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Mikucka, W.; Zielińska, M. Distillery Stillage: Characteristics, Treatment, and Valorization. Appl. Biochem. Biotechnol. 2020, 192, 770–793. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.L.P.; Jesus, M.S.; Mata, F.; Prado, A.A.O.S.; Vieira, I.M.M.; Ramos, L.C.; Silva, D.P. Use of Agro-Industrial Waste for Biosurfactant Production: A Comparative Study of Hemicellulosic Liquors from Corncobs and Sunflower Stalks. Sustainabillity 2023, 15, 6341. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, F.; Wei, Z.; Ran, W.; Shen, Q. The usage of rice straw as a major substrate for the production of surfactin by Bacillus amyloliquefaciens XZ-173 in solid-state fermentation. J. Environ. Manag. 2013, 127, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Chaves, F.d.S.; Brumano, L.P.; Franco Marcelino, P.R.; da Silva, S.S.; Sete, L.D.; de Almeida Felipe, M.d.G. Biosurfactant production by Antarctic-derived yeasts in sugarcane straw hemicellulosic hydrolysate. Biomass Conv. Bioref. 2023, 13, 5295–5305. [Google Scholar] [CrossRef]
- Konishi, M.; Yoshida, Y.; Horiuchi, J. Efficient production of sophorolipids by Starmerella bombicola using a corncob hydrolysate medium. J. Biosci. Bioeng. 2015, 119, 317–322. [Google Scholar] [CrossRef]
- Chooklin, C.S.; Maneerat, S.; Saimmai, A. Utilization of Banana Peel as a Novel Substrate for Biosurfactant Production by Halobacteriaceae archaeon AS65. Appl. Biochem. Biotechnol. 2014, 173, 624–645. [Google Scholar] [CrossRef]
- Kumar, A.P.; Janardhan, A.; Viswanath, B.; Monika, K.; Jung, J.; Narasimha, G. Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech 2016, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Paraszkiewicz, K.; Bernat, P.; Kusmierska, A.; Chojniak, J.; Płaza, G. Structural identification of lipopeptide biosurfactants produced by Bacillus subtilis strains grown on the media obtained from renewable natural resources. J. Environ. Manag. 2018, 209, 65–70. [Google Scholar] [CrossRef]
- Partovi, M.; Loftabad, T.B.; Roostaazad, R.; Bahmaei, M.; Tayyebi, S. Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World J. Microbiol. Biotechnol. 2013, 29, 1039–1047. [Google Scholar] [CrossRef]
- Fleurackers, S.J.J. On the use of waste frying oil in the synthesis of sophorolipids. Eur. J. Lipid Sci. Technol. 2006, 108, 5–12. [Google Scholar] [CrossRef]
- Reddy, K.S.; Khan, M.Y.; Archana, K.; Reddy, M.G.; Hameeda, B. Utilization of mango kernel oil for the rhamnolipid production by Pseudomonas aeruginosa DR1 towards its application as biocontrol agent. Bioresour. Technol. 2016, 221, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Sharma, S.; Kundu, L.M. Experimental investigation of molasses as a sole nutrient for the production of an alternative metabolite biosurfactant. J. Water Process Eng. 2020, 39, 101632. [Google Scholar] [CrossRef]
- Samad, A.; Zhang, J.; Chen, D.; Liang, Y. Sophorolipid Production from Biomass Hydrolysates. Appl. Biochem. Biotechnol. 2015, 175, 2246–2257. [Google Scholar] [CrossRef]
- Nalini, S.; Parthasarathi, R. Production and characterization of rhamnolipids produced by Serratia rubidaea SNAU02 under solid-state fermentation and its application as biocontrol agent. Bioresour. Technol. 2014, 173, 231–238. [Google Scholar] [CrossRef]
- Ciurko, D.; Czyżnikowska, Ż.; Kancelista, A.; Łaba, W.; Janek, T. Sustainable Production of Biosurfactant from Agro-Industrial Oil Wastes by Bacillus subtilis and Its Potential Application as Antioxidant and ACE Inhibitor. Int. J. Mol. Sci. 2022, 23, 10824. [Google Scholar] [CrossRef]
- Araújo, H.W.C.; Andrade, R.F.S.; Montero-Rodríguez, D.; Rubio-Ribeaux, D.; Alves da Silva, C.A.; Campos-Takaki, G.M. Sustainable biosurfactant produced by Serratia marcescens UCP 1549 and its suitability for agricultural and marine bioremediation applications. Microb. Cell Factories 2019, 18, 2. [Google Scholar] [CrossRef]
- Das, A.J.; Kumar, R. Utilization of agro-industrial waste for biosurfactant production under submerged fermentation and its application in oil recovery from sand matrix. Bioresour. Technol. 2018, 260, 233–240. [Google Scholar] [CrossRef]
- Jiménez-Peñalver, P.; Gea, T.; Sánchez, A.; Font, X. Production of sophorolipids from winterization oil cake by solid-state fermentation: Optimization, monitoring and effect of mixing. Biochem. Eng. J. 2016, 115, 93–100. [Google Scholar] [CrossRef]
- Gudina, E.J.; Rodrigues, A.I.; de Freitas, V.; Azevedo, Z.; Teixeira, J.A.; Rodrigues, L.R. Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresour. Technol. 2016, 212, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Vera, E.C.S.; de Souza de Azevedo, P.O.; Domınguez, J.M.; de Souza Oliveira, R.P. Optimization of biosurfactant and bacteriocin-like inhibitory substance (BLIS) production by Lactococcus lactis CECT-4434 from agroindustrial waste. Biochem. Eng. J. 2018, 133, 168–178. [Google Scholar] [CrossRef]
- Gurkok, S. Chapter 17—Important parameters necessary in the bioreactor for the mass production of biosurfactants. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 347–365. [Google Scholar] [CrossRef]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A.; Luna, J.M.; Rufino, R.D.; Banat, I.M. Microbial biosurfactants as additives for food industries. Biotechnol. Prog. 2013, 29, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial biosurfactants: A review of recent environmental applications. Bioengineered 2022, 13, 12365–12391. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; Khan, K.M.; Abdullah, M. Chapter 19—Mass production and factors affecting biosurfactant productivity using bioreactors. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2021; pp. 379–398. [Google Scholar] [CrossRef]
- Gürkök, S.; Özdal, M. Microbial Biosurfactants: Properties, Types, and Production. Anat. J. Biol. 2021, 2, 7–12. [Google Scholar]
- Banat, I.M.; Carboué, Q.; Saucedo-Castañeda, G.; Cázares-Marinero, J.J. Biosurfactants: The green generation of speciality chemicals and potential production using Solid-State fermentation (SSF) technology. Bioresour. Technol. 2021, 320, 124222. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, G.; Luo, Y.; Ran, W.; Shen, Q. Production of lipopeptides by Bacillus amyloliquefaciens XZ-173 in solid state fermentation using soybean flour and rice straw as the substrate. Bioresour. Technol. 2012, 112, 254–260. [Google Scholar] [CrossRef]
- Venkataraman, S.; Rajendran, D.S.; Kumar, P.S.; Vo, D.N.; Vaidyanathan, V.K. Extraction, purification and applications of biosurfactants based on microbial-derived glycolipids and lipopeptides: A review. Environ. Chem. Lett. 2022, 20, 949–970. [Google Scholar] [CrossRef]
- The Business Research Company. Biosurfactant Global Market Report 2024- By Product Type (Glycolipid, Phospholipids, Surfactin, Lichenysin, Polymeric Bio-Surfactants, Other Product Types), by Application (Detergents, Personal Care, Food Processing, Agricultural Chemicals, Other Applications)–Market Size, Trends, And Global Forecast 2024–2033. Available online: https://www.thebusinessresearchcompany.com/report/biosurfactants-global-market-report (accessed on 10 November 2023).
- The Insight Partners. Global Biosurfactants Market. Available online: https://www.theinsightpartners.com/reports/biosurfactants-market (accessed on 10 November 2023).
- BCC Research. Biosurfactants: Global Market for Glycolipids, Lipopeptides, Phospholipids, Polymeric & Particulate Biosurfactants, and Others. Available online: https://www.bccresearch.com/market-research/chemicals/biosurfactants-market.html (accessed on 10 November 2023).
- MarketsandMarkets Research. Available online: https://www.marketsandmarkets.com/Market-Reports/biosurfactant-market-163644922.html?fbclid=IwAR1sWnRIy7IqJid86K1pMnZix0WxB9SPnA8ibVW3rnMydI_rzIzDBJmJAow (accessed on 10 November 2023).
- Stratview Research. Available online: https://www.stratviewresearch.com/2849/biosurfactants-market.html?fbclid=IwAR3hS8F-_tXTDxURCCPRk7bPJ-xPjDUztNid9Uz21AFKs2LO7nWEczybI9Y (accessed on 10 November 2023).
- Research and Markets. Available online: https://www.researchandmarkets.com/reports/5698984/biosurfactants-market-global-industry-analysis?fbclid=IwAR1lUYaiEauPMXTxbBl5dQkNd5oVbb1J8fF9a86st_KJx_ujJtv04UtDiyA#rela4-5503425 (accessed on 10 November 2023).
- IMARC Group. Available online: https://www.imarcgroup.com/biosurfactants-market?fbclid=IwAR2jbCkIOXNKXVFf4T6EgoihbRd3HbU-pYzzZA2dkLww6ikHUZqRP2hHwJM (accessed on 10 November 2023).
- Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/biosurfactants-market-102761 (accessed on 10 November 2023).
- Maximize Market Research. Available online: https://www.maximizemarketresearch.com/market-report/global-biosurfactants-market/433/?fbclid=IwAR111dxpQYlPcdYbvsESJ3_nxOrnMcxdDmVs_Q2-zozME4oMl1xj4Q5yGPE (accessed on 10 November 2023).
- Industry Research. Available online: https://www.wicz.com/story/49924249/Global-Biosurfactants-Market-2023-2031-Comprehensive-Review-and-Future-Projections/?fbclid=IwAR1JgQgvF8Uc8G1aQsCc2NZWDb9LQETsxd1ObGcOxh6MPrCVGx8VOj_WPVY (accessed on 10 November 2023).
- Transparency Market Research. Available online: https://www.transparencymarketresearch.com/biosurfactants-market.html?fbclid=IwAR0qama8WyYbz8xaEUTtyv60mRdYOMzeUX4_O00EfoF1tbXmfUDBDxcJZoY (accessed on 10 November 2023).
- Fact.MR. Available online: https://www.factmr.com/report/microbial-biosurfactants-market?fbclid=IwAR1l7VrddlCSEIwhpNgwcBe3cdqP62aMsbS5BbTMJMuxqlg9Rax_9dABwy8 (accessed on 10 November 2023).
- Reports and Data. Available online: https://www.reportsanddata.com/report-detail/biosurfactants-market?fbclid=IwAR1JgQgvF8Uc8G1aQsCc2NZWDb9LQETsxd1ObGcOxh6MPrCVGx8VOj_WPVY (accessed on 10 November 2023).
- Global Market Insights. Available online: https://www.gminsights.com/industry-analysis/biosurfactants-market-report (accessed on 10 November 2023).
- IndustryARC™. Available online: https://www.industryarc.com/Report/18209/biosurfactants-market.html?fbclid=IwAR2-iELLMuPq1Chag_keDjQlBhendUsCG2s6jkiu76mlD9Do_BiYhoTPNKU (accessed on 10 November 2023).
- Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-reports/biosurfactants-market (accessed on 10 November 2023).
- Technavio–Sample Report. Available online: https://www.technavio.com/thankyou?report=IRTNTR44099&type=Request%20Free%20Sample&rfs=epd&src=report&pdfversion=2&freedemo=837146&fbclid=IwAR2-iELLMuPq1Chag_keDjQlBhendUsCG2s6jkiu76mlD9Do_BiYhoTPNKU (accessed on 10 November 2023).
- Gayathiri, E.; Prakash, P.; Karmegam, N.; Varjani, S.; Awasthi, M.K.; Ravindran, B. Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—A Review. Agronomy 2022, 12, 662. [Google Scholar] [CrossRef]
- Web of Science™. Available online: https://www.webofscience.com/wos/woscc/summary/abf01f1d-764e-42e5-a709-a16e8002c1bb-b780253b/relevance/1 (accessed on 24 November 2023).
Type of Agro-Industrial Residue or By-Product | Carbon Source | Biological Availability | Consistency | Seasonal Availability | Alternative Application |
---|---|---|---|---|---|
Agricultural field residues | |||||
Stalks (corn, sunflower, soya, etc.) | Cellulose Hemicellulose Lignin | Low—requires pretreatment and/or hydrolysis | Solid | Prolonged | Animal feed Fertilizer Heating |
Straw (wheat, rice, barley, oat, etc.) | Cellulose Hemicellulose Lignin | Low—requires pretreatment and/or hydrolysis | Solid | Prolonged | Animal bedding Fertilizer Heating |
Agricultural process residues | |||||
Corncobs | Cellulose Hemicellulose Lignin | Low—requires pretreatment and/or hydrolysis | Solid | Prolonged | Animal feed Fertilizer Heating |
Chaff (wheat, oat, rye, and rice) | Cellulose Hemicellulose Lignin | Low—requires pretreatment and/or hydrolysis | Solid | Prolonged | Animal feed Fertilizer Heating |
Husk (coffee, groundnut, etc.) | Cellulose Hemicellulose Lignin | Low—requires pretreatment and/or hydrolysis | Solid | Prolonged | Animal feed Fertilizer Heating |
Industrial residues | |||||
Vegetable peels (potato, carrot, etc.) | Starch Pectin Cellulose Hemicellulose | Depends on the present carbon sources | Solid | Very short/All year | Fertilizer Biofuels production |
Fruit peels (apple, banana, orange, etc.) | Simple sugars Pectin Cellulose Hemicellulose | Depends on the present carbon sources | Solid | Very short/All year | Fertilizer Biofuels production |
Vegetable pomace (tomato, cassava, etc.) | Starch Pectin Cellulose Hemicellulose | Depends on the present carbon sources | Solid | Very short/All year | Food industry |
Fruit pomace (grape, apple, etc.) | Simple sugars Pectin Cellulose Hemicellulose | Depends on the present carbon sources | Solid | Very short/All year | Food industry |
Frying oil | Triglycerides Diglycerides Monoglycerides Free fatty acids | High—directly consumable | Oily | All year | Biodiesel production |
Food processing industry wastewaters | Depends on the processed raw material | Depends on the present carbon sources | Liquid | All year | Biogas production |
Industrial by-products | |||||
Molasses (sugar beet, sugarcane, and soy) | Sucrose | High—directly consumable | Syrupy | Prolonged | Bioethanol production Food industry Animal feed |
Whey | Lactose | Moderate—consumable by selected strains | Liquid | All year | Protein supplement Food industry Animal feed |
Crude glycerol | Glycerol | High—directly consumable | Syrupy | All year | Soap making Substitute for boiler fuel Fuel additive |
Bagasse (sugar cane, sweet sorghum, etc.) | Cellulose Hemicellulose Lignin | Low—requires pretreatment and/or hydrolysis | Solid | Very short | Fuel in cogeneration Paper industry |
Brewer’s spent grain | Starch Cellulose Hemicellulose Lignin | Depends on the present carbon sources | Solid | All year | Animal feed Bioethanol production |
Oil cakes (soybean, sunflower, rapeseed, mahua, olive, etc.) | Starch Cellulose Hemicellulose Lignin Lipids | Depends on the present carbon sources | Solid | Very short/ Prolonged | Animal feed Food industry |
Agro-Industrial Residue/By-Product | Pretreatment | Producing Microorganism | Cultivation Conditions | Biosurfactant | Reference |
---|---|---|---|---|---|
Agricultural field residues | |||||
Sunflower stalks | Crushing, drying, grinding, and alkaline extraction of hemicelluloses | Bacillus subtilis | SmF at 30 °C and 120 rpm for 24 h | - | [63] |
Rice straw | Drying, milling, and redrying | Bacillus amyloliquefaciens | SSF at 26.9 °C for 48 h | Surfactin | [64] |
Sugarcane straw | Acidic hydrolysis, vacuum concentrating, and detoxification | Naganishia adellienses | SmF at 25 °C and 150 rpm for 96 h | - | [65] |
Agricultural process residues | |||||
Corncob | Drying, crushing, acidic hydrolysis, and enzymatic saccharification | Starmerella bombicola | SmF at 28 °C and 500–1000 rpm for 96–168 h | Sophorolipids | [66] |
Corncobs | Crushing, drying, grinding, and alkaline extraction of hemicelluloses | Bacillus subtilis | SmF at 30 °C and 120 rpm for 24 h | - | [63] |
Industrial residues | |||||
Banana peel | Washing, cutting, drying, and grinding | Halobacteriaceae archaeon | SmF at 30 °C and 200 rpm for 48 h | Lipopeptide | [67] |
Orange peel | Drying and powdering | Bacillus licheniformis | SmF at 30 °C for 120 h | Lipopeptide | [68] |
Apple peel extract | - | Bacillus subtilis | SmF at 28 °C and 120 rpm for 96 h | Iturin | [69] |
Soybean oil waste | - | Pseudomonas aeruginosa | SmF at 30 °C and 200 rpm for 240 h | Rhamnolipid | [70] |
Waste frying oil | - | Candida bombicola | SmF at 30 °C and 0.8 vvm for 14 days | Sophorolipid | [71] |
Mango kernel | Drying, grinding, and extraction of oil | Pseudomonas aeruginosa | SmF for 120 h | Rhamnolipid | [72] |
Industrial by-products | |||||
Sugarcane molasses | Diluting | Bacillus subtilis | SmF at 37 °C and 180 rpm for 8 days | Lipopeptide | [73] |
Sweet sorghum bagasse | Acidic hydrolysis, and centrifugation for obtaining liquid phase | Candida (Starmerella) bombicola | SmF at 25 °C and 120 rpm for 8 days | Sophorolipids | [74] |
Mahua oil cake | Drying and grinding | Serratia rubidaea | SSF at 30 °C for 7 days | Rhamnolipid | [75] |
Sunflower cake | - | Bacillus subtilis | SmF at 37 °C and 160 rpm for 168 h | Surfactin | [76] |
Rapeseed cake | - | Bacillus subtilis | SmF at 37 °C and 160 rpm for 168 h | Surfactin | [76] |
Cassava flour wastewater | - | Serratia marcescens | SmF at 28 °C and 150 rpm for 72 h | Polymeric surfactant | [77] |
Combination of agro-industrial restudies and/or by-products | |||||
Sugarcane bagasse and potato peel | Washing, drying, and grinding | Pseudomonas azotoformans | SmF at 35 °C and 180 rpm for 72 h | Rhamnolipid | [78] |
Winterization oil cake and sugar beet molasses | - | Starmerella bombicola | SSF at 30 °C with aeration rate of 0.30 L kg−1 min−1 for 10 days | Sophorolipids | [79] |
Oil mill wastewater, corn steep liquor, and sugarcane molasses | - | Pseudomonas aeruginosa | SmF at 37 °C and 180 rpm for 168 h | Rhamnolipid | [80] |
Whey and grape vinasse | Whey: heat deproteinization and centrifugation (to obtain liquid phase); vinasse: centrifugation (to remove solids) | Lactococcus lactis | SmF at 37 °C and 100 rpm for 24 h | Glycolipopeptide | [81] |
Market Size * in 2022 (USD Million) | Forecast Period | CAGR ** (%) | Projected Value (USD Million) | Source |
---|---|---|---|---|
4070.00 | 2023–2027 | 8.1 | 6000.00 | [90] |
4900.00 | 2022–2027 | 6.4 | 6700.00 | [92] |
1200.00 | 2023–2028 | 11.0 | 2300.00 | [93] |
1260.00 | 2022–2028 | 11.3 | 2400.00 | [94] |
4500.00 | 2022–2028 | 6.0 | 6500.00 | [95] |
2600.00 | 2023–2028 | 5.7 | 3600.00 | [96] |
3966.42 | 2022–2029 | 5.4 | 6047.39 | [97] |
5900.00 | 2023–2029 | 5.8 | 8760.00 | [98] |
811.08 | 2023–2030 | 6.2 | 1311.48 | [91] |
2051.63 | 2023–2031 | 6.1 | 2925.13 | [99] |
3700.00 | 2023–2031 | 8.2 | 7500.00 | [100] |
16.50 | 2022–2032 | 3.9 | 24.30 | [101] |
1180.00 | 2022–2032 | 11.2 | 3400.00 | [102] |
8450.00 | 2023–2032 | 5.0 | 14,300.00 | [103] |
Drivers |
|
Restraints |
|
Trends |
|
Challenges |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vučurović, D.; Bajić, B.; Trivunović, Z.; Dodić, J.; Zeljko, M.; Jevtić-Mučibabić, R.; Dodić, S. Biotechnological Utilization of Agro-Industrial Residues and By-Products—Sustainable Production of Biosurfactants. Foods 2024, 13, 711. https://doi.org/10.3390/foods13050711
Vučurović D, Bajić B, Trivunović Z, Dodić J, Zeljko M, Jevtić-Mučibabić R, Dodić S. Biotechnological Utilization of Agro-Industrial Residues and By-Products—Sustainable Production of Biosurfactants. Foods. 2024; 13(5):711. https://doi.org/10.3390/foods13050711
Chicago/Turabian StyleVučurović, Damjan, Bojana Bajić, Zorana Trivunović, Jelena Dodić, Marko Zeljko, Rada Jevtić-Mučibabić, and Siniša Dodić. 2024. "Biotechnological Utilization of Agro-Industrial Residues and By-Products—Sustainable Production of Biosurfactants" Foods 13, no. 5: 711. https://doi.org/10.3390/foods13050711
APA StyleVučurović, D., Bajić, B., Trivunović, Z., Dodić, J., Zeljko, M., Jevtić-Mučibabić, R., & Dodić, S. (2024). Biotechnological Utilization of Agro-Industrial Residues and By-Products—Sustainable Production of Biosurfactants. Foods, 13(5), 711. https://doi.org/10.3390/foods13050711