Relatively Low Lecithin Inclusion Improved Gelling Characteristics and Oxidative Stability of Single-Washed Mackerel (Auxis thazard) Surimi
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Materials
2.2. Surimi Preparation
2.3. Effect of Lecithin on the Rheological Properties and Characteristics of Surimi Gel
2.4. Analysis of Gelling Properties
2.5. Analysis of Microstructure
2.6. Analysis of Lipid Oxidation
2.7. Statistical Analysis
3. Results and Discussion
3.1. Rheology
3.2. Gelling Properties
3.2.1. Breaking Force and Deformation
3.2.2. Expressible Drip and Whiteness
3.3. Microstructure
3.4. TBARS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fisheries Development Policy and Planning Division. Fisheries Statistic of Thailand No. 14/2022; Department of Fisheries, Ministry of Agriculture and Cooperatives: Bangkok, Thailand, 2022; pp. 25–43. [Google Scholar]
- Panpipat, W.; Thongkam, P.; Boonmalee, S.; Çavdar, H.K.; Chaijan, M. Surimi production from tropical mackerel: A simple washing strategy for better utilization of dark-fleshed fish resources. Resources 2023, 12, 126. [Google Scholar] [CrossRef]
- Thongkam, P.; Chaijan, M.; Cheong, L.Z.; Panpipat, W. Impact of washing with antioxidant-infused soda–saline solution on gel functionality of mackerel (Auxis thazard) surimi. Foods 2023, 12, 3178. [Google Scholar] [CrossRef]
- Panpipat, W.; Tongkam, P.; Çavdar, H.K.; Chaijan, M. Single ultrasonic-assisted washing for eco-efficient production of mackerel (Auxis thazard) surimi. Foods 2023, 12, 3817. [Google Scholar] [CrossRef]
- Starek, M.; Homa, K.; Stępińska, J.; Dąbrowska, M. Development of thin-layer chromatography-densitometry for the quantification of lecithin in dietary supplements. J. Planar Chromatogr. Mod. TLC. 2023, 36, 99–110. [Google Scholar] [CrossRef]
- Willmann, J.; Thiele, H.; Leibfritz, D. Combined reversed phase HPLC, mass spectrometry, and NMR spectroscopy for a fast separation and efficient identification of phosphatidylcholines. J. Biomed. Biotechnol. 2011, 2011, 385786. [Google Scholar] [CrossRef]
- Castro, G.; Gładkowski, W.; Chojnacka, A.; Wawrzeńczyk, C. A simple method for positional analysis of phosphatidylcholine. Food Chem. 2012, 135, 2542–2548. [Google Scholar]
- Spessato, A.G.; Meza, S.L.R.; Cañizares, L.D.C.C.; da Silva Timm, N.; Mardade, C.J.J.; Rombaldi, C.V.; de Oliveira, M. Effect of industrial bleaching on the physicochemical and nutritional quality of non-allergenic lecithin derived from rice bran oil (Oryza sativa L.). Biocatal. Agric. Biotechnol. 2023, 51, 102768. [Google Scholar] [CrossRef]
- Wee, W.; Téllez-Isaías, G.; Kari, Z.A.; Cheadoloh, R.; Kabir, M.A.; Mat, K.; Sukri, S.A.M.; Rahman, M.M.; Rusli, N.D.; Wei, L.S. The roles of soybean lecithin in aquafeed: A crucial need and update. Front. Vet. Sci. 2023, 10, 1188659. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Sarwar, I.; Suheryani, I.; Ahmad, S.; Andlib, S.; Buzdar, J.A.; Kakar, M.U.; Arain, M.A. Role of dietary lecithin as an emulsifying agent in poultry nutrition: Efficacy and feasibility. World’s Poult. Sci. J. 2023, 79, 1–20. [Google Scholar] [CrossRef]
- Cui, L.; Decker, E.A. Phospholipids in foods: Prooxidants or antioxidants? J. Sci. Food Agric. 2016, 96, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lin, H.; Zhu, S.; Xu, X.; Lyu, F.; Ding, Y. Textural, rheological and chemical properties of surimi nutritionally-enhanced with lecithin. LWT 2020, 122, 108984. [Google Scholar] [CrossRef]
- Sun, N.; Chen, J.; Wang, D.; Lin, S. Advance in food derived phospholipids: Sources, molecular species and structure as well as their biological activities. Trends Food Sci. Technol. 2018, 80, 199–211. [Google Scholar] [CrossRef]
- Miranda, D.T.; Batista, V.G.; Grando, F.C.; Paula, F.M.; Felicio, C.A.; Rubbo, G.F.; Fernandes, L.C.; Curi, R.; Nishiyama, A. Soy lecithin supplementation alters macrophage phagocytosis and lymphocyte response to concanavalin a: A study in alloxan induced diabetic rats. Cell Biochem. Fun. 2008, 26, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.L.; Han, Y.X.; Liu, F.F.; Huang, H.; Li, L.H.; Yang, S.L.; Yang, X.Q.; Wu, Y.Y. Effect of lipid on surimi gelation properties of the three major Chinese carp. J. Sci. Food Agric. 2020, 100, 4671–4677. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Lan, J.; Zhong, R.; Shi, F.; Yang, Q.; Liang, P. Insight into the effect of large yellow croaker roe phospholipids on the physical properties of surimi gel and their interaction mechanism with myofibrillar protein. J. Sci. Food Agric. 2023, 104, 1347–1356. [Google Scholar] [CrossRef]
- Sun, X.M.; Wang, C.N.; Guo, M.R. Interactions between whey protein or polymerised whey protein and soybean lecithin in model system. J. Dairy Sci. 2018, 101, 9680–9692. [Google Scholar] [CrossRef]
- Panpipat, W.; Cheong, L.Z.; Chaijan, M. Impact of lecithin incorporation on gel properties of bigeye snapper (Priacanthus tayenus) surimi. Int. J. Food Sci. Technol. 2021, 56, 2481–2491. [Google Scholar] [CrossRef]
- Xia, W.; Ma, L.; Chen, X.; Li, X.; Zhang, Y. Physicochemical and structural properties of composite gels prepared with myofibrillar protein and lecithin at various ionic strengths. Food Hydrocoll. 2018, 82, 135–143. [Google Scholar] [CrossRef]
- Shi, T.; Wijaya, G.Y.A.; Yuan, L.; Sun, Q.; Bai, F.; Wang, J.; Gao, R. Gel properties of Amur sturgeon (Acipenser schrenckii) surimi improved by lecithin at reduced and regular-salt concentrations. RSC Adv. 2020, 10, 30896–30906. [Google Scholar] [CrossRef]
- Buamard, N.; Benjakul, S. Effect of ethanolic coconut husk extract and pre-emulsification on properties and stability of surimi gel fortified with seabass oil during refrigerated storage. LWT 2019, 108, 160–167. [Google Scholar] [CrossRef]
- Phetsang, H.; Panpipat, W.; Undeland, I.; Panya, A.; Phonsatta, N.; Chaijan, M. Comparative quality and volatilomic characterisation of unwashed mince, surimi, and pH-shift-processed protein isolates from farm-raised hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Food Chem. 2021, 364, 130365. [Google Scholar] [CrossRef]
- Somjid, P.; Panpipat, W.; Cheong, L.Z.; Chaijan, M. Reduced washing cycle for sustainable mackerel (Rastrelliger kanagurta) surimi production: Evaluation of bio-physico-chemical, rheological, and gel-forming properties. Foods 2021, 10, 2717. [Google Scholar] [CrossRef]
- Egelandsdal, B.; Martinsen, B.; Autio, K. Rheological parameters as predictors of protein functionality: A model study using myofibrils of different fiber-type composition. Meat Sci. 1995, 39, 97–111. [Google Scholar] [CrossRef]
- Buamard, N.; Benjakul, S.; Konno, K. Improvement of gel quality of sardine surimi with low setting phenomenon by ethanolic coconut husk extract. J. Texture Stud. 2017, 48, 47–56. [Google Scholar] [CrossRef]
- Mehta, N.K.; Balange, A.K.; Lekshmi, M.; Nayak, B.B. Changes in dynamic viscoelastic and functional properties of Indian squid mantle during ice storage. J. Food Process. Preserv. 2017, 41, e12891. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Benjakul, S.; Visessanguan, W.; Lanier, T.C. Rheological and textural properties of pacific whiting surimi gels as influenced by chicken plasma. Int. J. Food Prop. 2008, 11, 820–832. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Kwalumtharn, Y. The effect of whitening agents on the gel-forming ability and whiteness of surimi. Int. J. Food Sci. Technol. 2004, 39, 773–781. [Google Scholar] [CrossRef]
- Gani, A.; Benjakul, S.; Nuthong, P. Effect of virgin coconut oil on properties of surimi gel. J. Food Sci. Technol. 2018, 55, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Panpipat, W.; Chaijan, M.; Benjakul, S. Gel properties of croaker–mackerel surimi blend. Food Chem. 2010, 122, 1122–1128. [Google Scholar] [CrossRef]
- Pietrowski, B.N.; Tahergorabi, R.; Matak, K.E.; Tou, J.C.; Jaczynski, J. Chemical properties of surimi seafood nutrified with ω-3 rich oils. Food Chem. 2011, 129, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, X.; Chang, T.; Wang, C.; Yang, H.; Cui, M. Effects of vegetable oils on gel properties of surimi gels. LWT 2014, 57, 586–593. [Google Scholar] [CrossRef]
- Gani, A.; Benjakul, S. Impact of virgin coconut oil nanoemulsion on properties of croaker surimi gel. Food Hydrocoll. 2018, 82, 34–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panpipat, W.; Chumin, T.; Thongkam, P.; Pinthong, P.; Shetty, K.; Chaijan, M. Relatively Low Lecithin Inclusion Improved Gelling Characteristics and Oxidative Stability of Single-Washed Mackerel (Auxis thazard) Surimi. Foods 2024, 13, 546. https://doi.org/10.3390/foods13040546
Panpipat W, Chumin T, Thongkam P, Pinthong P, Shetty K, Chaijan M. Relatively Low Lecithin Inclusion Improved Gelling Characteristics and Oxidative Stability of Single-Washed Mackerel (Auxis thazard) Surimi. Foods. 2024; 13(4):546. https://doi.org/10.3390/foods13040546
Chicago/Turabian StylePanpipat, Worawan, Thinnaphop Chumin, Porntip Thongkam, Pattaraporn Pinthong, Kalidas Shetty, and Manat Chaijan. 2024. "Relatively Low Lecithin Inclusion Improved Gelling Characteristics and Oxidative Stability of Single-Washed Mackerel (Auxis thazard) Surimi" Foods 13, no. 4: 546. https://doi.org/10.3390/foods13040546