Ultrasound-Assisted Extraction of Squalene and 2-Acetyl-1-Pyrroline from Pandan Leaf: The Effects of Drying Methods and Extraction Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation and Solvents
2.2. Ultrasound-Assisted Extraction of SQ and 2-AP Using Different Solvents
2.3. Scanning Electron Microscope (SEM)
2.4. Single Factor Experiment
2.5. Response Surface Methodology Model (RSM)
2.6. Characterization of Pandan Leaf Extracts
2.6.1. HPLC-DAD Analysis of SQ Content
2.6.2. LC-MS/MS Analysis of 2-AP Content
2.6.3. The Total Phenolic Content (TPC) and Total Flavonoid Content (TFC) in EH Pandan Leaf Extract
2.6.4. The Total Triterpenes Content (TTC) in EH Pandan Leaf Extract
2.7. Antioxidant Activity in the EH Pandan Leaf Extracts In Vitro
2.7.1. DPPH and ABTS Radical Scavenging Activity
2.7.2. Ferric Reducing Antioxidant Power (FRAP) and Cupric Reducing Antioxidant Capacity (CUPRAC)
2.8. Hypoglycemic Assay in the EH Pandan Leaf Extracts
2.9. Data Analysis
3. Results and Discussion
3.1. Effects of Different Drying Methods and Solvents on the Content of SQ
3.2. Effects of Different Drying Methods and Solvents on the Content of 2-AP
3.3. Effects of the Extraction Conditions on the Content of SQ and 2-AP
3.3.1. Ultrasound Time
3.3.2. Ultrasound Temperature
3.3.3. Ultrasound Power
3.3.4. Solid-to-Liquid Ratio
3.4. Optimization of the Extraction Contents of SQ and 2-AP by RSM
3.4.1. RSM Model Analysis
3.4.2. Confirmation and Verification of Optimal Conditions
3.5. TPC, TFC, and TTC in the EH Pandan Leaf Extracts
3.6. Antioxidant Activities of the Pandan Leaf Extract
3.7. Hypoglycemic Activity of the Pandan Leaf Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Routray, W.; Rayaguru, K. Chemical constituents and post-harvest prospects of Pandanus amaryllifolius leaves: A review. Food Rev. Int. 2010, 26, 230–245. [Google Scholar] [CrossRef]
- Patil, S.B.; Hublikar, L.V.; Raghavendra, N.; Shanbhog, C.; Kamble, A. Synthesis and exploration of anticancer activity of silver nanoparticles using Pandanus amaryllifolius Roxb. leaf extract: Promising approach against lung cancer and breast cancer cell lines. Biologia 2021, 76, 3533–3545. [Google Scholar] [CrossRef]
- Thanebal, S.A.P.P.; Vun-Sang, S.; Iqbal, M. Hepatoprotective effects of Pandanus amaryllifolius against carbon tetrachloride (CCl4) induced toxicity: A biochemical and histopathological study. Arab. J. Chem. 2021, 14, 103390. [Google Scholar] [CrossRef]
- Fabrikov, D.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Rodríguez-García, I.; Gómez-Mercado, F.; Urrestarazu, M.; Lao, M.T.; Rincón-Cervera, M.Á.; Álvaro, J.E.; Lyashenko, S. Borage oil: Tocopherols, sterols and squalene in farmed and endemic-wild Borago species. J. Food Compos. Anal. 2019, 83, 103299. [Google Scholar] [CrossRef]
- Ibrahim, N.; Fairus, S.; Zulfarina, M.S.; Naina Mohamed, I. The Efficacy of Squalene in Cardiovascular Disease Risk-A Systematic Review. Nutrients 2020, 12, 414. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Duan, D.; Yao, X.; Chen, J.; Ji, H. Preparation of high purity squalene from soybean oil deodorizer distillate with the combination of macroporous resin and thin-film evaporation coupling distillation. Sep. Sci. Technol. 2020, 55, 1611–1622. [Google Scholar] [CrossRef]
- Sulistiyati, N.T.; Aisyah, R.; Sutrisna, E. The potential effect of pandan wangi leaf “pandanus amaryllifolius roxb.” extract from Indonesia as time sleep inductor. Int. J. Curr. Res. Physiol. Pharmacol. 2019, 3, 5–7. [Google Scholar] [CrossRef]
- Loh, S.K.; Che Man, Y.B.; Tan, C.P.; Osman, A.; Hamid, N.S.A. Process optimisation of encapsulated pandan (Pandanus amaryllifolius) powder using spray-drying method. J. Sci. Food Agric. 2005, 85, 1999–2004. [Google Scholar] [CrossRef]
- Yahya, F.; Fryer, P.J.; Bakalis, S. The absorption of 2-acetyl-1-pyrroline during cooking of rice (Oryza sativa L.) with Pandan (Pandanus amaryllifolius Roxb.) leaves. Procedia Food Sci. 2011, 1, 722–728. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Zakaria, F.; Tan, J.K.; Faudzi, S.M.M.; Rahman, M.B.A.; Ashari, S.E. Ultrasound-assisted extraction conditions optimisation using response surface methodology from (Korth.) Havil leaves. Ultrason. Sonochem. 2021, 81, 105851. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, A.; Hoscheid, J.; Garcia, V.; de Oliveira Santos Junior, O.; da Silva, C. Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability. Processes 2024, 12, 2270. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem 2021, 77, 105665. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.F.; Wen, Q.; Yang, Z.F.; Li, C.Q.; Li, F.R. Optimization of ultrasound-assisted extraction of glycyrrhizic acid and glabridin from Glycyrrhiza glabra L. using response surface methodology and development of a green analytical method. Sustain. Chem. Pharm. 2024, 37, 101385. [Google Scholar] [CrossRef]
- Rao, M.V.; Sengar, A.S.; Sunil, C.K.; Rawson, A. Ultrasonication—A green technology extraction technique for spices: A review. Trends Food Sci. Technol. 2021, 116, 975–991. [Google Scholar] [CrossRef]
- Fei, T.; Wang, T. Comparative extraction of cannabinoids and terpenoids from Cannabis sativa L. using three solvents. J. Am. Oil Chem. Soc. 2022, 99, 525–533. [Google Scholar] [CrossRef]
- Chanioti, S.; Tzia, C. Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene. LWT—Food Sci. Technol. 2019, 99, 209–216. [Google Scholar] [CrossRef]
- Farjaminezhad, R.; Garoosi, G.-A. Establishment of green analytical method for ultrasound-assisted extraction of azadirachtin, mevalonic acid and squalene from cell suspension culture of Azadirachta indica using response surface methodology. Ind. Crops Prod. 2020, 144, 111946. [Google Scholar] [CrossRef]
- Bösl, M.; Dunkel, A.; Hofmann, T.F. Rapid, high-throughput quantitation of odor-active 2-acetyl azaheterocycles in food products by UHPLC–MS/MS. J. Agric. Food Chem. 2021, 69, 1405–1412. [Google Scholar] [CrossRef]
- Mahindrakar, K.V.; Rathod, V.K. Ultrasound-assisted intensified aqueous extraction of phenolics from waste Syzygium cumini leaves: Kinetic studies and evaluation of antioxidant, antidiabetic and anticancer potential. Food Biosci. 2022, 4, 101547. [Google Scholar] [CrossRef]
- Luo, S.; Zeng, C.; Luo, F.; Li, M.; Feng, S.; Zhou, L.; Chen, T.; Yuan, M.; Huang, Y.; Ding, C. Optimization of ultrasound-assisted extraction of triterpenes from Bergenia emeiensis leaves and inhibition effect on the growth of Hela cells. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100266. [Google Scholar] [CrossRef]
- de Souza, L.E.S.; Santos, K.A.; Raspe, D.T.; da Silva, C.; da Silva, E.A. Application of ultrasound-assisted extraction to obtain antioxidant compounds from leaves of Echinodorus Macrophyllus. Sustain. Chem. Pharm. 2023, 32, 101031. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Zhang, L.; Wan, S.; Li, C.; Liu, S. Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem. 2022, 377, 131989. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, W.; Wang, R.; Li, C.; Lin, X.; Wang, L. Screening and identification of natural α-glucosidase and α-amylase inhibitors from partridge tea (Mallotus furetianus Muell-Arg) and in silico analysis. Food Chem. 2022, 388, 133004. [Google Scholar] [CrossRef] [PubMed]
- Gharibzahedi, S.M.T.; Altintas, Z. Lesser mealworm (Alphitobius diaperinus L.) larvae oils extracted by pure and binary mixed organic solvents: Physicochemical and antioxidant properties, fatty acid composition, and lipid quality indices. Food Chem. 2023, 408, 135209. [Google Scholar] [CrossRef]
- Torres, M.; Pierantozzi, P.; Contreras, C.; Stanzione, V.; Tivani, M.; Mastio, V.; Gentili, L.; Searles, P.; Brizuela, M.; Fernández, F.; et al. Thermal regime and cultivar effects on squalene and sterol contents in olive fruits: Results from a field network in different Argentinian environments. Sci. Hortic. 2022, 303, 111230. [Google Scholar] [CrossRef]
- dos Santos, L.C.; Broco e Silva, R.G.; Scopel, E.; Hatami, T.; Rezende, C.A.; Martínez, J. Concentration of stigmasterol, β-sitosterol and squalene from passion fruit (Passiflora edulis Sims.) by-products by supercritical CO2 adsorption in zeolite 13-X. J. Supercrit. Fluids 2024, 209, 106250. [Google Scholar] [CrossRef]
- Lozano-Grande, M.A.; Dávila-Ortiz, G.; García-Dávila, J.; Ríos-Cortés, G.; Espitia-Rangel, E.; Martínez-Ayala, A.L. Optimisation of Microwave-Assisted Extraction of Squalene from Amaranthus spp. Seeds. J. Microw. Power Electromagn. Energy 2019, 53, 243–258. [Google Scholar] [CrossRef]
- Shang, H.; Zhou, H.; Duan, M.; Li, R.; Wu, H.; Lou, Y. Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from comfrey (Symphytum officinale L.) root. Int. J. Biol. Macromol. 2018, 112, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cao, X.; Islam, M.N.; Zheng, H.; Li, J.; Liu, F.; Cao, Y.; Dai, Y. Comparison of hydrability, antioxidants, microstructure, and sensory quality of barley grass powder using ultra-micro-crushing combined with hot air and freeze drying. Food Sci. Nutr. 2021, 9, 1870–1880. [Google Scholar] [CrossRef] [PubMed]
- Pacetti, D.; Scortichini, S.; Boarelli, M.C.; Fiorini, D. Simple and rapid method to analyse squalene in olive oils and extra virgin olive oils. Food Control 2019, 102, 240–244. [Google Scholar] [CrossRef]
- Azhar, A.N.H.; Amran, N.A.; Yusup, S.; Mohd Yusoff, M.H. Ultrasonic Extraction of 2-Acetyl-1-Pyrroline (2AP) from Pandanus amaryllifolius Roxb. Using Ethanol as Solvent. Molecules 2022, 27, 4906. [Google Scholar] [CrossRef]
- Laohakunjit, N.; Noomhorm, A. Supercritical carbon dioxide extraction of 2-acetyl-1-pyrroline and volatile components from pandan leaves. Flavour Fragr. J. 2004, 19, 251–259. [Google Scholar] [CrossRef]
- Escorsim, A.M.; da Rocha, G.; Vargas, J.V.; Mariano, A.B.; Ramos, L.P.; Corazza, M.L.; Cordeiro, C. Extraction of Acutodesmus obliquus lipids using a mixture of ethanol and hexane as solvent. Biomass Bioenergy 2018, 108, 470–478. [Google Scholar] [CrossRef]
- de Torres, C.; Diaz-Maroto, M.C.; Hermosin-Gutierrez, I.; Perez-Coello, M.S. Effect of freeze-drying and oven-drying on volatiles and phenolics composition of grape skin. Anal. Chim. Acta 2010, 660, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Jiang, S.; Liu, M.; Tian, S. Simultaneous process optimization of ultrasound-assisted extraction of polyphenols and ellagic acid from pomegranate (Punica granatum L.) flowers and its biological activities. Ultrason. Sonochem. 2021, 80, 105833. [Google Scholar] [CrossRef]
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, Y.; Xie, J.; Wen, Z. Ultrasonic-assisted extraction of squalene and vitamin E based oil from Zizyphi Spinosae Semen and evaluation of its antioxidant activity. J. Food Meas. Charact. 2018, 12, 2844–2854. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, J.; Fan, J.; Clark, J.; Shen, P.; Li, Y.; Zhang, C. Microwave assisted extraction of phenolic compounds from four economic brown macroalgae species and evaluation of their antioxidant activities and inhibitory effects on α-amylase, α-glucosidase, pancreatic lipase and tyrosinase. Food Res. Int. 2018, 113, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Micera, M.; Botto, A.; Geddo, F.; Antoniotti, S.; Bertea, C.M.; Levi, R.; Gallo, M.P.; Querio, G. Squalene: More than a step toward sterols. Antioxidants 2020, 9, 688. [Google Scholar] [CrossRef] [PubMed]
- Rameshkumar, R.; Satish, L.; Pandian, S.; Rathinapriya, P.; Rency, A.S.; Shanmugaraj, G.; Pandian, S.K.; Leung, D.W.; Ramesh, M. Production of squalene with promising antioxidant properties in callus cultures of Nilgirianthus Ciliatus. Ind. Crops Prod. 2018, 126, 357–367. [Google Scholar] [CrossRef]
- Zampar, G.G.; Zampar, I.C.; Beserra da Silva de Souza, S.; da Silva, C.; Bolanho Barros, B.C. Effect of solvent mixtures on the ultrasound-assisted extraction of compounds from pineapple by-product. Food Biosci. 2022, 50, 102098. [Google Scholar] [CrossRef]
- Peng, X.; Hu, X.; Zhang, Y.; Xu, H.; Tang, J.; Zhang, G.; Deng, J.; Kan, H.; Zhao, P.; Liu, Y. Extraction, characterization, antioxidant and anti-tumor activities of polysaccharides from Camellia fascicularis leaves. Int. J. Biol. Macromol. 2022, 222 Pt A, 373–384. [Google Scholar] [CrossRef]
- George, J.; Edwards, D.; Pun, S.; Williams, D.; Djaeni, M. Evaluation of Antioxidant Capacity (ABTS and CUPRAC) and Total Phenolic Content (Folin-Ciocalteu) Assays of Selected Fruit, Vegetables, and Spices. Int. J. Food Sci. 2022, 2022, 2581470. [Google Scholar] [CrossRef] [PubMed]
- Lou-Bonafonte, J.M.; Martínez-Beamonte, R.; Sanclemente, T.; Surra, J.C.; Herrera-Marcos, L.V.; Sanchez-Marco, J.; Arnal, C.; Osada, J. Current insights into the biological action of squalene. Mol. Nutr. Food Res. 2018, 62, 1800136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wei, W.; Zhang, X.; Wen, C.; Ovatlarnporn, C.; Olatunji, O.J. Antidiabetic and antioxidant activities of Mitragyna speciosa (kratom) leaf extract in type 2 diabetic rats. Biomed. Pharmacother. 2023, 162, 114689. [Google Scholar] [CrossRef]
- Chan, Y.-J.; Chiu, C.-S.; Li, P.-H.; Lu, W.-C. Evaluation of different roasting condition on yield, physico-chemical characteristics, and antioxidant activity of cold-pressed sacha inchi (Plukenetia volubilis) oil. LWT—Food Sci. Technol. 2024, 203, 116343. [Google Scholar] [CrossRef]
- Conforti, F.; Statti, G.; Loizzo, M.R.; Sacchetti, G.; Poli, F.; Menichini, F. In Vitro antioxidant effect and inhibition of alpha-amylase of two varieties of Amaranthus caudatus seeds. Biol. Pharm. Bull 2005, 28, 1098–1102. [Google Scholar] [CrossRef]
- Sanni, O.; Erukainure, O.L.; Chukwuma, C.I.; Koorbanally, N.A.; Ibeji, C.U.; Islam, M.S. Azadirachta indica inhibits key enzyme linked to type 2 diabetes in vitro, abates oxidative hepatic injury and enhances muscle glucose uptake ex vivo. Biomed. Pharmacother. 2019, 109, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Kashtoh, H.; Baek, K.H. New Insights into the Latest Advancement in alpha-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. Plants 2023, 12, 2944. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Liu, D.; Zhao, J.; Zhao, J.; Li, H.; Li, L.; Zhang, H.; Wang, H. In vitro and in vivo inhibitory effect of anthocyanin-rich bilberry extract on α-glucosidase and α-amylase. LWT—Food Sci. Technol. 2021, 145, 111484. [Google Scholar] [CrossRef]
- Widyawati, T.; Yusoff, N.A.; Asmawi, M.Z.; Ahmad, M. Antihyperglycemic Effect of Methanol Extract of Syzygium polyanthum (Wight.) Leaf in Streptozotocin-Induced Diabetic Rats. Nutrients 2015, 7, 7764–7780. [Google Scholar] [CrossRef]
- Wu, H.; Li, M.; Yang, X.; Wei, Q.; Sun, L.; Zhao, J.; Shang, H. Extraction optimization, physicochemical properties and antioxidant and hypoglycemic activities of polysaccharides from roxburgh rose (Rosa roxburghii Tratt.) leaves. Int. J. Biol. Macromol. 2020, 165 Pt A, 517–529. [Google Scholar] [CrossRef]
Factor Level | Independent Variables | ||
---|---|---|---|
Extraction Time (A/time) | Extraction Temperature (B/°C) | Extraction Power (C/W) | |
−1 | 50 | 40 | 300 |
0 | 60 | 50 | 360 |
1 | 70 | 60 | 420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Fei, T.; Liu, Y.; Chen, S.; Wang, Z.; Han, Y.; Wang, L.; Li, C. Ultrasound-Assisted Extraction of Squalene and 2-Acetyl-1-Pyrroline from Pandan Leaf: The Effects of Drying Methods and Extraction Conditions. Foods 2024, 13, 4010. https://doi.org/10.3390/foods13244010
Cheng Y, Fei T, Liu Y, Chen S, Wang Z, Han Y, Wang L, Li C. Ultrasound-Assisted Extraction of Squalene and 2-Acetyl-1-Pyrroline from Pandan Leaf: The Effects of Drying Methods and Extraction Conditions. Foods. 2024; 13(24):4010. https://doi.org/10.3390/foods13244010
Chicago/Turabian StyleCheng, Yanfei, Tao Fei, Yuyi Liu, Shuai Chen, Zexin Wang, Yiran Han, Lu Wang, and Congfa Li. 2024. "Ultrasound-Assisted Extraction of Squalene and 2-Acetyl-1-Pyrroline from Pandan Leaf: The Effects of Drying Methods and Extraction Conditions" Foods 13, no. 24: 4010. https://doi.org/10.3390/foods13244010
APA StyleCheng, Y., Fei, T., Liu, Y., Chen, S., Wang, Z., Han, Y., Wang, L., & Li, C. (2024). Ultrasound-Assisted Extraction of Squalene and 2-Acetyl-1-Pyrroline from Pandan Leaf: The Effects of Drying Methods and Extraction Conditions. Foods, 13(24), 4010. https://doi.org/10.3390/foods13244010