Impact of Frozen Storage on Sensory, Physicochemical, and Volatile Compounds Parameters of Different Extra Virgin Olive Oils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples and Storage Conditions
2.3. Quality Parameters
2.4. Sensory Analysis
2.5. Volatile Compounds Determination (DHS-GC-FID)
2.6. Statistical Analysis
3. Results and Discussion
3.1. CVOO and FVOO Samples: Storage Effect and Oxidation Markers Selection
3.2. Green/Fruity-Related Volatile Compounds of the Long-Term Frozen Samples
3.3. Study of the Oxidation Markers of the Long-Term-Frozen Samples
3.4. Multivariate Statistical Analysis of the Long-Term-Frozen Samples
3.5. Sensory Analysis
3.6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Union. Regulation (EU) 2022/2104 of 29 July 2022 Supplementing Regulation (EU) No 1308/2013 of the 573 European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation 574 (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Available online: http://data.europa.eu/eli/reg_del/2022/2104/oj (accessed on 16 September 2024).
- Morales, M.T.; Rios, J.J.; Aparicio, R. Changes in the volatile composition of virgin olive oil during oxidation: Flavors and off-flavors. J. Agric. Food Chem. 1997, 45, 2666–2673. [Google Scholar] [CrossRef]
- Morales, M.T.; Aparicio-Ruiz, R.; Aparicio, R. Chromatographic methodologies: Compounds for olive oil odor issues. In Handbook of Olive Oil: Analysis and Properties, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: New York, NY, USA, 2013; pp. 261–304. [Google Scholar]
- García-González, D.L.; Morales, M.T.; Aparicio, R. Olive and olive oil. In Handbook of Fruit and Vegetable Flavors, 1st ed.; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2010; pp. 821–847. [Google Scholar]
- Aparicio-Ruiz, R.; García-González, D.L.; Lobo-Prieto, A.; Aparicio, R. Andalusian protected designations of origin of virgin olive oil: The role of chemical composition in their authentication. Eur. J. Lipid Sci. Technol. 2019, 121, 1800133. [Google Scholar] [CrossRef]
- Diez-Betriu, A.; Romero, A.; Ninot, A.; Tres, A.; Vichi, S.; Guardiola, F. Effect of freezing, fast-freezing by liquid nitrogen or refrigeration to preserve premium extra virgin olive oil during storage. Eur. Food Res. Technol. 2022, 248, 2651–2663. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Frankel, E.N. Photooxidation of Unsaturated Fats. In Lipid Oxidation, 2nd ed.; Frankel, E.N., Ed.; Woodhead Publishing: Cambridge, UK, 2005; pp. 51–66. [Google Scholar]
- Morales, M.T.; Przybylski, R. Olive Oil Oxidation. In Handbook of Olive Oil: Analysis and Properties, 2nd ed.; Harwood, J.L., Aparicio, R., Eds.; Aspen Publishers: Gaithersburg, MD, USA, 2013; pp. 479–522. [Google Scholar]
- Choe, E. Effects and Mechanisms of Minor Compounds in Oil on Lipid Oxidation. In Foods Lipids: Chemistry, Nutrition, and Biotechnology, 4th ed.; Akoh, C.C., Ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 567–588. [Google Scholar]
- Esposto, S.; Taticchi, A.; Servili, M.; Urbani, S.; Sordini, B.; Veneziani, G.; Daidone, L.; Selvaggini, R. Overall quality evolution of extra virgin olive oil exposed to light for 10 months in different containers. Food Chem. 2021, 351, 129297. [Google Scholar] [CrossRef]
- Frisina, M.; Bonacci, S.; Oliverio, M.; Nardi, M.; Vatrano, T.P.; Procopio, A. Storage Effects on Bioactive Phenols in Calabrian Monovarietal Extra Virgin Olive Oils Based on the EFSA Health Claim. Foods 2023, 12, 3799. [Google Scholar] [CrossRef]
- Castillo-Luna, A.; Criado-Navarro, I.; Ledesma-Escobar, C.A.; López-Bascón, M.A.; Priego-Capote, F. The decrease in the health benefits of extra virgin olive oil during storage is conditioned by the initial phenolic profile. Food Chem. 2021, 336, 127730. [Google Scholar] [CrossRef]
- Salas, J.J.; Harwood, J.; Martínez-Force, E. Lipid Metabolism in Olive: Biosynthesis of Triacylglycerols and Aroma Components. In Handbook of Olive Oil: Analysis and Properties, 2nd ed.; Harwood, J.L., Aparicio, R., Eds.; Aspen Publishers: Gaithersburg, MD, USA, 2013; pp. 97–127. [Google Scholar]
- Choe, E.; Min, D.B. Mechanism and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor chemistry of virgin olive oil: An overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Díaz-Montaña, E.J.; Aparicio-Ruiz, R.; Morales, M.T. Effect of flavorization on virgin olive oil oxidation and volatile profile. Antioxidants 2023, 12, 242. [Google Scholar] [CrossRef]
- Garcia-Oliveira, P.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Chamorro, F.; Gonzalez Pereira, A.; Carrera-Casais, A.; Fraga-Corral, M.; Carpena, M.; Simal-Gandara, J.; Prieto, M.A. Evolution of flavors in extra virgin olive oil shelf-life. Antioxidants 2021, 10, 368. [Google Scholar] [CrossRef] [PubMed]
- Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; García-González, D.L.; Sikorska, E. Monitoring virgin olive oil shelf-life by fluorescence spectroscopy and sensory characteristics: A multidimensional study carried out under simulated market conditions. Foods 2020, 9, 1846. [Google Scholar] [CrossRef] [PubMed]
- Pristouri, G.; Badeka, A.; Kontominas, M.G. Effect of packaging material headspace, oxygen and light transmission, temperature and storage time on quality characteristics of extra virgin olive oil. Food Control 2021, 21, 412–418. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rosseti, A.; Cane, A.; Mulinacci, N. New volatile molecular markers of rancidity in virgin olive oils under nonaccelerated oxidative storage conditions. J. Agric. Food Chem. 2019, 67, 13150–13163. [Google Scholar] [CrossRef]
- Mousavi, S.; Mariotti, R.; Stanzione, V.; Pandolfi, S.; Mastio, V.; Baldoni, L.; Cultrera, N.G.M. Evolution of extra virgin olive oil quality under different storage conditions. Foods 2021, 10, 1945. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2022, 376, 131881. [Google Scholar] [CrossRef] [PubMed]
- Krichene, D.; Salvador, M.D.; Fregapane, G. Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 °C. J. Agric. Food Chem. 2015, 63, 6779–6786. [Google Scholar] [CrossRef]
- Serrano, L.; Cruz, A.; Sousa, S.; Morais, Z. Alterations in monovarietal, blended and aromatized Portuguese virgin olive oils under four storage conditions for 12 months. Eur. Food Res. Technol. 2016, 242, 1041–1055. [Google Scholar] [CrossRef]
- Gutiérrez, F.; Fernández, J.L. Determinant parameters and components in the storage of virgin olive oil. Prediction of storage time beyond which the oil is no longer of “Extra” quality. J. Agric. Food Chem. 2002, 50, 571–577. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A.; Gallina Toschi, T.; Lercker, G.; Biguzzi, B. Freezing storage can affect the oxidative stability of not filtered extra-virgin olive oils. JCOMM 2005, 44, 3–15. [Google Scholar] [CrossRef]
- Calligaris, S.; Sovrano, S.; Manzocco, L.; Nicoli, M.C. Influence of crystallization on the oxidative stability of extra virgin olive oil. J. Agric. Food Chem. 2006, 54, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.; Birch, J. Composition and stability of olive oil following partial crystallization. Food Res. Int. 2009, 42, 826–831. [Google Scholar] [CrossRef]
- Brkic Bubola, K.; Koprivnjak, O.; Sladonja, B.; Belobrajić, I. Influence of storage temperature on quality parameters, phenols, and volatile compounds of Croatian virgin olive oils. Grasas Aceites 2014, 65, e034. [Google Scholar] [CrossRef]
- Li, X.; Zhu, H.; Shoemaker, C.F.; Wang, S.C. The effect of different cold storage conditions on the compositions of extra virgin olive oil. J. Am. Oil Chem. 2014, 91, 1559–1570. [Google Scholar] [CrossRef]
- Diez-Betriu, A.; Bustamante, J.; Romero, A.; Ninot, A.; Tres, A.; Vichi, S.; Guardiola, F. Effect of the storage conditions and freezing speed on the color and chlorophyll profile of premium extra virgin olive oils. Foods 2023, 12, 222. [Google Scholar] [CrossRef]
- European Union. Regulation (EEC) No 2568/91 of 11 July 1991 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. 1991, Volume 3, pp. 0001–0083. Available online: http://data.europa.eu/eli/reg/1991/2568/oj (accessed on 13 September 2024).
- European Union. Regulation (EU) No 29/2012 of 13 January 2012 on Marketing Standards for Olive Oil (Codification). 2012, Volume 12, pp. 14–21. Available online: http://data.europa.eu/eli/reg_impl/2012/29/oj (accessed on 11 September 2024).
- European Union. Regulation (EU) 2016/2095 of 26 September 2016 Amending Regulation (EEC) No 2568/91 on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. 2016, Volume 326, pp. 1–6. Available online: http://data.europa.eu/eli/reg_del/2016/2095/oj (accessed on 16 September 2024).
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G.F. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2024, 1054, 17–31. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M. Changes occurring in the volatile composition of Greek virgin olive oils during storage: Oil variety influences stability. Eur. J. Lipid Sci. Technol. 2015, 117, 514–522. [Google Scholar] [CrossRef]
- Caipo, L.; Sandoval, A.; Sepúlveda, B.; Fuentes, E.; Valenzuela, R.; Metherel, A.H.; Romero, N. Effect of storage conditions on the quality of arbequina extra virgin olive oil and the impact on the composition of flavor-related compounds (phenols and volatiles). Foods 2021, 10, 2161. [Google Scholar] [CrossRef]
- Snyder, J.M.; Mounts, T.L. Analysis of vegetable oil volatiles by multiple headspace extraction. J. Am. Oil Chem. 1990, 67, 800–803. [Google Scholar] [CrossRef]
- Kiritsakis, A.K. Flavor components of olive oil—A review. J. Am. Oil Chem. 1998, 75, 673–681. [Google Scholar] [CrossRef]
- Mancebo-Campos, V.; Salvador, M.D.; Fregapane, G. Comparative study of virgin olive oil behavior under rancimat accelerated oxidation conditions and long-term room temperature storage. J. Agric. Food Chem. 2007, 55, 8231–8236. [Google Scholar] [CrossRef] [PubMed]
- Oliver-Pozo, C.; Aparicio-Ruiz, R.; Romero, I.; García-González, D.L. Analysis of volatile markers for virgin olive oil aroma defects by SPME-GC/FID: Possible sources of incorrect data. J. Agric. Food Chem. 2015, 63, 10477–10483. [Google Scholar] [CrossRef] [PubMed]
- Mulinacci, N.; Ieri, F.; Ignesti, G.; Romani, A.; Michelozzi, M.; Creti, D.; Innocenti, M.; Calamai, L. The freezing process helps to preserve the quality of extra virgin olive oil over time: A case study up to 18 months. Food Res. Int. 2013, 54, 2008–2015. [Google Scholar] [CrossRef]
Sample Code | Harvesting | Variety | Origin | Sample Code | Harvesting | Variety | Origin |
---|---|---|---|---|---|---|---|
L1.1. | 2021/22 | Picual | Spain | L2.7. | 2016/17 | Arbequina | Italy |
L1.2. | 2021/22 | Arbequina-Picual | Spain | L2.8. | 2016/17 | Manzanilla, Hojiblanca, Picual | Spain |
L1.3. | 2021/22 | Picual | Spain | L2.9. | 2016/17 | - | Spain |
L1.4. | 2021/22 | Arbequina | Spain | L2.10. | 2016/17 | Koroneiki | Greece |
L1.5. | 2021/22 | Picuda, Picual, Hojiblanca | Spain | L3.1. | 2012/13 | Hojiblanca | Spain |
L1.6. | 2021/22 | Picuda | Spain | L3.2. | 2012/13 | Hojiblanca | Spain |
L1.7. | 2021/22 | Hojiblanca | Spain | L3.3. | 2012/13 | Hojiblanca | Spain |
L1.8. | 2021/22 | Cornicabra | Spain | L3.4. | 2012/13 | Hojiblanca | Spain |
L1.9. | 2021/22 | Picual | Spain | L3.5. | 2012/13 | Hojiblanca | Spain |
L1.10. | 2021/22 | Amarga, Picual | Spain | L3.6. | 2012/13 | Hojiblanca | Spain |
L2.1. | 2016/17 | Biancolilla | Italy | L3.7. | 2012/13 | Hojiblanca | Spain |
L2.2. | 2016/17 | Arbequina | Morocco | L3.8. | 2012/13 | Hojiblanca | Spain |
L2.3. | 2016/17 | Manzanilla | Spain | L3.9. | 2012/13 | Hojiblanca | Spain |
L2.4. | 2016/17 | Leccino, Pendolino | Croatia | L3.10. | 2012/13 | Hojiblanca | Spain |
L2.5. | 2016/17 | Picholine, Leccio del Corno | Croatia | L3.11. | 2012/13 | Hojiblanca | Spain |
L2.6. | 2016/17 | Frantoio | Italy | L3.12. | 2012/13 | Hojiblanca | Spain |
Sample | Acidity Index (% m/m Expressed as Oleic Acid) | Peroxide Value (meq O2/kg Oil) | K232 | K270 |
---|---|---|---|---|
Control sample (VOO-0) | 0.45 ± 0.01 | 4.00 ± 0.06 | 1.50 ± 0.04 | 0.19 ± 0.01 |
CVOO-1 | 0.48 ± 0.02 ** | 4.20 ± 0.08 ** | 1.58 ± 0.04 ** | 0.21 ± 0.01 ** |
CVOO-2 | 0.50 ± 0.02 ** | 5.73 ± 0.07 ** | 1.65 ± 0.03 ** | 0.22 ± 0.01 ** |
CVOO-3 | 0.65 ± 0.02 * | 5.71 ± 0.10 ** | 1.67 ± 0.04 ** | 0.24 ± 0.01 * |
CVOO-4 | 0.70 ± 0.03 * | 5.75 ± 0.09 ** | 1.68 ± 0.03 ** | 0.25 ± 0.01 * |
CVOO-5 | 0.73 ± 0.03 * | 6.72 ± 0.11 ** | 1.69 ± 0.02 * | 0.25 ± 0.01 * |
CVOO-6 | 0.81 ± 0.01 * | 7.41 ± 0.12 * | 1.73 ± 0.03 * | 0.26 ± 0.01 * |
FVOO-1 | 0.45 ± 0.02 ** | 4.14 ± 0.09 ** | 1.55 ± 0.05 ** | 0.19 ± 0.01 ** |
FVOO-2 | 0.46 ± 0.02 ** | 5.67 ± 0.08 ** | 1.59 ± 0.04 ** | 0.19 ± 0.02 ** |
FVOO-3 | 0.48 ± 0.02 * | 5.67 ± 0.08 ** | 1.61 ± 0.06 ** | 0.19 ± 0.01 * |
FVOO-4 | 0.51 ± 0.02 * | 5.71 ± 0.07 ** | 1.62 ± 0.04 ** | 0.20 ± 0.01 * |
FVOO-5 | 0.52 ± 0.01 * | 6.55 ± 0.10 ** | 1.62 ± 0.02 * | 0.20 ± 0.01 * |
FVOO-6 | 0.55 ± 0.02 * | 6.74 ± 0.10 * | 1.64 ± 0.03 * | 0.20 ± 0.01 * |
Sample | Fruity | Green | Tomato | Other (Apple) | Other (Sweet) | Rancid |
---|---|---|---|---|---|---|
VOO-0 | 2.00 | 2.50 | 1.50 | 1.00 | 1.00 | n.d. |
CVOO-1 | 1.50 | 2.00 | 1.00 | 0.50 | 0.50 | n.d. |
CVOO-2 | 1.00 | 1.00 | 0.25 | 0.25 | n.d. | n.d. |
CVOO-3 | 1.00 | 0.50 | n.d. | n.d. | n.d. | 0.25 |
CVOO-4 | 0.50 | 1.00 | n.d. | n.d. | n.d. | 0.50 |
CVOO-5 | 0.50 | 0.50 | n.d. | n.d. | n.d. | 2.00 |
CVOO-6 | 0.00 | 0.00 | n.d. | n.d. | n.d. | 3.00 |
Sample | (Z)-3-Hexenyl Acetate | Hexanol | (Z)-2-Hexenol | (E)-3-Hexenal |
---|---|---|---|---|
L1.3. | 0.151 ± 0.001 | 0.097 ± 0.001 | 0.021 ± 0.003 | 0.125 ± 0.001 |
L1.7. | 0.203 ± 0.004 | 0.159 ± 0.003 | 0.039 ± 0.001 | 0.144 ± 0.001 |
L1.10. | 0.176 ± 0.012 | 0.086 ± 0.010 | 0.057 ± 0.004 | 0.132 ± 0.001 |
L2.5. | 0.066 ± 0.002 | 0.165 ± 0.007 | 0.022 ± 0.006 | 0.032 ± 0.001 |
L2.8. | 0.101 ± 0.018 | 0.251 ± 0.023 | 0.012 ± 0.001 | 0.032 ± 0.003 |
L2.9. | 0.148 ± 0.010 | 0.119 ± 0.001 | 0.086 ± 0.006 | 0.045 ± 0.003 |
L3.7. | 0.094 ± 0.006 | 0.119 ± 0.008 | 0.013 ± 0.000 | 0.018 ± 0.002 |
L3.8. | 0.044 ± 0.003 | 0.183 ± 0.008 | 0.023 ± 0.002 | 0.019 ± 0.001 |
L3.9. | 0.074 ± 0.004 | 0.122 ± 0.002 | 0.040 ± 0.009 | 0.044 ± 0.001 |
Sample | Acetic Acid | Propanoic Acid | Butanoic Acid | Hexanoic Acid |
---|---|---|---|---|
L1.2. | 0.162 ± 0.015 | 0.003 ± 0.001 | 0.008 ± 0.002 | 0.001 ± 0.001 |
L1.8. | 0.237 ± 0.060 | 0.008 ± 0.001 | 0.008 ± 0.001 | 0.001 ± 0.000 |
L1.9. | 0.244 ± 0.050 | 0.007 ± 0.002 | 0.007 ± 0.001 | 0.001 ± 0.000 |
L2.1. | 0.459 ± 0.019 | 0.013 ± 0.001 | 0.009 ± 0.002 | 0.004 ± 0.001 |
L2.4. | 0.529 ± 0.011 | 0.013 ± 0.001 | 0.010 ± 0.001 | 0.004 ± 0.001 |
L2.6. | 0.761 ± 0.200 | 0.017 ± 0.003 | 0.009 ± 0.001 | 0.007 ± 0.002 |
L3.2. | 4.588 ± 0.086 | 0.024 ± 0.001 | 0.016 ± 0.003 | 0.017 ± 0.001 |
L3.6. | 4.661 ± 0.223 | 0.024 ± 0.002 | 0.018 ± 0.003 | 0.014 ± 0.001 |
L.3.12. | 3.223 ± 0.034 | 0.025 ± 0.001 | 0.019 ± 0.004 | 0.019 ± 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Montaña, E.J.; Barbero-López, M.; Aparicio-Ruiz, R.; García-González, D.L.; Morales, M.T. Impact of Frozen Storage on Sensory, Physicochemical, and Volatile Compounds Parameters of Different Extra Virgin Olive Oils. Foods 2024, 13, 3764. https://doi.org/10.3390/foods13233764
Díaz-Montaña EJ, Barbero-López M, Aparicio-Ruiz R, García-González DL, Morales MT. Impact of Frozen Storage on Sensory, Physicochemical, and Volatile Compounds Parameters of Different Extra Virgin Olive Oils. Foods. 2024; 13(23):3764. https://doi.org/10.3390/foods13233764
Chicago/Turabian StyleDíaz-Montaña, Enrique J., María Barbero-López, Ramón Aparicio-Ruiz, Diego L. García-González, and María T. Morales. 2024. "Impact of Frozen Storage on Sensory, Physicochemical, and Volatile Compounds Parameters of Different Extra Virgin Olive Oils" Foods 13, no. 23: 3764. https://doi.org/10.3390/foods13233764
APA StyleDíaz-Montaña, E. J., Barbero-López, M., Aparicio-Ruiz, R., García-González, D. L., & Morales, M. T. (2024). Impact of Frozen Storage on Sensory, Physicochemical, and Volatile Compounds Parameters of Different Extra Virgin Olive Oils. Foods, 13(23), 3764. https://doi.org/10.3390/foods13233764