Preliminary Characterization of “Salice Salentino” PDO Wines from Salento (South Italy) Negroamaro Grapes: NMR-Based Metabolomic and Biotoxicological Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analyses
2.1.1. NMR Chemicals and Reagents
2.1.2. NMR Sample Preparation
2.1.3. NMR Experiments
2.1.4. NMR Data Processing and Statistical Analysis
2.2. Evaluation of Antioxidant Activity
2.2.1. Determination of Total Polyphenolic Content (TPC)
2.2.2. Antioxidant Activity by DPPH (2,2-Difenil-1-picrylidrazyl) Assay
2.2.3. Antioxidant Activity by ORAC (Oxygen Radical Antioxidant Capacity) Assay
2.3. Biotoxicological Analyses
2.3.1. Chemicals and Reagents
2.3.2. Extracts Preparation
2.3.3. Cell Line and Culture Conditions
2.3.4. Cell Count and Viability: AO/DAPI Double Staining
2.3.5. Genotoxicity Testing: COMET ASSAY
2.3.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analyses
3.1.1. Metabolites Assignments in 1H-NMR Wine Sample Spectrum
3.1.2. Multivariate Statistical Analysis
3.2. Biological Analyses
3.2.1. Total Polyphenolic Content
3.2.2. Antioxidant Activity of Wine Samples
3.3. Biotoxicological Analyses
3.3.1. Cell Count and Viability
- (i)
- All red wine samples were able to remarkably affect cell viability in a concentration-dependent manner;
- (ii)
- All rosé wine samples showed mixed trends, with little impact on cell viability.
3.3.2. Genotoxicity Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Fabjanowicz, M.; Kosek, K.; Płotka-Wasylka, J.; Namieśnik, J. Evaluation of the influence of grapevine growing conditions on wine quality. Monatshefte Fur Chem. 2019, 150, 1579–1584. [Google Scholar] [CrossRef]
- Serio, F.; Imbriani, G.; Moretti, M.; Acito, M.; Fanizzi, F.P.; De Donno, A.; Valacchi, G. Moderate Red Wine Consumption and cardiovascular Health Protection: A literature review. Food Funct. 2023, 14, 6346–6362. [Google Scholar] [CrossRef] [PubMed]
- Artero, A.; Artero, A.; Tarín, J.J.; Cano, A. The impact of moderate wine consumption on health. Maturitas 2015, 80, 3–13. [Google Scholar] [CrossRef]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and cardiovascular health: A comprehensive review. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martínez, P.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef]
- Thompson, P.L. J-curve revisited: Cardiovascular benefits of moderate alcohol use cannot be dismissed. Med. J. Aust. 2013, 198, 419–422. [Google Scholar] [CrossRef]
- Li, X.H.; Yu, F.F.; Zhou, Y.H.; He, J. Association between alcohol consumption and the risk of incident type 2 diabetes: A systematic review and dose-response meta-analysis. Am. J. Clin. Nutr. 2016, 103, 818–829. [Google Scholar] [CrossRef]
- Fernandes, I.; Pérez-Gregorio, R.; Soares, S.; Mateus, N.; De Freitas, V. Wine Flavonoids in Health and Disease Prevention. Molecules 2017, 22, 292. [Google Scholar] [CrossRef]
- De Nisco, M.; Manfra, M.; Bolognese, A.; Sofo, A.; Scopa, A.; Tenore, G.C.; Russo, M.T. Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L.(cv. Aglianico). Food Chem. 2013, 140, 623–629. [Google Scholar] [CrossRef]
- Erlank, H.; Elmann, A.; Kohen, R.; Kanner, J. Polyphenols activate Nrf2 in astrocytes via H2O2, semiquinones, and quinones. Free Radic. Biol. Med. 2011, 51, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Barry, K.L.; Blow, F.C. Drinking over the lifespan: Focus on older adults. Alcohol Res. Curr. Rev. 2016, 38, 115. [Google Scholar]
- Wang, S.H.; Lv, Y.D.; Sui, Y.; Liu, S.; Wang, S.J.; Zhang, Y.D. Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J. Med. Syst. 2018, 42, 2. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. 2012, 48, 221–237. [Google Scholar] [CrossRef]
- León-González, A.J.; Auger, C.; Schini-Kerth, V.B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem. Pharmacol. 2015, 98, 371–380. [Google Scholar] [CrossRef]
- Dragsted, L.O.; Gao, Q.; Praticò, G.; Manach, C.; Wishart, D.S.; Scalbert, A.; Feskens, E.J.M. Dietary and health biomarkers—Time for an update. Genes Nutr. 2017, 12, 24. [Google Scholar] [CrossRef]
- Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of Red Wine Consumption to Human Health Protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef]
- Marcos, A.; Serra-Majem, L.; Pérez-Jiménez, F.; Pascual, V.; Tinahones, F.J.; Estruch, R. Moderate Consumption of Beer and Its Effects on Cardiovascular and Metabolic Health: An Updated Review of Recent Scientific Evidence. Nutrients 2021, 13, 879. [Google Scholar] [CrossRef]
- Larsen, B.A.; Klinedinst, B.S.; Le, S.T.; Pappas, C.; Wolf, T.; Meier, N.F.; Lim, Y.L.; Willette, A.A. Beer, wine, and spirits differentially influence body composition in older white adults—A United Kingdom Biobank study. Obes. Sci. Pract. 2022, 8, 641–656. [Google Scholar] [CrossRef]
- Eder, R.; Šćepanović, R.P.; Raičević, D.; Popović, T.; Korntheuer, K.; Wendelin, S.; Philipp, C. Study of the effects of climatic conditions on the phenolic content and antioxidant activity of Austrian and Montenegrin red wines. OENO One 2023, 57, 69–85. [Google Scholar] [CrossRef]
- Ma, Y.; Tanaka, N.; Vaniya, A.; Kind, T.; Fiehn, O. Ultrafast polyphenol metabolomics of red wines using MicroLC-MS/MS. J. Agr. Food Chem. 2016, 64, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.L.; Mercenaro, L.; Urgeghe, P.P.; Fadda, C.; Valentoni, A.; Del Caro, A. Grape and wine composition in Vitis vinifera L. Cv. Cannonau explored by GC-MS and sensory analysis. Foods 2021, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Toci, A.T.; Crupi, P.; Gambacorta, G.; Dipalmo, T.; Antonacci, D.; Coletta, A. Free and bound aroma compounds characterization by GC-MS of Negroamaro wine as affected by soil management. J. Mass Spectrom. 2021, 47, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Coelho, E.M.; da Silva Padilha, C.V.; Miskinis, G.A.; de Sá, A.G.B.; Pereira, G.E.; de Azevêdo, L.C.; dos Santos Lima, M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018, 66, 160–167. [Google Scholar] [CrossRef]
- Márquez, R.; Castro, R.; Natera, R.; García-Barroso, C. Characterisation of the volatile fraction of Andalusian sweet wines. Eur. Food Res. Technol. 2008, 226, 1479–1484. [Google Scholar] [CrossRef]
- Jaitz, L.; Siegl, K.; Eder, R.; Rak, M.G.; Abranko, L.; Koellensperger, G.; Hann, S. LC-Ms/MS analysis of phenols for classification of red according to geographical origin, grape variety and vintage. Food Chem. 2016, 122, 366–372. [Google Scholar] [CrossRef]
- Versari, A.; Laurie, V.F.; Ricci, A.; Laghi, L.; Parpinello, G.P. Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Res. Int. 2014, 60, 2–18. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Li, Y.; Liu, S.; Tu, Q.; Yuan, C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr. Res. Food Sci. 2023, 6, 100418. [Google Scholar] [CrossRef]
- Godelmann, R.; Fang, F.; Humpfer, E.; Schütz, B.; Bansbach, M.; Schäfer, H.; Spraul, M. Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: Grape variety, geographical origin, year of vintage. J. Agric. Food Chem. 2013, 61, 5610–5619. [Google Scholar] [CrossRef]
- Papadia, P.; Del Coco, L.; Muzzalupo, I.; Rizzi, M.; Perri, E.; Cesari, G.; Simeone, D.; Mondelli, V.; Schena, F.P.; Fanizzi, F.P. Multivariate Analysis of 1H-NMR Spectra of Genetically Characterized Extra Virgin Olive Oils and Growth Soil Correlations. J. Am. Oil. Chem. Soc. 2011, 88, 1463–1475. [Google Scholar] [CrossRef]
- Mazzei, P.; Spaccini, R.; Francesca, N.; Moschetti, G.; Piccolo, A. Metabolomic by 1H NMR spectroscopy differentiates “Fiano Di Avellino” white wines obtained with different yeast strains. J. Agric. Food Chem. 2013, 61, 10816–10822. [Google Scholar] [CrossRef] [PubMed]
- Brescia, M.A.; Košir, I.J.; Caldarola, V.; Kidrič, J.; Sacco, A. Chemometric classification of Apulian and Slovenian wines using 1H NMR and ICP-OES together with HPICE data. J. Agric. Food Chem. 2003, 51, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Le Mao, I.; Da Costa, G.; Richard, T. 1H-NMR metabolomics for wine screening and analysis. OENO One 2023, 57, 15–31. [Google Scholar] [CrossRef]
- Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Sparascio, F.; Maffia, M. A comparative study of phenols in Apulian Italian wines. Foods 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Ragone, R.; Crupi, P.; Piccinonna, S.; Bergamini, C.; Mazzone, F.; Fanizzi, F.P.; Antonacci, D. Classification and chemometric study of Southern Italy monovarietal wines based on NMR and HPLC-DAD-MS. Food Sci. Biotechnol. 2015, 24, 817–826. [Google Scholar] [CrossRef]
- De Pascali, S.A.; Coletta, A.; Del Coco, L.; Basile, T.; Gambacorta, G.; Fanizzi, F.P. Viticultural practice and winemaking effects on metabolic profile of Negroamaro. Food Chem. 2014, 161, 112–119. [Google Scholar] [CrossRef]
- Ragusa, A.; Centonze, C.; Grasso, M.E.; Latronico, M.F.; Mastrangelo, P.F.; Sparascio, F.; Maffia, M. HPLC analysis of phenols in negroamaro and primitivo red wines from Salento. Foods 2019, 8, 45. [Google Scholar] [CrossRef]
- Catalogo Nazionale Delle Varietà di Vite. Varietà e Cloni Iscritti al Registro (D.M. 26.06.23 e D.M.19.06.23). Available online: http://catalogoviti.politicheagricole.it/catalogo.php (accessed on 23 January 2023).
- Košir, I.J.; Lapornik, B.; Andrenšek, S.; Wondra, A.G.; Vrhovšek, U.; Kidrič, J. Identification of anthocyanins in wines by liquid chromatography, liquid chromatography-mass spectrometry and nuclear magnetic resonance. Anal. Chim. Acta 2004, 513, 277–282. [Google Scholar] [CrossRef]
- Fresco, P.; Borges, F.I.G.M.; Diniz, C.; Marques, M.P.M. New insights on the anticancer properties of dietary polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef]
- Soleas, G.J.; Grass, L.; Josephy, P.D.; Goldberg, D.M.; Diamandis, E.P. A comparison of the anticarcinogenic properties of four red wine polyphenols. Clin. Biochem. 2006, 39, 492–497. [Google Scholar] [CrossRef]
- Cassago, A.L.L.; Artêncio, M.M.; de Moura Engracia Giraldi, J.; Da Costa, F.B. Metabolomics as a marketing tool for geographical indication products: A literature review. Eur. Food Res. Technol. 2021, 247, 2143–2159. [Google Scholar] [CrossRef] [PubMed]
- Disciplinare di Produzione Dei Vini a Denominazione di Origine Controllata “Salice Salentino”. Available online: http://catalogoviti.politicheagricole.it/scheda_denom.php?t=dsc&q=2258 (accessed on 28 August 2024).
- International Organisation of Vine and Wine. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2024. [Google Scholar]
- Ministero delle Politiche Agricole Alimentari e Forestali [“Italian Ministry of Agricultural, Food and Forestry Policies”]. Disciplina Organica della Coltivazione Della Vite e Della Produzione e del Commercio del Vino [“Organic Regulation of Grape Cultivation and Wine Production and Trade”]. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/12012 (accessed on 12 September 2024).
- Girelli, C.R.; Papadia, P.; Pagano, F.; Miglietta, P.P.; Fanizzi, F.P.; Cardinale, M.; Rustioni, L. Metabolomic NMR analysis and organoleptic perceptions of pomegranate wines: Influence of cultivar and yeast on the product characteristics. Heliyon 2023, 9, e16774. [Google Scholar] [CrossRef] [PubMed]
- Le Mao, I.; Martin-Pernier, J.; Bautista, C.; Lacampagne, S.; Richard, T.; Da Costa, G. 1H-NMR Metabolomics as a Tool for Winemaking Monitoring. Molecules 2021, 26, 6771. [Google Scholar] [CrossRef] [PubMed]
- Mascellani, A.; Hoca, G.; Babisz, M.; Krska, P.; Kloucek, P.; Havlik, J. 1H NMR chemometric models for classification of Czech wine type and variety. Food Chem. 2021, 339, 127852. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi-and Megavariate Data Analysis Basic Principles and Applications, 3rd ed.; Umetrics Academy: Malmö, Sweden, 2013; p. 521. [Google Scholar]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Wheelock, Å.M.; Wheelock, C.E. Trials and tribulations of ‘omics data analysis: Assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Mol. BioSyst. 2013, 9, 2589–2596. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Acito, M.; Russo, C.; Fatigoni, C.; Mercanti, F.; Moretti, M.; Villarini, M. Cytotoxicity and Genotoxicity of Senecio vulgaris L. Extracts: An In Vitro Assessment in HepG2 Liver Cells. Int. J. Environ. Res. Public Health 2022, 19, 14824. [Google Scholar] [CrossRef] [PubMed]
- di Vito, R.; Levorato, S.; Fatigoni, C.; Acito, M.; Sancineto, L.; Traina, G.; Moretti, M. In vitro toxicological assessment of PhSeZnCl in human liver cells. Toxicol. Res. 2023, 39, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Acito, M.; Palomba, M.; Fatigoni, C.; Villarini, M.; Sancineto, L.; Santi, C.; Moretti, M. Fagiolina del Trasimeno, an Italian cowpea landrace: Effect of different cooking techniques and domestic storage on chemical and biological features. Int. J. Food Sci. 2022, 57, 6557–6571. [Google Scholar] [CrossRef]
- di Vito, R.; Acito, M.; Fatigoni, C.; Schiesser, C.H.; Davies, M.J.; Mangiavacchi, F.; Moretti, M. Genotoxicity assessment of 1, 4-anhydro-4-seleno-D-talitol (SeTal) in human liver HepG2 and HepaRG cells. Toxicology 2023, 499, 153663. [Google Scholar] [CrossRef]
- Guidance Document on Revisions to OECD Genetic Toxicology Test Guidelines. Available online: http://web-archive.oecd.org/2015-09-02/370899-Genetic%20Toxicology%20Guidance%20Document%20Aug%2031%202015.pdf (accessed on 10 December 2022).
- Acito, M.; Bartolini, D.; Ceccarini, M.R.; Russo, C.; Vannini, S.; Dominici, L.; Codini, M.; Villarini, M.; Galli, F.; Beccari, T.; et al. Imbalance in the antioxidant defence system and pro-genotoxic status induced by high glucose concentrations: In vitro testing in human liver cells. Toxicol. Vitr. 2020, 69, 105001. [Google Scholar] [CrossRef]
- Villarini, M.; Acito, M.; di Vito, R.; Vannini, S.; Dominici, L.; Fatigoni, C.; Moretti, M. Pro-apoptotic activity of artichoke leaf extracts in human HT-29 and RKO colon cancer cells. Int. J. Environ. Res. Public Health 2021, 18, 4166. [Google Scholar] [CrossRef]
- Russo, C.; Acito, M.; Fatigoni, C.; Villarini, M.; Moretti, M. B-comet assay (comet assay on buccal cells) for the evaluation of primary DNA damage in human biomonitoring studies. Int. J. Environ. Res. Public Health 2020, 17, 9234. [Google Scholar] [CrossRef]
- Guerrera, E.; Dominici, L.; Levorato, S.; Vannini, S.; Acito, M.; Fatigoni, C.; Moretti, M. Cytotoxicity and genotoxicity of size-fractionated particulate matter collected in underground workplaces. Air Qual. Atmos. Health 2019, 12, 359–367. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Banc, R.; Loghin, F.; Miere, D.; Ranga, F.; Socaciu, C. Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars. Not. Bot. Horti Agrobot. 2020, 48, 716–734. [Google Scholar] [CrossRef]
- Tinttunen, S.; Lehtonen, P. Distinguishing organic wines from normal wines on the basis of concentrations of phenolic compounds and spectral data. Eur. Food Res. Technol. 2001, 212, 390–394. [Google Scholar] [CrossRef]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef] [PubMed]
- García-Falcón, M.S.; Pérez-Lamela, C.; Martínez-Carballo, E.; Simal-Gándara, J. Determination of phenolic compounds in wines: Influence of bottle storage of young red wines on their evolution. Food Chem. 2007, 105, 248–259. [Google Scholar] [CrossRef]
- Rodríguez-Cabo, T.; Rodríguez, I.; López, P.; Ramil, M.; Cela, R. Investigation of liquid chromatography quadrupole time-of-flight mass spectrometry performance for identification and determination of hydroxylated stilbene antioxidants in wine. J. Chromatogr. A 2014, 1337, 162–170. [Google Scholar] [CrossRef]
- Tenore, G.C.; Troisi, J.; Di Fiore, R.; Manfra, M.; Novellino, E. Nutraceutical value and toxicological profile of selected red wines from Morocco. Food Chem. 2011, 129, 792–798. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Sredojević, M.; Ćirić, I.; Gašić, U.; Mutić, J.; Tešić, Ž. Elemental analysis and phenolic profiles of selected italian wines. Foods 2021, 10, 158. [Google Scholar] [CrossRef]
- Leahu, A.; Amariei, S.; Damian, C.; Oroian, M.; Ropciuc, S. Evaluation of the antioxidant activity of some types of red and white wines. Ovidius 2014, 25, 65–70. [Google Scholar] [CrossRef]
- Tekos, F.; Makri, S.; Skaperda, Z.V.; Patouna, A.; Terizi, K.; Kyriazis, I.D.; Demetrios, K. Assessment of antioxidant and antimutagenic properties of red and white wine extracts in vitro. Metabolites 2021, 11, 436. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Tsolou, A.; Sakantani, E.; Milla, S.; Kallinikou, E.; Fragopoulou, E.; Samaras, Y. Quality characteristics, polyphenol profile and antioxidant capacity in red, rosé and white monovarietal wines from Ionian Islands of Greece. Acta Sci. Pol. Technol. Aliment. 2022, 21, 343–357. [Google Scholar]
- Kharadze, M.; Japaridze, I.; Kalandia, A.; Vanidze, M. Anthocyanins and antioxidant activity of red wines made from endemic grape varieties. Ann. Agric. Sci. 2018, 16, 181–184. [Google Scholar] [CrossRef]
- Büyüktunce, E.; Porgalı, E.; Çolak, C. Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food Nutr. Sci. 2014, 5, 49522. [Google Scholar]
- Bagli, E.; Goussia, A.; Moschos, M.M.; Agnantis, N.; Kitsos, G. Natural compounds and neuroprotection: Mechanisms of action and novel delivery systems. In Vivo 2016, 30, 535–547. [Google Scholar] [PubMed]
- Vinson, J.A.; Hontz, B.A. Phenol antioxidant index: Comparative antioxidant effectiveness of red and white wines. J. Agric. Food Chem. 1995, 43, 401–403. [Google Scholar] [CrossRef]
- Simonetti, P.; Pietta, P.; Testolin, G. Polyphenol content and total antioxidant potential of selected Italian wines. J. Agric. Food Chem. 1997, 45, 1152–1155. [Google Scholar] [CrossRef]
- Ghiselli, A.; Nardini, M.; Baldi, A.; Scaccini, C. Antioxidant activity of different phenolic fractions separated from an Italian red wine. J. Agric. Food Chem. 1998, 46, 361–367. [Google Scholar] [CrossRef]
- Baydar, N.; Babalik, Z.; Filiz, T.; Cetin, E. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. J. Agric. Sci. 2011, 17, 67–76. [Google Scholar]
- Ghatak, A.A.; Chaturvedi, P.A.; Desai, N.S. Indian grape wines: A potential source of phenols, polyphenols, and antioxidants. Int. J. Food Prop. 2014, 17, 818–828. [Google Scholar] [CrossRef]
- Campos, A.M.; Escobar, J.; Lissi, E.A. The total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) of Ilex paraguayensis extracts and red wine. J. Braz. Chem. Soc. 1996, 7, 43–49. [Google Scholar] [CrossRef]
- De Beer, D.; Joubert, E.; Gelderblom, W.C.; Manley, M. Antioxidant activity of South African red and white cultivar wines: Free radical scavenging. J. Agric. Food Chem. 2003, 51, 902–909. [Google Scholar] [CrossRef]
- Landrault, N.; Poucheret, P.; Ravel, P.; Gasc, F.; Cros, G.; Teissedre, P.L. Antioxidant capacities and phenolics levels of French wines from different varieties and vintages. J. Agric. Food Chem. 2001, 49, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Fanzone, M.; Zamora, F.; Jofré, V.; Assof, M.; Gómez-Cordovés, C.; Peña-Neira, Á. Phenolic characterisation of red wines from different grape varieties cultivated in Mendoza province (Argentina). J. Sci. Food Agric. 2012, 92, 704–718. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Li, Y.; Li, P.; Wang, H. Polyphenolic compounds and antioxidant properties of selected China wines. Food Chem. 2009, 112, 454–460. [Google Scholar] [CrossRef]
- Staško, A.; Brezová, V.; Mazúr, M.; Čertík, M.; Kaliňák, M.; Gescheidt, G. A comparative study on the antioxidant properties of Slovakian and Austrian wines. LWT Food Sci. Technol. 2008, 41, 2126–2135. [Google Scholar] [CrossRef]
- Lucena, A.P.S.; Nascimento, R.J.B.; Maciel, J.A.C.; Tavares, J.X.; Barbosa-Filho, J.M.; Oliveira, E.J. Antioxidant activity and phenolics content of selected Brazilian wines. J. Food Compos. Anal. 2010, 23, 30–36. [Google Scholar] [CrossRef]
Winery * | Number of Bottles | Color | Variety | Alcohol Percentage (%) ** | Total Acidity (g/L) ** | Sugars (g/L) ** | pH ** | Sulfur Dioxide (mg/L) ** | Harvesting Period |
---|---|---|---|---|---|---|---|---|---|
SP | 6 | red | 100% Negroamaro | 13.5 | 5.4 ± 0.28 | 1.68 ± 0.16 | 3.3 ± 0.1 | 107.0 ± 0.4 | 2018 |
F | 3 | red | 100% Negroamaro | 13 | 6.4 ± 0.16 | 0.98 ± 0.09 | 3.4 ± 0.01 | 89.0 ± 0.8 | 2016 |
PL | 3 | red | 85% Negroamaro 15% other cultivars permitted in the production regulation [43] | 13.5 | 5.8 ± 0.2 | 0.66 ± 0.09 | 3.45 ± 0.02 | 94.4 ± 2 | 2018 |
SD | 3 | red | 100% Negroamaro | 13.5 | 5.69 ± 0.06 | 1.48 ± 0.16 | 3.3 ± 0.00 | 96 ± 2 | 2018 |
C | 3 | red | 100% Negroamaro | 14 | 5.89 ± 0.06 | 0.6 ± 0.09 | 3.45 ± 0.01 | 94.7 ± 0.5 | 2019 |
C | 3 | red | 100% Negroamaro | 14 | 5.66 ± 0.2 | 1.53 ± 0.15 | 3.2 ± 0.02 | 95.8 ± 3 | 2018 |
CT | 3 | red | 95% Negroamaro 5% Malvasia | 14 | 6.2 ± 0.23 | 1.54 ± 0.16 | 3.4 ± 0.00 | 90 ± 0.7 | 2018 |
VD | 6 | red | 80% Negroamaro 20% Malvasia | 14 | 5.8 ± 0.2 | 1.20 ± 0.12 | 3.0 ± 0.02 | 92.0 ± 0.2 | 2017 |
C | 3 | rosé | 95% Negroamaro 5% Malvasia | 13.5 | 5.5 ± 0.21 | 0.1 ± 0.05 | 3.5 ± 0.03 | 87.6 ± 0.8 | 2019 |
C | 3 | rosé | 95% Negroamaro 5% Malvasia | 13.5 | 5.9 ± 0.2 | 0.8 ± 0.07 | 3.4 ± 0.01 | 99.0 ± 2 | 2018 |
SD | 3 | rosé | 95% Negroamaro 5% Malvasia | 13.5 | 6.1 ± 0.2 | 0.9 ± 0.03 | 3.3 ± 0.00 | 85.0 ± 1 | 2019 |
Winerie | Declared Winemaking Procedure |
---|---|
Red wines | |
SP | Soft destemming and pressing, temperature (26 °C). Controlled fermentation in heat-conditioned stainless-steel tanks for 8–10 days. Aging in stainless-steel for 6 months. |
F | Fermentation at a controlled temperature for 8 days; short post-fermentative maceration. Spontaneous malolactic fermentation at the end of alcoholic fermentation. Aging in stainless steel tanks. |
PL | Soft destemming and pressing, temperature-controlled (25 °C). Fermentation in heat-conditioned stainless-steel tanks for 12 days. Aging in stainless steel tanks. |
SD | Soft destemming and pressing, temperature-controlled (25 °C). Fermentation in heat-conditioned stainless-steel tanks for 12 days. Aging in stainless steel tanks. |
C | After maceration, selected yeasts were added and fermentation took place under rigorous temperature control. Aging in small casks for 8 months. |
CT | De-stemming and pressing, follow soft pressing; temperature-controlled fermentation (25 °C) in heat-conditioned stainless-steel tanks for a period of approximately 18–20 days. Aging in stainless-steel for 6 months. |
VD | After de-stemming and pressing red vinification in steel tanks at a controlled temperature between 22° C and 28° C. Aging in stainless-steel for 12 months. |
Rosé wines | |
C | The destemmed and crushed berries were cold macerated for some 20 h after which a part of the juice (less than 40%) was drained off and fermented in stainless steel using cultured yeasts. Aging in stainless steel tanks. |
SD | According to the tradition, after the fermentation on the skins for 10–12 h the must was drained off obtaining about 40% of the total product. Aging in stainless steel tanks. |
Compounds | Chemical Shifts (δH) |
---|---|
Isobutanol | 0.88 |
Isopentanol | 0.89; 1.64 |
Ethanol | 1.18; 3.65 |
Acetoin | 1.4 |
Lactic acid | 1.43 |
Alanine | 1.47 |
Proline | 2.00; 2.35 |
Acetic acid | 2.08 |
Succinic acid | 2.65 |
Malic acid | 2.76; 2.87; 4.48 |
Citric acid | 2.79; 2.92 |
Choline | 3.18 |
Myo-inositol | 3.26 |
Methanol | 3.34 |
Glycerol | 3.55; 3.64; 3.77 |
Fructose | 3.88; 4.00; 4.10 |
Arabinose | 4.50 |
Tartrate | 4.53 |
β-glucose | 4.65 |
Xylose | 5.17 |
α-glucose | 5.22 |
Arabinose | 5.25 |
Galacturonic acid | 5.30 |
Epicatechin | 6.12 |
Chlorogenic acid | 6.43; 7.14; 7.21; 7.68 |
Fumaric acid | 6.70 |
Tyrosol | 6.84; 7.18 |
Gallic acid | 7.15 |
Phenethyl alcohol | 7.31; 7.37 |
Histidine | 8.14 |
Trigonelline | 9.18; 8.93; 8.09 |
Wine Samples | Total Phenolic Content (mg GAE/L Wine) |
---|---|
1 | 1325.2 ± 2.3 b |
2 | 1225.1 ± 4.4 d |
3 | 1463.2 ± 9.2 a |
4 | 912.3 ± 2.9 h |
5 | 975.4 ± 3.4 g |
6 | 1289.9 ± 2.3 c |
7 | 1142.6 ± 1.9 e |
8 | 1355.4 ± 7.1 b |
9 | 931.9 ± 2.8 h |
10 | 1015.7 ± 2.4 g |
11 | 1047.3 ± 3.6 f |
12 | 984.4 ± 3.1 g |
13 | 1124.5 ± 2.2 e |
14 | 1263.3 ± 2.9 c |
15 | 1003.7 ± 3.4 g |
16 | 751.9 ± 3.1 i |
17 | 758.1 ± 3.9 i |
18 | 746.8 ± 3.3 i |
19 | 1227.9 ± 2.8 d |
20 | 1221.8 ± 3.5 d |
21 | 1236.3 ± 3.4 d |
22 | 578.7 ± 2.4 j |
23 | 991.5 ± 2.6 g |
24 | 745.8 ± 2.7 i |
25 | 954.8 ± 2.1 g |
26 | 1145.2 ± 2.9 e |
27 | 696.8 ± 3.4 i |
28 | 982.7 ± 2.2 g |
29 | 761.2 ± 3.3 i |
30 | 1199.1 ± 3.4 d |
31 | 1013.9 ± 2.9 g |
32 | 1136.1 ± 3.2 e |
33 | 893.6 ± 4.1 h |
34 | 743.2 ± 2.5 i |
35 | 571.3 ± 3.3 j |
36 | 895 ± 2.8 h |
37 | 883.7 ± 1.8 h |
38 | 622.3 ± 3.1 j |
39 | 1147.3 ± 2.1 e |
Wine Samples | ORAC (µmol TE/L) b |
---|---|
1 | 15,750 ± 165 b |
3 | 16,246 ± 178 a |
4 | 11,336 ± 198 f |
5 | 11,265 ± 101 f |
6 | 13,822 ± 191 c |
7 | 13,002 ± 199 d |
8 | 14,204 ± 201 c |
9 | 11,393 ± 187 f |
10 | 12,022 ± 185 e |
11 | 12,114 ± 194 e |
12 | 11,612 ± 188 f |
13 | 12,895 ± 192 d |
14 | 13,217 ± 199 d |
15 | 11,983 ± 103 e |
16 | 9862 ± 168 h |
17 | 9494 ± 173 h |
18 | 9451 ± 166 h |
19 | 12,954 ± 190 d |
20 | 13,222 ± 193 d |
21 | 13,164 ± 101 d |
22 | 8122 ± 161 j |
23 | 11,012 ± 183 f |
24 | 9398 ± 173 h |
25 | 11,125 ± 191 f |
26 | 12,998 ± 196 d |
27 | 9015 ± 168 i |
28 | 11,215 ± 184 f |
29 | 9443 ± 181 h |
30 | 12,236 ± 194 e |
31 | 12,128 ± 187 e |
32 | 11,994 ± 193 e |
33 | 10,322 ± 182 g |
34 | 9374 ± 178 h |
35 | 8421 ± 163 j |
36 | 10,427 ± 188 g |
37 | 10,121 ± 192 g |
38 | 9333 ± 166 h |
39 | 12,791 ± 193 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serio, F.; Girelli, C.R.; Acito, M.; Imbriani, G.; Sabella, E.; Moretti, M.; Fanizzi, F.P.; Valacchi, G. Preliminary Characterization of “Salice Salentino” PDO Wines from Salento (South Italy) Negroamaro Grapes: NMR-Based Metabolomic and Biotoxicological Analyses. Foods 2024, 13, 3554. https://doi.org/10.3390/foods13223554
Serio F, Girelli CR, Acito M, Imbriani G, Sabella E, Moretti M, Fanizzi FP, Valacchi G. Preliminary Characterization of “Salice Salentino” PDO Wines from Salento (South Italy) Negroamaro Grapes: NMR-Based Metabolomic and Biotoxicological Analyses. Foods. 2024; 13(22):3554. https://doi.org/10.3390/foods13223554
Chicago/Turabian StyleSerio, Francesca, Chiara Roberta Girelli, Mattia Acito, Giovanni Imbriani, Erika Sabella, Massimo Moretti, Francesco Paolo Fanizzi, and Giuseppe Valacchi. 2024. "Preliminary Characterization of “Salice Salentino” PDO Wines from Salento (South Italy) Negroamaro Grapes: NMR-Based Metabolomic and Biotoxicological Analyses" Foods 13, no. 22: 3554. https://doi.org/10.3390/foods13223554
APA StyleSerio, F., Girelli, C. R., Acito, M., Imbriani, G., Sabella, E., Moretti, M., Fanizzi, F. P., & Valacchi, G. (2024). Preliminary Characterization of “Salice Salentino” PDO Wines from Salento (South Italy) Negroamaro Grapes: NMR-Based Metabolomic and Biotoxicological Analyses. Foods, 13(22), 3554. https://doi.org/10.3390/foods13223554