Impact of Ferulated Arabinoxylans from Maize Bran on Farinograph and Pasting Properties of Wheat Flour Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procurement of Raw Material
2.2. Extraction of Ferulated Arabinoxylans from Maize Bran
2.3. Incorporation of FAXs in Wheat Flour
2.4. Moisture Content
2.5. Protein Content of FAX Extract
2.6. Farinograph and Mixograph Study
2.7. Pasting Behavior of Flour Mixes
2.8. Dough Extensibility
2.9. Statistical Analysis
3. Results and Discussion
3.1. Extraction Yield of Ferulated Arabinoxylans
3.2. Moisture and Protein Contents of FAX-Incorporated Wheat Flour
3.3. Farinograph and Mixograph Study of FAXs and Wheat Flour Blends
3.4. Pasting Properties of FAX-Incorporated Wheat Flour Blends
3.5. Micro-Extensibility
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olakanmi, S.J.; Jayas, D.S.; Paliwal, J. Implications of blending pulse and wheat flours on rheology and quality characteristics of baked goods: A review. Foods 2022, 11, 3287. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Mahmud, M.C.; Abdi, G.; Wanich, U.; Farooqi, M.Q.U.; Settapramote, N.; Khan, S.; Wani, S.A. New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. J. Food Biochem. 2022, 46, e14185. [Google Scholar] [CrossRef] [PubMed]
- Joye, I.J. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.; Willett, W.C. Perspective on the health value of carbohydrate-rich foods: Glycemic index and load; fiber and whole grains. Am. J. Clin. Nutr. 2024, 120, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Amadeu, C.A.; Martelli, S.M.; Vanin, F.M. Nutritional aspects of composite flours for baked and extruded products: A review. Cereal Chem. 2024, 101, 450–467. [Google Scholar] [CrossRef]
- Khorasaniha, R.; Olof, H.; Voisin, A.; Armstrong, K.; Wine, E.; Vasanthan, T.; Armstrong, H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll. 2023, 139, 108495. [Google Scholar] [CrossRef]
- Zannini, E.; Bravo Núñez, Á.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as functional food ingredients: A review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef]
- Akin, M.; Jukic, M.; Lukinac, J.; Yilmaz, B.; Özogul, F.; Rocha, J.M. Valorization and Functionalization of Cereal-Based Industry By-Products for Nutraceuticals. In Nutraceutics from Agri-Food By-Products; Scrivener Publishing LLC: Hoboken, NJ, USA, 2023; pp. 173–222. [Google Scholar]
- Hussain, M.; Saeed, F.; Niaz, B.; Afzaal, M.; Ikram, A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Anjum, F.M. Biochemical and nutritional profile of maize bran-enriched flour in relation to its end-use quality. Food Sci. Nutr. 2021, 9, 3336–3345. [Google Scholar] [CrossRef]
- Mendez-Encinas, M.A.; Valencia-Rivera, D.E.; Carvajal-Millan, E.; Astiazaran-Garcia, H.; Micard, V.; Rascón-Chu, A. Fermentation of ferulated arabinoxylan recovered from the maize bioethanol industry. Processes 2021, 9, 165. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Báez-González, J.G.; Carvajal-Millán, E.; Muy-Rangel, D.; Urías-Orona, V.; Martínez-López, A.L.; Márquez-Escalante, J.A.; Heredia, J.B.; Beta, T.; Niño-Medina, G. Alkali-extracted feruloylated arabinoxylans from nixtamalized maize bran byproduct: A synonymous with soluble antioxidant dietary fiber. Waste Biomass Valori. 2020, 11, 403–409. [Google Scholar] [CrossRef]
- Ma, F.; Cai, X.; Lv, W.; Lu, Y.; Yin, J.; Duan, C.; Li, X.; Li, D. Enhanced emulsion capacity and gel properties of bighead carp myofibrillar protein through interaction with fresh maize bran arabinoxylan extracted by complex enzymes. Int. J. Food Sci. 2024, 59, 8583–8595. [Google Scholar] [CrossRef]
- De Anda-Flores, Y.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; Rascon-Chu, A.; Martínez-López, A.L.; Marquez-Escalante, J.; Brown-Bojorquez, F.; Tanori-Cordova, J. Covalently cross-linked nanoparticles based on ferulated arabinoxylans recovered from a distiller’s dried grains byproduct. Processes 2020, 8, 691. [Google Scholar] [CrossRef]
- Chen, Z.; Mense, A.L.; Brewer, L.R.; Shi, Y.C. Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13366. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, M.; Singh, J.; Bandral, J.D.; Gani, A.; Shams, R. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. Int. J. Biol. Macromol. 2020, 165, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Lin, S. Dietary fiber in bakery products: Source, processing, and function. Adv. Food Nutr. Res. 2022, 99, 37–100. [Google Scholar]
- Zhang, H.; Liu, S.; Feng, X.; Ren, F.; Wang, J. Effect of hydrocolloids on gluten proteins, dough, and flour products: A review. Food Res. Int. 2023, 164, 112292. [Google Scholar] [CrossRef]
- Culetu, A.; Duta, D.E.; Papageorgiou, M.; Varzakas, T. The role of hydrocolloids in gluten-free bread and pasta; rheology, characteristics, staling and glycemic index. Foods 2021, 10, 3121. [Google Scholar] [CrossRef]
- Salehi, F. Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. J. Texture Stud. 2020, 51, 361–370. [Google Scholar] [CrossRef]
- Pietiäinen, S.; Jimenez-Quero, A.; Moldin, A.; Ström, A.; Katina, K.; Langton, M. Feruloylation and hydrolysis of arabinoxylan extracted from wheat bran: Effect on bread quality and shelf-life. J. Cereal Sci. 2024, 117, 103920. [Google Scholar] [CrossRef]
- Hussain, M.; Saeed, F.; Niaz, B.; Imran, A.; Tufail, T. Biochemical and structural characterization of ferulated arabinoxylans extracted from nixtamalized and non-nixtamalized maize bran. Foods 2022, 11, 3374. [Google Scholar] [CrossRef]
- AACC. Approved Methods of American Association of Cereal Chemists, 10th ed.; American Association Cereal Chemists Inc.: St. Paul, MN, USA, 2000. [Google Scholar]
- AACC-I. AACC International Approved Methods of Analysis; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- Al-Saleh, A.; Brennan, C.S. Bread wheat quality: Some physical, chemical and rheological characteristics of Syrian and English bread wheat samples. Foods 2012, 1, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Paulsen, P.; SMULDERS, F.J.M. The physico-chemical and microbiological properties of wheat flour in Thrace. Turk. J. Agric. For. 2009, 33, 445–454. [Google Scholar] [CrossRef]
- Bodor, K.; Szilágyi, J.; Salamon, B.; Szakács, O.; Bodor, Z. Physical–chemical analysis of different types of flours available in the Romanian market. Sci. Rep. 2024, 14, 881. [Google Scholar] [CrossRef] [PubMed]
- Ortolan, F.; Steel, C.J. Protein characteristics that affect the quality of vital wheat gluten to be used in baking: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Molina, M.T.; Lamothe, L.; Gunes, D.Z.; Vaz, S.M.; Bouchon, P. The effect of arabinoxylan and wheat bran incorporation on dough rheology and thermal processing of rotary-moulded biscuits. Foods 2021, 10, 2335. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A review of water interactions, applications in composites, and water treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef]
- Zhu, X.F.; Tao, H.; Wang, H.L.; Xu, X.M. Impact of water soluble arabinoxylan on starch-gluten interactions in dough. LWT 2023, 173, 114289. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Zhao, Y.; Wang, D.; Wang, W. Influence of antioxidant dietary fiber on dough properties and bread qualities: A review. J. Funct. Foods 2021, 80, 104434. [Google Scholar] [CrossRef]
- Amjid, M.R.; Aamir Shehzad, A.S.; Shahzad Hussain, S.H.; Shabbir, M.A.; Khan, M.R.; Muhammad Shoaib, M.S. A comprehensive review on wheat flour dough rheology. Pak. J. Food Sci. 2013, 23, 105–123. [Google Scholar]
- Auger, F.; Morel, M.H.; Dewilde, M.; Redl, A. Mixing history affects gluten protein recovery, purity, and glutenin re-assembly capacity from optimally developed flour–water batters. J. Cereal Sci. 2009, 49, 405–412. [Google Scholar] [CrossRef]
- Zghal, M.C.; Scanlon, M.G.; Sapirstein, H.D. Effects of flour strength, baking absorption, and processing conditions on the structure and mechanical properties of bread crumb. Cereal Chem. 2001, 78, 1–7. [Google Scholar] [CrossRef]
- Adebowale, A.A.; Sanni, S.A.; Oladapo, F.O. Chemical, functional and sensory properties of instant yam-breadfruit flour. Niger. Food J. 2008, 26, 2–12. [Google Scholar] [CrossRef]
- Batey, I.L.; Curtin, B.M. Effects on pasting viscosity of starch and flour from different operating conditions for the Rapid Visco Analyser. Cereal Chem. 2000, 77, 754–760. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Jiang, P.; Zhu, Y.; Zhang, W.; Li, R.; Tan, B. The effect of wheat bran dietary fibre and raw wheat bran on the flour and dough properties: A comparative study. LWT 2023, 173, 114304. [Google Scholar] [CrossRef]
Treatments | Moisture Content (%) | Protein Content (%) |
---|---|---|
FAX0 | 13 ± 0.2 b | 12.86 ± 0.01 f |
FAX2 | 10 ± 0.2 d | 13 ± 0.04 e |
FAX4 | 13 ± 0.3 b | 13.15 ± 0.11 d |
FAX6 | 14 ± 0.3 a | 13.36 ± 0.16 c |
FAX8 | 12 ± 0.6 c | 13.65 ± 0.01 b |
FAX10 | 13 ± 0.4 b | 14.05 ± 0.03 a |
Treatments | FAX0 | FAX2 | FAX4 | FAX6 | FAX8 | FAX10 | |
---|---|---|---|---|---|---|---|
Farinograph | Flour Moisture (%) | 15.5 ± 0.17 a | 15.7 ± 0.09 a | 15.5 ± 0.27 a | 15.7 ± 0.2 a | 15.6 ± 0.19 a | 15.6 ± 0.19 a |
Absorption % (14% m.b.) | 54.9 ± 0.00 e | 56.1 ± 1.06 d | 57.2 ± 0.21 c | 57.4 ± 0.14 c | 58.1 ± 0.00 b | 60.5 ± 0.14 a | |
Development Time (min) | 7.7 ± 0.07 b | 24.7 ± 0.07 a | 3.6 ± 0.49 c | 2.5 ± 0.35 d | 1.7 ± 0.07 e | 1.7 ± 0.00 e | |
Stability (min) | 14.3 ± 0.42 b | 41.8 ± 2.26 a | 5.2 ± 0.28 c | 4 ± 0.02 d | 1.9 ± 0.14 e | 1.8 ± 0.00 e | |
M.T.I. (BU) | 27 ± 1.4 d | 5.5 ± 0.7 e | 55.5 ± 2.1 c | 58.5 ± 0.7 c | 78 ± 1.4 b | 87.5 ± 0.7 a | |
Time to Breakdown (min) | 13.2 ± 0.1 b | 46.46 ± 3 a | 5.2 ± 0.1 c | 4 ± 0.3 d | 1.9 ± 0.1 e | 1.8 ± 0.00 e | |
Farinograph Quality Number (mm) | 132 ± 1.4 b | 464.5 ± 30.4 a | 65 ± 1.4 c | 52 ± 2.8 d | 31 ± 1.4 e | 28.5 ± 0.7 e | |
Mixograph | Absorption % (14% m.b.) | 58 ± 0.00 b | 55.6 ± 0.00 d | 57.2 ± 0.00 c | 57.3 ± 0.00 c | 57.7 ± 0.6 c | 60.4 ± 0.00 a |
Midline Peak Time (min) | 5.55 ± 0.9 b | 14.4 ± 3.3 a | 2.85 ± 0.5 c | 1.35 ± 0.1 d | 1.3 ± 0.00 d | 1.15 ± 0.00 d | |
Midline Peak Height (%) | 44.15 ± 0.6 a | 36.65 ± 0.1 b | 33.95 ± 0.3 d | 33.65 ± 0.3 d | 34.3 ± 0.6 c | 33.4 ± 0.3 d | |
Midline Peak Integral (%TQ MIN) | 206.5 ± 35.5 b | 485.35 ± 109 a | 86.1 ± 16.7 c | 37.8 ± 5 d | 35.95 ± 0.8 d | 31.1 ± 0.7 e |
Treatments | Peak Viscosity mPa.s | Hot Paste Viscosity mPa.s | Breakdown mPa.s | Final Viscosity mPa.s | Setback mPa.s | Peak Time min | Pasting Temp °C |
---|---|---|---|---|---|---|---|
FAX0 | 2384.5 ± 27.5 a | 1332.5 ± 33.2 a | 1052 ± 5.6 a | 2888 ± 35.3 b | 1555.5 ± 2.1 c | 6.03 ± 0.04 a | 88.7 ± 0.03 b |
FAX2 | 1677.5 ± 53 b | 1282.5 ± 45.9 b | 395 ± 7 b | 3192 ± 67.8 a | 1909.5 ± 21.9 a | 6.36 ± 0.04 a | 92.8 ± 0 a |
FAX4 | 1692.5 ± 85.5 b | 1346 ± 16.9 a | 346.5 ± 68.5 b | 3074.5 ± 14.8 a | 1728.5 ± 31.8 b | 6.4 ± 0 a | 93.6 ± 0.03 a |
FAX6 | 1455 ± 15.5 c | 1155.5 ± 7.7 c | 299.5 ± 23.3 c | 2553 ± 103.2 c | 1397.5 ± 95.4 d | 6.1 ± 0.14 a | 92.9 ± 0 a |
FAX8 | 1183 ± 2.8 d | 965 ± 11.3 d | 218 ± 8.4 d | 2250.5 ± 27.5 d | 1285.5 ± 38.8 d | 6.1 ± 0.04 a | 93.2 ± 0.7 a |
FAX10 | 1163 ± 100.4 d | 914 ± 74.9 d | 249 ± 25.4 c | 1984 ± 50.9 e | 1070 ± 24 e | 5.8 ± 0.04 b | 92.3 ± 0.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Simsek, S. Impact of Ferulated Arabinoxylans from Maize Bran on Farinograph and Pasting Properties of Wheat Flour Blends. Foods 2024, 13, 3414. https://doi.org/10.3390/foods13213414
Hussain M, Simsek S. Impact of Ferulated Arabinoxylans from Maize Bran on Farinograph and Pasting Properties of Wheat Flour Blends. Foods. 2024; 13(21):3414. https://doi.org/10.3390/foods13213414
Chicago/Turabian StyleHussain, Muzzamal, and Senay Simsek. 2024. "Impact of Ferulated Arabinoxylans from Maize Bran on Farinograph and Pasting Properties of Wheat Flour Blends" Foods 13, no. 21: 3414. https://doi.org/10.3390/foods13213414
APA StyleHussain, M., & Simsek, S. (2024). Impact of Ferulated Arabinoxylans from Maize Bran on Farinograph and Pasting Properties of Wheat Flour Blends. Foods, 13(21), 3414. https://doi.org/10.3390/foods13213414