Application of Ultrasound Treatments in the Processing and Production of High-Quality and Safe-to-Drink Kiwi Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Juice Preparation
2.2. Treatments
2.2.1. Thermosonication
2.2.2. Thermal Treatment
2.3. Physicochemical Analysis
2.3.1. pH, Soluble Solid Content, and Cloud Value
2.3.2. Color
2.4. Total Phenolics and Chlorophylls
2.5. Minerals
2.6. Microbiological Analysis
2.7. Modeling of L. innocua Inactivation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Treatment Effects on Physicochemical Analysis
3.2. Treatment Effects on Total Phenolics and Chlorophylls
3.3. Treatment Effects on Minerals
3.4. Inactivation of L. innocua
3.5. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ukuku, D.O.; Geveke, D.J.; Chau, L.; Niemira, B.A. Microbial safety and overall quality of cantaloupe fresh-cut pieces prepared from whole fruit after wet steam treatment. Int. J. Food Microbiol. 2016, 231, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zhang, X.; Zeng, X. Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem 2013, 20, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Boland, M. Chapter Four—Kiwifruit Proteins and Enzymes: Actinidin and Other Significant Proteins. In Advances in Food and Nutrition Research; Boland, M., Moughan, P.J., Eds.; Academic Press: Cambridge, MA, USA, 2013; Volume 68, pp. 59–80. [Google Scholar] [CrossRef]
- Jolie, R.P.; Duvetter, T.; Houben, K.; Vandevenne, E.; Van Loey, A.M.; Declerck, P.J.; Hendrickx, M.E.; Gils, A. Plant pectin methylesterase and its inhibitor from kiwi fruit: Interaction analysis by surface plasmon resonance. Food Chem. 2010, 121, 207–214. [Google Scholar] [CrossRef]
- Jabbar, S.; Abid, M.; Hu, B.; Hashim, M.M.; Lei, S.; Wu, T.; Zeng, X. Exploring the potential of thermosonication in carrot juice processing. J. Food Sci. Technol. 2015, 52, 7002–7013. [Google Scholar] [CrossRef]
- Lafarga, T.; Ruiz-Aguirre, I.; Abadias, M.; Viñas, I.; Bobo, G.; Aguiló-Aguayo, I. Effect of Thermosonication on the Bioaccessibility of Antioxidant Compounds and the Microbiological, Physicochemical, and Nutritional Quality of an Anthocyanin-Enriched Tomato Juice. Food Bioprocess. Technol. 2019, 12, 147–157. [Google Scholar] [CrossRef]
- Rani, M.; Sood, M.; Bandral, J.D.; Bhat, A.; Gupta, I. Thermosonication technology and its application in food industry. Int. J. Chem. Stud. 2020, 8, 922–928. [Google Scholar] [CrossRef]
- Gabriel, A.A. Microbial inactivation in cloudy apple juice by multi-frequency Dynashock power ultrasound. Ultrason. Sonochem. 2012, 19, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Mohideen, F.W.; Solval, K.M.; Li, J.; Zhang, J.; Chouljenko, A.; Chotiko, A.; Prudente, A.D.; Bankston, J.D.; Sathivel, S. Effect of continuous ultra-sonication on microbial counts and physico-chemical properties of blueberry (Vaccinium corymbosum) juice. LWT—Food Sci. Technol. 2015, 60, 563–570. [Google Scholar] [CrossRef]
- Brenes, X.; Guevara, M.; Wong, E.; Cortés, C.; Usaga, J.; Rojas-Garbanzo, C. Effect of high intensity ultrasound on main bioactive compounds, antioxidant capacity and color in orange juice. Food Sci. Technol. Int. 2022, 28, 694–702. [Google Scholar] [CrossRef]
- Tahi, A.A.; Sousa, S.; Madani, K.; Silva, C.L.M.; Miller, F.A. Ultrasound and heat treatment effects on Staphylococcus aureus cell viability in orange juice. Ultrason. Sonochem. 2021, 78, 105743. [Google Scholar] [CrossRef]
- Sánchez-Rubio, M.; Alnakip, M.E.A.; Abouelnaga, M.; Taboada-Rodrí guez, A.; Marín-Iniesta, F. Use of thermosonication for inactivation of E. coli O157:H7 in fruit juices and fruit juice/reconstituted skim milk beverages. Acta Hortic. 2018, 1194, 267–274. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, D.; Xi, P.; Cai, T.; Cao, X.; Liu, H.; Li, J. Effects of temperature-controlled ultrasound treatment on sensory properties, physical characteristics and antioxidant activity of cloudy apple juice. LWT—Food Sci. Technol. 2021, 142, 111030. [Google Scholar] [CrossRef]
- Tremarin, A.; Canbaz, E.A.; Brandão, T.R.S.; Silva, C.L.M. Modelling Alicyclobacillus acidoterrestris inactivation in apple juice using thermosonication treatments. LWT—Food Sci. Technol. 2019, 102, 159–163. [Google Scholar] [CrossRef]
- Hoque, M.; Talukdar, S.; Roy, K.R.; Hossain, M.A.; Zzaman, W. Sonication and thermal treatment of pineapple juice: Comparative assessment of the physicochemical properties, antioxidant activities and microbial inactivation. Food Sci. Technol. Int. 2022, 30, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Mala, T.; Sadiq, M.B.; Anal, A.K. Optimization of thermosonication processing of pineapple juice to improve the quality attributes during storage. J. Food Meas. Charact. 2021, 15, 4325–4335. [Google Scholar] [CrossRef]
- Menelli, G.S.; Fracalossi, K.L.; Lepaus, B.M.; De São José, J.F.B. Effects of high-intensity ultrasonic bath on the quality of strawberry juice. CyTA—J. Food 2021, 19, 501–510. [Google Scholar] [CrossRef]
- Kalsi, B.S.; Singh, S.; Alam, M.S. Influence of ultrasound processing on the quality of guava juice. J. Food Process Eng. 2023, 46, e14163. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.K.; Raghavan, V. High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid, total phenolics, flavonoids and antioxidant capacity. LWT—Food Sci. Technol. 2019, 107, 299–307. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.K.; Raghavan, V. High-intensity ultrasound processing of kiwifruit juice: Effects on the microstructure, pectin, carbohydrates and rheological properties. Food Chem. 2020, 313, 126121. [Google Scholar] [CrossRef]
- Mohammadi, A.; Rafiee, S.; Emam-djomeh, Z.; Keyhani, A. Kinetic Models for Colour Changes in Kiwifruit Slices during Hot Air Drying. World J. Agric. Sci. 2008, 4, 376–383. [Google Scholar]
- Fundo, J.F.; Miller, F.A.; Garcia, E.; Santos, J.R.; Silva, C.L.M.; Brandão, T.R.S. Physicochemical characteristics, bioactive compounds and antioxidant activity in juice, pulp, peel and seeds of Cantaloupe melon. J. Food Meas. Charact. 2018, 12, 292–300. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Chatelain, P.G.; Pintado, M.E.; Vasconcelos, M.W. Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci. 2014, 215–216, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.A.; Gil, M.M.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Sigmoidal thermal inactivation kinetics of Listeria innocua in broth: Influence of strain and growth phase. Food Control 2009, 20, 1151–1157. [Google Scholar] [CrossRef]
- Nonga, H.E.; Simforian, E.A.; Ndabikunze, B.K. Assessment of physicochemical characteristics and hygienic practices along the value chain of raw fruit juice vended in Dar es Salaam City, Tanzania. Tanzan. J. Health Res. 2014, 16, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Abid, M.; Jabbar, S.; Hu, B.; Hashim, M.M.; Wu, T.; Lei, S.; Khan, M.A.; Zeng, X. Thermosonication as a potential quality enhancement technique of apple juice. Ultrason. Sonochem. 2014, 21, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Saeeduddin, M.; Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Awad, F.N.; Hu, B.; Lei, S.; Zeng, X. Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT—Food Sci. Technol. 2015, 64, 452–458. [Google Scholar] [CrossRef]
- Saechua, W.; Sharma, S.; Nakawajana, N.; Leepaitoon, K.; Chunsri, R.; Posom, J.; Roeksukrungrueang, C.; Siritechavong, T.; Phanomsophon, T.; Sirisomboon, P.; et al. Integrating Vis-SWNIR spectrometer in a conveyor system for in-line measurement of dry matter content and soluble solids content of durian pulp. Postharvest Biol. Technol. 2021, 181, 111640. [Google Scholar] [CrossRef]
- Baker, R.A.; Cameron, R. Cloud of citrus juices and juice drinks. Food Technol. 1999, 53, 64–69. [Google Scholar]
- Seshadri, R.; Weiss, J.; Hulbert, G.J.; Mount, J. Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocoll. 2003, 17, 191–197. [Google Scholar] [CrossRef]
- Krešić, G.; Lelas, V.; Jambrak, A.R.; Herceg, Z.; Brnčić, S.R. Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J. Food Eng. 2008, 87, 64–73. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Saeeduddin, M.; Zeng, X. Qualitative Assessment of Sonicated Apple Juice during Storage. J. Food Process. Preserv. 2015, 39, 1299–1308. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Muthukumarappan, K.; O’Donnell, C.P.; Cullen, P.J. Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innov. Food Sci. Emerg. Technol. 2009, 10, 166–171. [Google Scholar] [CrossRef]
- Rojas, M.L.; Leite, T.S.; Cristianini, M.; Alvim, I.D.; Augusto, P.E.D. Peach juice processed by the ultrasound technology: Changes in its microstructure improve its physical properties and stability. Food Res. Int. 2016, 82, 22–33. [Google Scholar] [CrossRef]
- Cervantes-Elizarrarás, A.; Piloni-Martini, J.; Ramírez-Moreno, E.; Alanís-García, E.; Güemes-Vera, N.; Gómez-Aldapa, C.A.; Zafra-Rojas, Q.Y.; Cruz-Cansino, N.D. Enzymatic inactivation and antioxidant properties of blackberry juice after thermoultrasound: Optimization using response surface methodology. Ultrason. Sonochem. 2017, 34, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Ayustaningwarno, F.; Fogliano, V.; Verkerk, R.; Dekker, M. Surface color distribution analysis by computer vision compared to sensory testing: Vacuum fried fruits as a case study. Food Res. Int. 2021, 143, 110230. [Google Scholar] [CrossRef] [PubMed]
- Drlange. Colour Review; Drlange Application Report No.8.0e; Drlange: St. Louis, MO, USA, 1994. [Google Scholar]
- Ibarz, A.; Pagán, J.; Panadés, R.; Garza, S. Photochemical destruction of color compounds in fruit juices. J. Food Eng. 2005, 69, 155–160. [Google Scholar] [CrossRef]
- Nayak, P.K.; Basumatary, B.; Chandrasekar, C.M.; Seth, D.; Kesavan, R.K. Impact of thermosonication and pasteurization on total phenolic contents, total flavonoid contents, antioxidant activity, and vitamin C levels of elephant apple (Dillenia indica) juice. J. Food Process Eng. 2020, 43, e13447. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; de Jesus, A.L.T.; Almeida, F.D.L.; de Miranda, M.R.A.; Fernandes, F.A.N.; Rodrigues, S. High-Intensity Ultrasound Processing of Pineapple Juice. Food Bioprocess. Technol. 2013, 6, 997–1006. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, L.; Li, D.; Liu, C.; Ma, R.; Song, J.; Zhao, J. Low intensity ultrasound as a pretreatment to drying of daylilies: Impact on enzyme inactivation, color changes and nutrition quality parameters. Ultrason. Sonochem. 2017, 36, 50–58. [Google Scholar] [CrossRef]
- Cruz, R.M.S.; Vieira, M.C.; Silva, C.L.M. Modelling kinetics of watercress (Nasturtium officinale) colour changes due to heat and thermosonication treatments. Innov. Food Sci. Emerg. Technol. 2007, 8, 244–252. [Google Scholar] [CrossRef]
- Chen, B.H.; Chen, Y.Y. Stability of chlorophylls and carotenoids in sweet potato leaves during microwave cooking. J. Agric. Food Chem. 1993, 41, 1315–1320. [Google Scholar] [CrossRef]
- Saberian, H.; Hosseini, F.; Bolourian, S. The effect of ultrasound method on the extraction of chlorophyll from mulberry leaves. Innov. Food Technol. 2017, 4, 67–76. [Google Scholar] [CrossRef]
- Chemat, F.; Zill, E.H.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Ahmed, Z.; Manzoor, M.F.; Begum, N.; Khan, A.; Shah, I.; Farooq, U.; Siddique, R.; Zeng, X.-A.; Rahaman, A.; Siddeeg, A. Thermo-Ultrasound-Based Sterilization Approach for the Quality Improvement of Wheat Plantlets Juice. Processes 2019, 7, 518. [Google Scholar] [CrossRef]
- Chongtham, N.; Bisht, M.S.; Santosh, O.; Bajwa, H.K.; Indira, A. Mineral elements in Bamboo shoots and Potential role in Food Fortification. J. Food Compos. Anal. 2021, 95, 103662. [Google Scholar] [CrossRef]
- Yikmis, S.; Demirok, N.T.; Levent, O.; Apaydin, D. Impact of thermal pasteurization and thermosonication treatments on black grape juice (Vitis vinifera L): ICP-OES, GC–MS/MS and HPLC analyses. Heliyon 2023, 9, e19314. [Google Scholar] [CrossRef]
- Abid, M.; Jabbar, S.; Wu, T.; Hashim, M.M.; Hu, B.; Lei, S.; Zeng, X. Sonication enhances polyphenolic compounds, sugars, carotenoids and mineral elements of apple juice. Ultrason. Sonochem. 2014, 21, 93–97. [Google Scholar] [CrossRef]
- Sert, D.; Aygun, A.; Demir, M.K. Effects of ultrasonic treatment and storage temperature on egg quality. Poult. Sci. 2011, 90, 869–875. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Riener, J.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. The Impact of Thermosonication and Pulsed Electric Fields on Staphylococcus aureus Inactivation and Selected Quality Parameters in Orange Juice. Food Bioprocess. Technol. 2009, 2, 422–430. [Google Scholar] [CrossRef]
- Kiang, W.S.; Bhat, R.; Rosma, A.; Cheng, L.H. Effects of thermosonication on the fate of Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice. Lett. Appl. Microbiol. 2013, 56, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Baboli, Z.M.; Williams, L.; Chen, G. Design of a batch ultrasonic reactor for rapid pasteurization of juices. J. Food Eng. 2020, 268, 109736. [Google Scholar] [CrossRef]
- Miles, C.A. Relating cell killing to inactivation of critical components. Appl. Env. Microbiol. 2006, 72, 914–917. [Google Scholar] [CrossRef] [PubMed]
Compound | Content (Mean ± Standard Deviation) |
---|---|
pH | 3.62 ± 0.03 |
SSC (°Brix) | 9.93 ± 1.25 |
Cloud value | 0.46 ± 0.32 |
Color | |
L* | 22.78 ± 2.76 |
a* | −2.54 ± 1.49 |
b* | 6.07 ± 2.39 |
Total phenolics (GAE μg/mL) | 0.40 ± 0.32 |
Total Chlorophylls (μg/mL) | 6.23 ± 3.91 |
Chlorophyll a (μg/mL) | 4.06 ± 2.74 |
Chlorophyll b (μg/mL) | 2.17 ± 1.28 |
Minerals (mg/mL) | |
P | 1.01 ± 0.46 |
Mg | 0.34 ± 0.08 |
Ca | 0.36 ± 0.08 |
Na | 1.48 ± 4.75 |
K | 18.33 ± 4.68 |
Treatment | Color Parameters | ||
---|---|---|---|
L* | a* | b* | |
Fresh | 1.00 a | 1.00 ab | 1.00 ab |
45 °C | 1.03 ± 0.07 a | 0.72 ± 0.49 a | 0.95 ± 0.20 ab |
50 °C | 1.06 ± 0.16 ab | 0.84 ± 0.35 ab | 0.97 ± 0.34 ab |
55 °C | 1.13 ± 0.03 c | 1.16 ± 0.06 b | 1.12 ± 0.19 b |
45 °C + US | 1.12 ± 0.05 bc | 1.07 ± 0.40 ab | 1.01 ± 0.36 ab |
50 °C + US | 1.10 ± 0.08 bc | 1.03 ± 0.47 ab | 0.92 ± 0.33 ab |
55 °C + US | 1.09 ± 0.04 bc | 0.92 ± 0.28 ab | 0.80 ± 0.28 a |
Treatment | Elements | ||||
---|---|---|---|---|---|
Ca | P | Mg | Na | K | |
Fresh | 1.00 ab | 1.00 a | 1.00 a | 1.00 b | 1.00 b |
45 °C | 0.92 ± 1.05 a | 1.00 ± 0.73 a | 1.13 ± 0.11 b | 0.99 ± 0.10 ab | 0.91 ± 0.05 a |
50 °C | 1.10 ± 0.34 b | 1.18 ± 0.13 b | 1.16 ± 0.33 b | 1.01 ± 0.05 b | 0.94 ± 0.13 ab |
55 °C | 1.10 ± 0.69 b | 1.17 ± 0.69 b | 1.16 ± 0.06 b | 1.01 ± 0.10 b | 0.95 ± 0.39 ab |
45 °C + US | 0.87 ± 0.31 a | 1.03 ± 0.74 ab | 1.00 ± 0.14 a | 1.00 ± 0.01 b | 1.00 ± 0.05 b |
50 °C + US | 0.94 ± 0.51 a | 1.12 ± 0.43 ab | 1.15 ± 0.29 b | 0.99 ± 0.12 ab | 0.92 ± 0.40 a |
55 °C + US | 0.95 ± 0.06 a | 1.12 ± 0.83 ab | 1.15 ± 0.16 b | 0.97 ± 0.13 a | 0.94 ± 0.04 ab |
Treatment | δ (min) | n | R2adj | RSME |
---|---|---|---|---|
45 °C | 23.31 ± 3.51 | 1.64 ± 0.30 | 0.95 | 0.38 |
50 °C | 5.06 ± 1.73 | 0.91 ± 0.25 | 0.85 | 0.55 |
55 °C | 2.50 ± 0.70 | 1.22 ± 0.27 | 0.95 | 0.44 |
45 °C + US | 3.19 ± 0.59 | 1.01 ± 0.14 | 0.95 | 0.37 |
50 °C + US | 1.47 ± 0.59 | 0.94 ± 0.23 | 0.90 | 0.64 |
55 °C + US | 0.46 ± 0.21 | 1.08 ± 0.32 | 0.90 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhutkar, S.; Brandão, T.R.S.; Silva, C.L.M.; Miller, F.A. Application of Ultrasound Treatments in the Processing and Production of High-Quality and Safe-to-Drink Kiwi Juice. Foods 2024, 13, 328. https://doi.org/10.3390/foods13020328
Bhutkar S, Brandão TRS, Silva CLM, Miller FA. Application of Ultrasound Treatments in the Processing and Production of High-Quality and Safe-to-Drink Kiwi Juice. Foods. 2024; 13(2):328. https://doi.org/10.3390/foods13020328
Chicago/Turabian StyleBhutkar, Sharayu, Teresa R. S. Brandão, Cristina L. M. Silva, and Fátima A. Miller. 2024. "Application of Ultrasound Treatments in the Processing and Production of High-Quality and Safe-to-Drink Kiwi Juice" Foods 13, no. 2: 328. https://doi.org/10.3390/foods13020328
APA StyleBhutkar, S., Brandão, T. R. S., Silva, C. L. M., & Miller, F. A. (2024). Application of Ultrasound Treatments in the Processing and Production of High-Quality and Safe-to-Drink Kiwi Juice. Foods, 13(2), 328. https://doi.org/10.3390/foods13020328