A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Hapten and Antigens
2.3. Preparation of anti-CAP mAb
2.4. Evaluation of Anti-CAP mAb
2.5. Preparation of the AuNP-Labeled mAb Probe
2.6. Preparation of AuNP-LFIA Strips
2.7. Procedure of the AuNP-LFIA
2.8. Detection of Spiked Samples
2.9. Verification by UPLC−MS/MS
3. Results and Discussion
3.1. Characterization of Hapten and Antigens
3.2. Characterization of anti-CAP mAb
3.3. Sensitivity of the AuNP-LFIA
3.4. Specificity of the AuNP-LFIA
3.5. Robustness of the AuNP-LFIA
3.6. Analysis of Spiked Samples
3.7. Validation by UPLC−MS/MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casida, J.E.; Bryant, R.J. The ABCs of pesticide toxicology: Amounts, biology, and chemistry. Toxicol. Res. 2017, 6, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.R.; Swale, D.R.; Anderson, T.D. Comparative effects of technical-grade and formulated chlorantraniliprole to the survivorship and locomotor activity of the honey bee, Apis mellifera (L.). Pest. Manag. Sci. 2020, 76, 2582–2588. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, G.; Xu, W.; Xiao, Y.; Peng, Y. Transcriptome analysis of fat accumulation in 3T3-L1 adipocytes induced by chlorantraniliprole. Front. Nutr. 2022, 9, 1091477. [Google Scholar] [CrossRef] [PubMed]
- GB 2763–2021; National Food Safety Standard—Maximum Residue Limits for Pesticides in Food. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing China, 2021.
- (EU) 2022/1343; Pesticide Residue (s) and Maximum Residue Levels (mg/kg). European Union (EU): Maastricht, The Netherlands, 2022.
- Liu, T.; Dong, M.; Zhou, F.; Yang, D.; Zhang, X. Development and validation of an analytical method for detecting chlorantraniliprole residues in fresh tea leaves. Food Sci. Human. Wellness 2019, 8, 362–367. [Google Scholar] [CrossRef]
- Paramasivam, M. Dissipation kinetics, dietary and ecological risk assessment of chlorantraniliprole residue in/on tomato and soil using GC-MS. J. Food Sci. Technol. 2021, 58, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, P.; Kaithamalai, B. Dissipation kinetics, decontamination and risk assessment of chlorantraniliprole in okra and soil under open field condition using GC-MS. Int. J. Environ. Anal. Chem. 2020, 102, 3694–3706. [Google Scholar] [CrossRef]
- Yan, H.; Song, X.; Tian, K.; Chen, Y.; Xiong, Y.; Min, S. Quantitative determination of additive Chlorantraniliprole in Abamectin preparation: Investigation of bootstrapping soft shrinkage approach by mid-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 191, 296–302. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Chang, H.; Gu, Y.; Haibin, S.; Siwei, W. Residue dynamics of spirotetramat and its metabolites & chlorantraniliprole in longan (Dimocarpus longan Lour.). Chin. J. Pestic. Sci. 2021, 23, 1235–1240. [Google Scholar] [CrossRef]
- Sharma, N.; Mandal, K.; Kumar, R.; Kumar, B.; Singh, B. Persistence of chlorantraniliprole granule formulation in sugarcane field soil. Environ. Monit. Assess. 2014, 186, 2289–2295. [Google Scholar] [CrossRef]
- Zhang, J.M.; Chai, W.G.; Wu, Y.L. Residues of chlorantraniliprole in rice field ecosystem. Chemosphere 2012, 87, 132–136. [Google Scholar] [CrossRef]
- Tian, F.; Qiao, C.; Luo, J.; Guo, L.; Pang, T.; Pang, R.; Li, J.; Wang, C.; Wang, R.; Xie, H. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS. Food Chem. 2020, 333, 127468. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Chang, H.; Liu, Y.; Sun, H. Determination of chlorantraniliprole, cyantraniliprole and its metabolites residues in litchi using QuEChERS and high performance liquid chromatography-tandem mass spectrometry. Chin. J. Pestic. Sci. 2022, 24, 395–403. [Google Scholar] [CrossRef]
- Ding, Y.; Huang, Y.; Sun, W.; Li, F.; Zhang, S.; Fang, S.; Wang, M.; Hua, X. Carboxyl retained hapten of quinclorac produces highly sensitive antibody and immunochromatographic assay. Microchem. J. 2022, 183. [Google Scholar] [CrossRef]
- Sang, P.; Hu, Z.; Cheng, Y.; Yu, H.; Xie, Y.; Yao, W.; Guo, Y.; Qian, H. Nucleic Acid Amplification Techniques in Immunoassay: An Integrated Approach with Hybrid Performance. J. Agric. Food Chem. 2021, 69, 5783–5797. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhang, F.; Li, F.; Jia, Y.; Wang, M.; Hua, X.; Wang, L. Development of Ic-ELISA and Colloidal Gold Lateral Flow Immunoassay for the Determination of Cypermethrin in Agricultural Samples. Biosensors 2022, 12, 1058. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, K.; Xu, C.; Liu, F.; Li, Q.X.; Liu, S.; Wang, B. Development of a sensitive monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for analysing chlorantraniliprole residues. Food Chem. 2014, 143, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wang, K.; Vasylieva, N.; Zhou, H.; Xue, X.; Wang, B.; Li, Q.X.; Hammock, B.D.; Xu, T. Development of a nanobody-based ELISA for the detection of the insecticides cyantraniliprole and chlorantraniliprole in soil and the vegetable bok choy. Anal. Bioanal. Chem. 2021, 413, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, J.; Huang, Y.; Zhang, Z.; Lin, Q.; Xia, P.; Kong, F.; Qiu, J.; Fang, S.; Hua, X. Rapid and sensitive detection of quizalofop-p-ethyl by gold nanoparticle-based lateral flow immunoassay in agriproducts and environmental samples. Sci. Total Environ. 2023, 857, 159427. [Google Scholar] [CrossRef]
- Yan, T.; Zhang, Q.; Wang, D.; Li, P.; Tang, X.; Zhang, W. Determination of deoxynivalenol by ELISA and immunochromatographic strip assay based on monoclonal antibodies. Toxin Rev. 2019, 40, 285–291. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, K.; Cui, Y.; Zhang, W.; He, L.; Guo, S.; Chen, Y.; Li, Q.X.; Liu, S.; Wang, B. Development of a monoclonal antibody-based ELISA for the detection of the novel insecticide cyantraniliprole. RSC Adv. 2015, 5, 35874–35881. [Google Scholar] [CrossRef]
- Moon, J.K.; Keum, Y.S.; Hwang, E.C.; Park, B.S.; Chang, H.R.; Li, Q.X.; Kim, J.H. Hapten syntheses and antibody generation for a new herbicide, metamifop. J. Agric. Food Chem. 2007, 55, 5416–5422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, L.; Ahn, K.C.; Sun, Q.; Hu, B.; Wang, J.; Liu, F. Hapten heterology for a specific and sensitive indirect enzyme-linked immunosorbent assay for organophosphorus insecticide fenthion. Anal. Chim. Acta 2007, 596, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, T.; Zhu, X.; Xu, L.; Liu, F.; Hu, B.; Jiang, Y.; Cao, B. Determination of N-Methylcarbamate Insecticide Metolcarb by Enzyme-Linked Immunosorbent Assay. Chin. J. Anal. Chem. 2006, 34, 178–183. [Google Scholar] [CrossRef]
- Zhao, J.; Yi, G.X.; He, S.P.; Wang, B.M.; Yu, C.X.; Li, G.; Zhai, Z.X.; Li, Z.H.; Li, Q.X. Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the herbicide chlorimuron-ethyl. J. Agric. Food Chem. 2006, 54, 4948–4953. [Google Scholar] [CrossRef]
- Chronopoulou, E.; Uribe-Benninghoff, A.; Corbett, C.R.; Berry, J.D. Hybridoma technology for the generation of rodent mAbs via classical fusion. Methods Mol. Biol. 2014, 1131, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Sepehr, K.S.; Baradaran, B.; Majidi, J.; Abdolalizadeh, J.; Aghebati, L.; Shahneh, F.Z. Development and characterization of monoclonal antibodies against human CD20 in Balb/c mice. Hum. Antibodies 2012, 21, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Bobrovnik, S.A. Determination of antibody affinity by ELISA. Theory. J. Biochem. Biophys. Methods 2003, 57, 213–236. [Google Scholar] [CrossRef]
- Guillen, I.; Gabaldon, J.A.; Nunez-Delicado, E.; Puchades, R.; Maquieira, A.; Morais, S. Detection of sulphathiazole in honey samples using a lateral flow immunoassay. Food Chem. 2011, 129, 624–629. [Google Scholar] [CrossRef]
- Liu, X.; Atwater, M.; Wang, J.; Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 2007, 58, 3–7. [Google Scholar] [CrossRef]
- Xu, X.; Guo, L.; Kuang, H.; Xu, L.; Xu, C.; Liu, L. Preparation of a broad-specific monoclonal antibody and development of an immunochromatographic assay for monitoring of anthranilic diamides in vegetables and fruits. Analyst 2022, 147, 5149–5160. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, K. Determination of the dissipation dynamics and residue behaviors of chlorantraniliprole in sugarcane and soil by LC-MS/MS. Environ. Monit. Assess. 2017, 189, 372. [Google Scholar] [CrossRef] [PubMed]
- Krotzky, A.; Zeeh, B. Pesticides report 33. Immunoassays for residue analysis of agrochemicals: Proposed guidelines for precision, standardization and quality control (Technical Report). Pure Appl. Chem. 1995, 67, 2065–2088. [Google Scholar] [CrossRef]
- Khoshfetrat, S.M.; Fasihi, K.; Moradnia, F.; Kamil Zaidan, H.; Sanchooli, E. A label-free multicolor colorimetric and fluorescence dual mode biosensing of HIV-1 DNA based on the bifunctional NiFe2O4@UiO-66 nanozyme. Anal. Chim. Acta 2023, 1252, 341073. [Google Scholar] [CrossRef] [PubMed]
- EPA/600/8-80/038 (NTIS PB82208752); Analysis of Pesticide Residues in Human and Environmental Samples. US Environmental Protection Agency (EPA): Washington, DC, USA, 1980.
Sample | Spiked (mg/kg) | Visualization Results | Quantitative Results (mg/kg) | Recovery (%) | RSD (%) | ||
---|---|---|---|---|---|---|---|
Soil | 0 | − − − a | − − − | − − − | <LOD | / c | / |
0.025 | − − − | − − − | − − − | 0.016 ± 0.001 | 65.9 | 6.7 | |
0.05 | + + + b | + + + | + + + | 0.034 ± 0.002 | 68.0 | 5.9 | |
0.1 | + + + | + + + | + + + | 0.071 ± 0.002 | 71.2 | 2.3 | |
0.2 | + + + | + + + | + + + | 0.132 ± 0.003 | 65.8 | 1.9 | |
Brown rice | 0 | − − − | − − − | − − − | <LOD | / | / |
0.025 | − − − | − − − | − − − | 0.015 ± 0.001 | 61.2 | 6.5 | |
0.05 | + + + | + + + | + + + | 0.033 ± 0.002 | 65.5 | 4.9 | |
0.1 | + + + | + + + | + + + | 0.065 ± 0.002 | 65.3 | 2.5 | |
0.2 | + + + | + + + | + + + | 0.141 ± 0.006 | 70.7 | 4.0 | |
Apple | 0 | − − − | − − − | − − − | <LOD | / | / |
0.025 | − − − | − − − | − − − | 0.016 ± 0.001 | 64.0 | 3.2 | |
0.05 | + + + | + + + | + + + | 0.035 ± 0.001 | 70.0 | 4.6 | |
0.1 | + + + | + + + | + + + | 0.071 ± 0.002 | 71.1 | 2.9 | |
0.2 | + + + | + + + | + + + | 0.133 ± 0.004 | 66.3 | 3.1 | |
Chinese cabbage | 0 | − − − | − − − | − − − | <LOD | / | / |
0.05 | − − − | − − − | − − − | 0.031 ± 0.002 | 61.5 | 6.1 | |
0.1 | + + + | + + + | + + + | 0.065 ± 0.002 | 65.6 | 3.2 | |
0.2 | + + + | + + + | + + + | 0.131 ± 0.005 | 65.8 | 3.9 | |
0.4 | + + + | + + + | + + + | 0.238 ± 0.016 | 59.7 | 6.8 |
Sample No. | UPLC–MS/MS (mg/kg) | AuNP-LFIA a | Sample No. | UPLC–MS/MS (mg/kg) | AuNP-LFIA a |
---|---|---|---|---|---|
1 | <LOQ | 6 | 0.062 | ||
2 | 0.005 | 7 | 0.071 | ||
3 | 0.009 | 8 | 0.14 | ||
4 | 0.018 | 9 | 0.28 | ||
5 | 0.053 | 10 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, J.; Zhu, J.; Zhang, Z.; Zhang, S.; Wang, M.; Hua, X. A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples. Foods 2024, 13, 205. https://doi.org/10.3390/foods13020205
Wu Y, Li J, Zhu J, Zhang Z, Zhang S, Wang M, Hua X. A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples. Foods. 2024; 13(2):205. https://doi.org/10.3390/foods13020205
Chicago/Turabian StyleWu, Yanling, Jiao Li, Jie Zhu, Zhaoxian Zhang, Shuguang Zhang, Minghua Wang, and Xiude Hua. 2024. "A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples" Foods 13, no. 2: 205. https://doi.org/10.3390/foods13020205
APA StyleWu, Y., Li, J., Zhu, J., Zhang, Z., Zhang, S., Wang, M., & Hua, X. (2024). A Rapid and Sensitive Gold Nanoparticle-Based Lateral Flow Immunoassay for Chlorantraniliprole in Agricultural and Environmental Samples. Foods, 13(2), 205. https://doi.org/10.3390/foods13020205