Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí (Euterpe oleracea Mart.) and Sea Buckthorn (Hippophae rhamnoides L.) Berries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Material
2.3. Methods
2.3.1. pH Value
2.3.2. Thermal Losses and Yield
- a—weight of burger before heat treatment
- b—weight of burger after heat treatment
2.3.3. Determination of Total Polyphenols Content
2.3.4. ABTS Radical Scavenging Activity
2.3.5. Degree of Lipid Oxidation—TBARS Analysis
2.3.6. Color Measurement
2.3.7. Sensory Evaluation
2.3.8. Anti-Diabetic Activity
2.3.9. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bolek, S. Consumer attitudes toward natural food additives. In Natural Additives in Foods; Valencia, G.A., Ed.; Springer: Cham, Switzerland, 2023; pp. 325–341. [Google Scholar] [CrossRef]
- Franco Lucas, B.; Götze, F.; Vieira Costa, J.A.; Brunner, T.A. Consumer perception toward “superfoods”: A segmentation study. J. Int. Food Agribus. Mark. 2022, 35, 603–621. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Hoehn, D.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Ortego, C.; Fullana-i-Palmer, P.; Bala, A.; Batlle-Bayer, L.; Balcells, M.; et al. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean. Prod. 2022, 379, 134491. [Google Scholar] [CrossRef]
- Proestos, C. Superfoods: Recent data on their role in the prevention of diseases. Curr. Res. Nutr. Food Sci. 2018, 6, 576–593. [Google Scholar] [CrossRef]
- Tacer-Caba, Z. The concept of superfoods in diet. In The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 73–101. [Google Scholar] [CrossRef]
- Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Patel, D.; Huang, D.; Kababick, J.P. Phytochemical and nutrient composition of the freeze-dried Amazonian palm berry, Euterpe oleraceae Mart. (Açaí). J. Agric. Food Chem. 2006, 54, 8598–8603. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Krępa, E.; Kłapcińska, B.; Podgórski, T.; Szade, B.; Tyl, K.; Hadzik, A. Effects of supplementation with açaí (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. a pilot study. Biol. Sport 2015, 32, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, E.; Topolska, K. Chemical composition and functional properties of açaí berry (Euterpe oleracea mart.). Postępy Fitoter. 2012, 13, 188–191. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Christaki, E. Hippophae rhamnoides L. (sea buckthorn): A potential source of nutraceuticals. Food Public Health 2012, 2, 69–72. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, S.; Tripathi, M.K.; Mehta, N.; Ranjan, R.; Bhat, Z.F.; Singh, P.K. Flavonoids in the development of functional meat products: A review. Vet. World 2013, 6, 573–578. [Google Scholar] [CrossRef]
- Almeida, M.B.D.; Zoellner, S.S.; Da Cruz, A.G.; Moura, M.R.L.; De Carvalho, L.M.J.D.; Freitas, M.C.J.; De S Santana, A. Potentially probiotic açaí yogurt. Int. J. Dairy Technol. 2008, 62, 178–182. [Google Scholar] [CrossRef]
- Coïsson, J.D.; Travaglia, F.; Piana, G.; Capasso, M.; Arlorio, M. Euterpe oleracea juice as a functional pigment for yogurt. Food Res. Int. 2005, 38, 893–897. [Google Scholar] [CrossRef]
- Menezes, E.; Deliza, R.; Chan, H.L.; Guinard, J.-X. Preferences and attitudes towards açaí-based products among North American consumers. Food Res. Int. 2011, 44, 1997–2008. [Google Scholar] [CrossRef]
- Choi, S.H. Quality characteristics of Yanggaeng added with açaí berry (Euterpe oleracea Mart.) powder. Korean J. Culi. Res. 2015, 21, 133–146. [Google Scholar]
- Dong, K.; Binosha Fernando, W.M.A.D.; Durham, R.; Stockmann, R.; Jayasena, V. Nutritional value, health-promoting benefits and food application of sea buckthorn. Food Rev. Int. 2021, 39, 2122–2137. [Google Scholar] [CrossRef]
- Hanula, M.; Szpicer, A.; Górska-Horczyczak, E.; Khachatryan, G.; Pogorzelska-Nowicka, E.; Poltorak, A. Quality of beef burgers formulated with fat substitute in a form of freeze-dried hydrogel enriched with açai oil. Molecules 2022, 27, 3700. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; dos Santos, J.M.; Carvalho, L.T.; Borgonovi, T.F.; Lorenzo, J.M.; da Silva-Barretto, A.C. Açaí Extract Powder as Natural Antioxidant on Pork Patties during the Refrigerated Storage. Meat Sci. 2022, 184, 108667. [Google Scholar] [CrossRef]
- Salejda, A.M.; Tril, U.; Krasnowska, G. The effect of sea buckthorn (Hippophae rhamnoides L.) berries on some quality characteristics of cooked pork sausages. Int. J. Food Sci. Nutr. Eng. 2014, 8, 604–607. [Google Scholar] [CrossRef]
- Salejda, A.M.; Nawirska-Olszańska, A.; Janiewicz, U.; Krasnowska, G. Effects on quality properties of pork sausages enriched with sea buckthorn (Hippophae rhamnoides L.). J. Food Qual. 2017, 7, 7123960. [Google Scholar] [CrossRef]
- Mesárošová, A.; Lidiková, J.; Bobková, A.; Kročko, M.; Mendelová, A.; Tóth, T.; Nedomová, Š.; Vörösová, D.; Bobko, M. Effect of sea buckthorn (Hippophae rhamnoides var. vitaminnaja) extract on spoilage of pork sausages. J. Microbiol. Biotechnol. Food Sci. 2024, 13, e10420. [Google Scholar] [CrossRef]
- Wagh, R.V.; Chatli, M.K. Response surface optimization of extraction protocols to obtain phenolic rich antioxidant from sea buckthorn and their potential application into model meat system. J. Food Sci. Technol. 2017, 54, 1565–1576. [Google Scholar] [CrossRef]
- Przybylska, D.; Kucharska, A.Z.; Cybulska, I.; Sozański, T.; Piórecki, N.; Fecka, I. Cornus mas L. Stones: A Valuable by-product as an ellagitannin source with high antioxidant potential. Molecules 2020, 25, 4646. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-Łętowska, A.; Kucharska, A.Z. Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In Methods in Enzymology; Fleischer, S.S., Packer, L., Eds.; Academic Press: Cambridge, MA, USA, 1978; pp. 302–310. [Google Scholar] [CrossRef]
- Jin, S.K.; Choi, J.S.; Lee, S.J.; Lee, S.Y.; Hur, S.J. Effect of Coptis chinensis franch addition on the quality characteristics of sausages during cold storage. Food Bioprocess Technol. 2015, 8, 1045–1053. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2012.
- ISO 8586:2023; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO: Geneva, Switzerland, 2023.
- ISO 13299:2016; Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile. ISO: Geneva, Switzerland, 2016.
- Yu, Z.; Yin, Y.; Zhao, W.; Yu, Y.; Liu, B.; Liu, J.; Chen, F. Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chem. 2011, 129, 1376–1382. [Google Scholar] [CrossRef]
- Lacroix, I.; Li-Chan, E. Inhibition of dipeptidyl peptidase (DPP)-IV and α-glucosidase activities by pepsin-treated whey proteins. J. Agric. Food Chem. 2013, 61, 7500–7506. [Google Scholar] [CrossRef]
- Tril, U.; Salejda, A.M.; Krasnowska, G. Attempt to increase oxidative stability of model meat products by applying chokeberry juice. Zywnosc-Nauka Technol. Jakosc 2011, 18, 55–66. [Google Scholar] [CrossRef]
- Tyburcy, A.; Ścibisz, I.; Rostek, E.; Pasierbiewicz, A.; Florowski, T. Antioxidative properties of cranberry and rose juices in meat products made of defrosted meat. Zywnosc-Nauka Technol. Jakosc 2014, 5, 72–84. [Google Scholar] [CrossRef]
- Lau, A.T.Y.; Arvaj, L.; Strange, P.; Goodwin, M.; Barbut, S.; Balamurugan, S. Effect of cranberry pomace on the physicochemical properties and inactivation of Salmonella during the manufacture of dry fermented sausages. Curr. Res. Food Sci. 2021, 4, 636–645. [Google Scholar] [CrossRef]
- Salejda, A.M.; Kucharska, A.Z.; Krasnowska, G. Effect of cornelian cherry (Cornus mas L.) juice on selected quality properties of beef burgers. J. Food Qual. 2018, 8, 1563651. [Google Scholar] [CrossRef]
- Mazur, M.; Salejda, A.M.; Pilarska, K.; Krasnowska, G.; Nawirska-Olszańska, A.; Kolniak-Ostek, J.; Bąbelewski, P. The influence of Viburnum opulus fruits addition on some quality properties of homogenized meat products. Appl. Sci. 2021, 11, 3141. [Google Scholar] [CrossRef]
- Jaroszewska, A.; Biel, W.; Telesiński, A. Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. J. Elementol. 2018, 23, 673–684. [Google Scholar] [CrossRef]
- Gâtlan, A.M.; Gutt, G. Sea buckthorn in plant based diets. An analytical approach of sea buckthorn fruits composition: Nutritional value, applications, and health benefits. Int. J. Environ. Res. Public Health 2021, 18, 8986. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Barbalho, S.M.; Araújo, A.C.; Guiguer, E.L.; Mondal, A.; Bachtel, G.; Bishayee, A. Açaí (Euterpe oleracea Mart.) in health and disease: A critical review. Nutrients 2023, 15, 989. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.; Ahlawat, S.S.; Sharma, D.P.; Dabur, R.S. Novel trends in development of dietary fiber rich meat products—A critical review. J. Food Sci. Technol. 2015, 52, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.R.; Gokulakrishnan, P.; Giriprasad, R.; Yatoo, M.A. Fruit-based natural antioxidants in meat and meat products: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Xiang, R.; Cheng, J.; Zhu, M.; Liu, X. Effect of mulberry (Morus alba) polyphenols as antioxidant on physicochemical properties, oxidation and bio-safety in Cantonese sausages. LWT-Food Sci. Technol. 2019, 116, 108504. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, D.Y.; Kim, O.Y.; Kang, H.J.; Kim, H.S.; Hur, S.J. Overview of studies on the use of natural antioxidative materials in meat products. Food Sci. Anim. Resour. 2020, 40, 863–880. [Google Scholar] [CrossRef]
- Biswas, A.K.; Chatli, M.K.; Sahoo, J. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chem. 2012, 133, 467–472. [Google Scholar] [CrossRef]
- Jia, N.; Kong, B.; Liu, Q.; Diao, X.; Xia, X. Antioxidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci. 2012, 91, 533–539. [Google Scholar] [CrossRef]
- Bianchin, M.; Pereira, D.G.; Dos Reis, A.S.; De Florio, A.J.; Da Silva, L.D.; De Moura, C.; Carpes, S.T. Rosemary essential oil and lyophilized extract as natural antioxidant source to prevent lipid oxidation in pork sausage. Adv. J. Food Sci. Technol. 2017, 13, 210–217. [Google Scholar] [CrossRef]
- Zhou, H.; Zhuang, X.; Zhou, C.; Ding, D.; Li, C.; Bai, Y.; Zhou, G. Effect of fermented blueberry on the oxidative stability and volatile molecule profiles of emulsion-type sausage during refrigerated storage. Asian-Australas. J. Anim. Sci. 2020, 33, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Cho, A.R.; Han, J. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control 2013, 29, 112–120. [Google Scholar] [CrossRef]
- Gibis, M.; Weiss, J. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chem. 2012, 134, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Wargacka, M. Wpływ dodatku gorczycy i izoaskorbinianu sodu na zmiany oksydacyjne lipidów oraz barwę rozdrobnionego mięsa wołowego. Nauka Przyr. Technol. 2013, 7, 52. [Google Scholar]
- Yıldız-Turp, G.; Serdaroglu, M. Effects of using plum puree on some properties of low fat beef patties. Meat Sci. 2010, 86, 896–900. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Skov, S.H.; Tørngren, M.A.; Skibsted, L.H.; Lund, M.N. Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem. 2011, 128, 276–283. [Google Scholar] [CrossRef]
- Babaoğlu, A.S.; Unal, K.; Dilek, N.M.; Poçan, H.B.; Karakaya, M. Antioxidant and antimicrobial effects of blackberry, black chokeberry, blueberry, and red currant pomace extracts on beef patties subject to refrigerated storage. Meat Sci. 2022, 187, 108765. [Google Scholar] [CrossRef]
- Lim, D.G.; Choi, K.S.; Kim, J.J.; Nam, K.C. Effects of Salicornia herbacea powder on quality traits of sun-dried Hanwoo beef jerky during storage. Korean J. Food Sci. Anim. Resour. 2013, 33, 205–213. [Google Scholar] [CrossRef]
- Del Pozo-Insfran, D.; Brenes, C.H.; Talcott, S.T. Phytochemical composition and pigment stability of açai (Euterpe oleracea Mart.). J. Agric. Food Chem. 2004, 52, 1539–1545. [Google Scholar] [CrossRef]
- Aaby, K.; Martinsen, B.K.; Borge, G.I.; Røen, D. Bioactive compounds and color of sea buckthorn (Hippophae rhamnoides L.) purees as affected by heat treatment and high-pressure homogenization. Int. J. Food Prop. 2020, 23, 651–664. [Google Scholar] [CrossRef]
- Nuñez de Gonzalez, M.T.; Hafley, B.S.; Boleman, R.M.; Miller, R.K.; Rhee, K.S.; Keeton, J.T. Antioxidant properties of plum concentrates and powder in precooked roast beef to reduce lipid oxidation. Meat Sci. 2008, 80, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Padilla-Zakour, O.I. Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: Cherry, plum and raspberry. J. Food Sci. 2004, 69, 395–400. [Google Scholar] [CrossRef]
- Aprodu, I.; Milea, Ș.A.; Enachi, E.; Râpeanu, G.; Bahrim, G.; Stănciuc, N. Thermal degradation kinetics of anthocyanins extracted from purple maize flour extract and the effect of heating on selected biological functionality. Foods 2020, 9, 1593. [Google Scholar] [CrossRef] [PubMed]
- Serdaroğlu, M.; Kavuşan, H.S.; İpek, G.; Öztürk, B. Evaluation of the quality of beef patties formulated with dried pumpkin pulp and seed. Korean J. Food Sci. Anim. Resour. 2018, 38, 1–13. [Google Scholar] [CrossRef]
- Fadıloğlu, E.E.; Çoban, M.Z. The effects of goji berry (Lycium barbarum L.) extract on some chemical, microbiological and sensory characteristics of liquid smoked common carp (Cyprinus carpio L., 1758) sausages. YYU J. Agric. Sci. 2019, 29, 702–710. [Google Scholar] [CrossRef]
- Attele, A.S.; Zhou, Y.P.; Xie, J.T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002, 51, 1851–1858. [Google Scholar] [CrossRef]
- Udani, J.K.; Singh, B.B.; Singh, V.J.; Barrett, M.L. Effects of açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutr. J. 2011, 10, 45. [Google Scholar] [CrossRef]
- Domínguez Avila, J.A.; Rodrigo García, J.; González Aguilar, G.A.; De la Rosa, L.A. The antidiabetic mechanisms of polyphenols related to increased glucagon-like peptide-1 (GLP1) and insulin signaling. Molecules 2017, 22, 903. [Google Scholar] [CrossRef]
- Wihansah, R.S.S.; Pazra, D.F.; Wahyuningsih; Handayani, K.S. Assesment of the antidiabetic activity and characteristics of cow’s milk yogurt enhanced with herbs extracts. IOP Conf. Ser. Earth Environ. Sci. 2022, 1020, 012024. [Google Scholar] [CrossRef]
Formulation | Ingredients (g) | |||
---|---|---|---|---|
Beef | Salt | Açaí Juice (A) | Sea Buckthorn Juice (R) | |
A0R0 * | 98.8 | 1.2 | 0.0 | 0.0 |
A05R0 * | 98.3 | 1.2 | 0.5 | 0.0 |
A1R0 | 97.8 | 1.2 | 1.0 | 0 |
A05R05 * | 97.8 | 1.2 | 0.5 | 0.5 |
A0R1 | 97.8 | 1.2 | 0 | 1.0 |
A05R1 * | 97.3 | 1.2 | 0.5 | 1 |
A1R05 | 97.3 | 1.2 | 1 | 0.5 |
A05R1 | 97.3 | 1.2 | 0.5 | 1.0 |
A0R05 * | 98.3 | 1.2 | 0.0 | 0.5 |
Formulation | TPC (mg GAE/100 g) | ABTS (µmol TE/100 g) |
---|---|---|
A0R0 | 123.1 a ± 1.13 | 42.4 a ± 0.11 |
A05R0 | 342.6 b ± 2.06 | 114.3 b ± 1.25 |
A05R05 | 433.7 c ± 2.54 | 225.2 c ± 1.05 |
A05R1 | 606.1 e ± 9.29 | 437.3 e ± 33.70 |
A0R05 | 506.2 d ± 0.90 | 353.9 d ± 4.05 |
Sea buckthorn juice | 2758.9 ± 53.80 | 2145.1 ± 129.90 |
Açaí juice | 10472.6 ± 302.60 | 8235.0 ± 943.00 |
Formulation | |||||
---|---|---|---|---|---|
Inhibition * (%) | A0R0 | A05R0 | A05R05 | A05R1 | A0R05 |
α-glucosidase | 12.1 | 7.6 | 7.0 | 12.0 | 3.8 |
DPP-IV | 10.1 | 9.1 | 6.6 | 9.2 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojtaszek, A.; Salejda, A.M.; Nawirska-Olszańska, A.; Zambrowicz, A.; Szmaja, A.; Ambrozik-Haba, J. Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí (Euterpe oleracea Mart.) and Sea Buckthorn (Hippophae rhamnoides L.) Berries. Foods 2024, 13, 3209. https://doi.org/10.3390/foods13193209
Wojtaszek A, Salejda AM, Nawirska-Olszańska A, Zambrowicz A, Szmaja A, Ambrozik-Haba J. Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí (Euterpe oleracea Mart.) and Sea Buckthorn (Hippophae rhamnoides L.) Berries. Foods. 2024; 13(19):3209. https://doi.org/10.3390/foods13193209
Chicago/Turabian StyleWojtaszek, Anna, Anna Marietta Salejda, Agnieszka Nawirska-Olszańska, Aleksandra Zambrowicz, Aleksandra Szmaja, and Jagoda Ambrozik-Haba. 2024. "Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí (Euterpe oleracea Mart.) and Sea Buckthorn (Hippophae rhamnoides L.) Berries" Foods 13, no. 19: 3209. https://doi.org/10.3390/foods13193209
APA StyleWojtaszek, A., Salejda, A. M., Nawirska-Olszańska, A., Zambrowicz, A., Szmaja, A., & Ambrozik-Haba, J. (2024). Physicochemical, Antioxidant, Organoleptic, and Anti-Diabetic Properties of Innovative Beef Burgers Enriched with Juices of Açaí (Euterpe oleracea Mart.) and Sea Buckthorn (Hippophae rhamnoides L.) Berries. Foods, 13(19), 3209. https://doi.org/10.3390/foods13193209