Preparation, Characterization and Stability of Calcium-Binding Peptides Derived from Chicken Blood
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemical Reagents
2.2. Preparation of Blood Peptides
2.3. Chelation Reaction and the Optimization
2.4. Analysis of Amino Acids
2.5. Characterization of CP-Ca
2.5.1. Ultraviolet–Visible (UV) Spectroscopy Analysis
2.5.2. Fluorescence Spectroscopy Analysis
2.5.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.5.4. Scanning Electron Microscopy (SEM)
2.5.5. X-ray Diffraction (XRD) Analysis
2.5.6. Thermogravimetry and Differential Scanning Calorimetry (TG-DSC)
2.6. In Vitro Stability of Chelates
2.6.1. Stability of CP-Ca at Different pH and Temperatures
2.6.2. Gastrointestinal Stability of CP-Ca In Vitro
2.7. Statistical Analysis
3. Results
3.1. Calcium-Chelating Rate of CP
3.2. Optimization of Calcium-Binding Conditions of CP
3.3. Analysis of Amino Acids
3.4. Characterization Results of CP and CP-Ca
3.4.1. UV Spectroscopy Analysis
3.4.2. Fluorescence Spectroscopy Analysis
3.4.3. FTIR Analysis
3.4.4. XRD Analysis
3.4.5. SEM Results
3.4.6. TG-DSC Analysis
3.5. Stability Analysis of Chelates In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barone, G.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Physicochemical and bulk handling properties of micronised calcium salts and their application in calcium fortification of whey protein-based solutions. J. Food Eng. 2020, 293, 110213. [Google Scholar] [CrossRef]
- Amalraj, A.; Pius, A. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India-An in vitro study. Food Chem. 2015, 170, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Wu, H.T.; Du, M.; Tang, Y.; Liu, H.W.; Fu, Y.H.; Zhu, B.W. Food protein-derived calcium chelating peptides, A review. Trends Food Sci. Technol. 2016, 58, 140–148. [Google Scholar] [CrossRef]
- Nejad, J.G.; Vakili, R.; Sobhani, E.; Sangari, M.; Mokhtarpour, A.; Ghafari, S.A.H. Worldwide Research Trends for Chelates in Animal Science: A Bibliometric Analysis. Animals 2023, 13, 2374. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.G.; Ma, A.M.; He, H.; Guo, D.J.; Hou, T. Desalted duck egg white peptides-chitosan oligosaccharide copolymers as calcium delivery systems, reparation, characterization and calcium release evaluation in vitro and vivo. Food Res. Int. 2020, 131, 108974. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.G.; Zhai, X.R.; Fang, J.Y.; Wu, H.Y.; Cheng, Y.Y.; Gao, Y.; Chen, X.; Zheng, S.; Liu, S.C.; Hao, L.L. Peptide−Calcium Chelate from Antler (Cervus elaphus) Bone Enhances Calcium Absorption in Intestinal Caco-2 Cells and D-gal-Induced Aging Mouse Model. Nutrients 2022, 14, 3738. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.X.; Zhao, L.N.; Wang, S.Y.; Rao, P.F. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium. Food Funct. 2015, 6, 816–823. [Google Scholar]
- Huang, W.; Lan, Y.Q.; Liao, W.W.; Lin, L.; Liu, G.; Xu, H.M.; Xue, J.P.; Guo, B.Y.; Cao, Y.; Miao, J.Y. Preparation, characterization and biological activities of egg white peptides-calcium chelate. LWT Food Sci. Tech. 2021, 149, 112035. [Google Scholar] [CrossRef]
- Echavarria, J.A.C.; El Hajj, S.; Irankunda, R.; Selmeczi, K.; Paris, C.; Udenigwe, C.C.; Canabady-Rochelle, L. Screening, separation and identification of metal-chelating peptides for nutritional, cosmetics and pharmaceutical applications. Food Funct. 2024, 15, 3300–3326. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, C.; Cheng, C.; Huang, D.; Cheng, S.J.; Cao, C.J.; Chen, G.T. A peptide-Fe(II) complex from Grifola frondosa protein hydrolysates and its immunomodulatory activity. Food Biosci. 2019, 32, 100459. [Google Scholar] [CrossRef]
- Miao, J.Y.; Liao, W.W.; Pan, Z.Y.; Wang, Q.; Duan, S.; Xiao, S.Y.; Yang, Z.N.; Cao, Y. Isolation and identification of iron-chelating peptides from casein hydrolysates. Food Funct. 2019, 10, 2372–2381. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.J.; Si, D.Y.; Ahmad, B.; Li, Z.; Zhang, R. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate. Food Res. Int. 2018, 106, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Hamzeh, A.; Wongngam, W.; Kiatsongchai, R.; Yongsawatdigul, J. Cellular and chemical antioxidant activities of chicken blood hydrolysates as affected by in vitro gastrointestinal digestion. Poult. Sci. 2019, 98, 6138–6148. [Google Scholar] [CrossRef]
- Hu, F.J.; Wu, Q.X.; Song, S.; She, R.P.; Zhao, Y.; Yang, Y.F.; Zhang, M.K.; Du, F.; Soomro1, M.H.; Shi, R.H. Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiol. 2016, 16, 287. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Huang, J.C.; Dong, X.L.; Zhang, Y.L.; Zhou, X.H.; Huang, M. Purification and identification of antioxidant peptides from duck plasma proteins. Food Chem. 2020, 319, 126534. [Google Scholar] [CrossRef]
- Wu, W.M.; He, L.C.; Liang, Y.H.; Yue, L.L.; Peng, W.M.; Jin, G.F.; Ma, M.H. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chem. 2019, 284, 80–89. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ding, X.J.; Li, M.Q. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chem. 2021, 349, 129101. [Google Scholar] [CrossRef]
- Yang, J.; Huang, J.C.; Zhu, Z.C.; Huang, M. Investigation of optimal conditions for production of antioxidant peptides from duck blood plasma, response surface methodology. Poult. Sci. 2020, 99, 7159–7168. [Google Scholar] [CrossRef]
- Vo, T.D.L.; Pham, K.T.; Le, V.M.V.; Lam, H.H.; Huynh, O.N.; Vo, B.C. Evaluation of iron-binding capacity, amino acid composition, functional properties of Acetes japonicus proteolysate and identification of iron-binding peptides. Process Biochem. 2020, 91, 374–386. [Google Scholar] [CrossRef]
- Hu, S.J.; Lin, S.Y.; Wang, D.; Zhang, S.Y.; Sun, N. Antarctic krill-derived peptides with consecutive Glu residues enhanced iron binding, solubility, and absorption. Food Funct. 2021, 12, 8615–8625. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhang, Z.; Xu, H.Y.; Li, X.Y.; Hao, X.D. Preparation of sheep bone collagen peptide-calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis. RSC Adv. 2020, 10, 11624–11633. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Wang, S.K.; Zhu, X.; Li, Q.Q.; Fan, Y.; Cheng, D.; Li, B.F. A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chem. 2018, 243, 389–395. [Google Scholar] [CrossRef]
- Lin, J.P.; Cai, X.X.; Tang, M.R.; Wang, S.Y. Preparation and evaluation of the chelating nanocomposite fabricated with marine algae Schizochytrium sp. protein hydrolysate and calcium. J. Agric. Food Chem. 2015, 63, 9704–9714. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.B.; Sun, N.; Jiang, P.F.; Wang, D.; Lin, S.Y. Optimised condition for preparing sea cucumber ovum hydrolysate-calcium complex and its structural analysis. Int. J. Food Sci. Technol. 2017, 52, 1914–1922. [Google Scholar] [CrossRef]
- Liu, W.Y.; Lu, J.; Gao, F.; Gu, R.Z.; Lin, F.; Ren, D.F.; Cai, M.Y. Preparation, characterization and identification of calcium-chelating Atlantic salmon (Salmo salar L.) ossein oligopeptides. Eur. Food Res. Technol. 2015, 241, 851–860. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, X.Y.; Liu, H.; Ren, J.H.; Guo, S.T. Purification and characterization of caclium-binding soybean protein hydrolysates by Ca2+/Fe3+ immobilized metal affinity chromatography (IMAC). Food Chem. 2013, 141, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.F.; Yang, Y.Y.; Sun, N.; Bao, Z.J.; Lin, S.Y. Food protein-derived iron-chelating peptides, the binding mode and promotive effects of iron bioavailability. Food Res. Int. 2020, 131, 108976. [Google Scholar] [CrossRef]
- Hou, Y.L.; Ding, J.; Guo, Q.Q.; Zhang, N. Nutritional value and structure characterization of protein components of corylus mandshurica maxim. Molecules 2023, 28, 6355. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Zhou, B. Determination of amino acids in Tricholoma matsutake and its nutritional evaluation. Ediblefung China 2007, 26, 51–52. [Google Scholar]
- Guo, L.D.; Harnedy, P.A.; Li, B.F.; Hou, H.; Zhang, Z.H.; Zhao, X.; Fitzgerald, R.J. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Sun, N.; Cui, P.B.; Jin, Z.Q.; Wu, H.T.; Lin, S.Y. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chem. 2017, 230, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.N.; Huang, Q.M.; Huang, S.L.; Lin, J.P.; Wang, S.Y.; Huang, Y.F.; Hong, J.; Rao, P.F. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode. J. Agric. Food Chem. 2014, 62, 10274–10282. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, X.; Ai, T.; Cheng, X.; Guo, H.Y.; Teng, G.X.; Mao, X.Y. Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes. J. Dairy Sci. 2012, 95, 4230–4236. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.Q.; Yao, X.T.; Soladoye, O.P.; Zhang, Y.H.; Fu, Y. Phosphorylation modification of collagen peptides from fish bone enhances their calcium-chelating and antioxidant activity. LWT Food Sci. Technol. 2022, 155, 112978. [Google Scholar] [CrossRef]
- Malison, A.; Arpanutud, P.; Keeratipibul, S. Chicken foot broth byproduct: A new source for highly effective peptide-calcium chelate. Food Chem. 2021, 345, 128713. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ji, H.W.; Zhang, Z.W.; Zeng, X.G.; Su, W.M.; Liu, S.C. A novel calcium-chelating peptide purified from Auxis thazard protien hydrolysate and its binding properties with calcium. J. Funct. Foods 2019, 60, 103447. [Google Scholar] [CrossRef]
- Wang, L.; Ding, Y.; Zhang, X.; Li, Y.F.; Wang, R.; Luo, X.H.; Li, Y.N.; Li, J.; Chen, Z.X. Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination. Food Chem. 2018, 239, 416–426. [Google Scholar] [CrossRef] [PubMed]
- He, J.L.; Guo, H.; Zhuang, Y.L. Purification and Characterization of a Novel Calcium-Binding Heptapeptide from the Hydrolysate of Tilapia Bone with Its Osteogenic Activity. Foods 2022, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Larosa, C.; Salerno, M.; DeLima, J.S. Characterization of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int. J. Biol. Macromol. 2018, 115, 900–906. [Google Scholar] [CrossRef]
- Liu, B.T.; Zhuang, Y.L.; Sun, L.P. Identification and characterization of the peptides with calcium-binding capacity from tilapia (Oreochromis niloticus) skin gelatin enzymatic hydrolysates. J. Food Sci. 2020, 85, 114–122. [Google Scholar]
- Wu, X.P.; Wang, F.F.; Cai, X.X.; Wang, S.Y. Glycosylated peptide-chelate: Characterization, calcium absorption promotion and prebiotic effect. Food Chem. 2023, 403, 134335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.R.; Zhao, L.Y.; Shen, Q.S.; Qi, L.W.; Jiang, S.; Guo, Y.J.; Zhang, C.H.; Richel, A. Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. LWT Food Sci. Technol. 2021, 144, 111264. [Google Scholar] [CrossRef]
- Zhang, L.T.; Lin, Y.L.; Wang, S.Y. Purification of algal calcium-chelating peptide and its physical chemical properties. J. Aquat. Food Prod. Technol. 2018, 27, 518–530. [Google Scholar] [CrossRef]
- Ke, H.L.; Ma, R.J.; Liu, X.Y.; Xie, Y.P.; Chen, J.F. Highly effective peptide-calcium chelate prepared from aquatic products processing wastes: Stickwater and oyster shells. LWT Food Sci. Technol. 2022, 168, 113947. [Google Scholar] [CrossRef]
Std | Run | A (°C) | B (m/m) | C (min) | D: pH | Calcium-Binding Capacity (%) |
---|---|---|---|---|---|---|
27 | 1 | 50 | 8 | 60 | 8 | 77.7269 |
28 | 2 | 50 | 8 | 60 | 8 | 76.6701 |
4 | 3 | 55 | 9 | 60 | 8 | 70.2972 |
25 | 4 | 50 | 8 | 60 | 8 | 75.9712 |
7 | 5 | 50 | 8 | 50 | 9 | 70.8109 |
23 | 6 | 50 | 7 | 60 | 9 | 70.4007 |
15 | 7 | 50 | 7 | 70 | 8 | 72.9284 |
2 | 8 | 55 | 7 | 60 | 8 | 71.7431 |
26 | 9 | 50 | 8 | 60 | 8 | 75.7318 |
20 | 10 | 55 | 8 | 70 | 8 | 72.6667 |
9 | 11 | 45 | 8 | 60 | 7 | 72.5602 |
12 | 12 | 55 | 8 | 60 | 9 | 71.0987 |
21 | 13 | 50 | 7 | 60 | 7 | 74.0386 |
11 | 14 | 45 | 8 | 60 | 9 | 63.5485 |
14 | 15 | 50 | 9 | 50 | 8 | 71.5658 |
13 | 16 | 50 | 7 | 50 | 8 | 74.2934 |
17 | 17 | 45 | 8 | 50 | 8 | 70.0932 |
16 | 18 | 50 | 9 | 70 | 8 | 71.7201 |
22 | 19 | 50 | 9 | 60 | 7 | 73.9057 |
24 | 20 | 50 | 9 | 60 | 9 | 67.9245 |
6 | 21 | 50 | 8 | 70 | 7 | 71.6051 |
29 | 22 | 50 | 8 | 60 | 8 | 74.9225 |
1 | 23 | 45 | 7 | 60 | 8 | 67.1004 |
8 | 24 | 50 | 8 | 70 | 9 | 74.2846 |
3 | 25 | 45 | 9 | 60 | 8 | 69.5771 |
10 | 26 | 55 | 8 | 60 | 7 | 66.1717 |
18 | 27 | 55 | 8 | 50 | 8 | 67.1019 |
19 | 28 | 45 | 8 | 70 | 8 | 65.7898 |
5 | 29 | 50 | 8 | 50 | 7 | 70.3631 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
Model | 295.54 | 14 | 21.11 | 11.09 | <0.0001 | ** |
A-temperature | 9.03 | 1 | 9.03 | 4.74 | 0.047 | * |
B-ratio (m/m) | 0.022 | 1 | 0.022 | 0.0116 | 0.9159 | |
C-time | 1.89 | 1 | 1.89 | 0.9946 | 0.3355 | |
D-pH | 2.59 | 1 | 2.59 | 1.36 | 0.2628 | |
AB | 3.85 | 1 | 3.85 | 2.02 | 0.177 | |
AC | 24.35 | 1 | 24.35 | 12.79 | 0.003 | ** |
AD | 48.57 | 1 | 48.57 | 25.52 | 0.0002 | ** |
BC | 0.577 | 1 | 0.577 | 0.3031 | 0.5906 | |
BD | 1.76 | 1 | 1.76 | 0.927 | 0.352 | |
CD | 1.25 | 1 | 1.25 | 0.6541 | 0.4322 | |
A2 | 183.92 | 1 | 183.92 | 96.62 | <0.0001 | ** |
B2 | 9.84 | 1 | 9.84 | 5.17 | 0.0393 | * |
C2 | 29.72 | 1 | 29.72 | 15.61 | 0.0014 | ** |
D2 | 35.2 | 1 | 35.2 | 18.49 | 0.0007 | ** |
Residual | 26.65 | 14 | 1.9 | |||
Lack of Fit | 22.19 | 10 | 2.22 | 1.99 | 0.2645 | |
Pure Error | 4.46 | 4 | 1.11 | |||
Cor Total | 322.18 | 28 | ||||
R2 | 0.9133 | Adjussted R2 | 0.8267 | |||
Adeq Precision | 12.3298 | Predicted R2 | 0.8589 |
Amino Acids | CP (%) | CP-Ca (%) | Amino Acids | CP (%) | CP-Ca (%) |
---|---|---|---|---|---|
Asp # | 9.29 ± 0.34 | 19.92 ± 0.79 | Ile * | 3.53 ± 0.07 | 3.09 ± 0.35 |
Thr * | 5.67 ± 0.22 | 4.31 ± 0.28 | Leu * | 9.57 ± 0.11 | 4.87 ± 0.39 |
Ser | 4.20 ± 0.27 | 3.44 ± 0.16 | Tyr | 3.51 ± 0.04 | 2.47 ± 1.02 |
Glu # | 12.12 ± 0.42 | 23.09 ± 1.03 | Phe * | 4.98 ± 0.23 | 2.87 ± 0.45 |
Gly | 4.33 ± 0.34 | 4.55 ± 0.27 | Lys * | 10.04 ± 0.18 | 8.25 ± 0.56 |
Ala | 9.30 ± 0.97 | 6.52 ± 0.48 | His | 5.47 ± 0.06 | 4.84 ± 0.43 |
Cys | 1.50 ± 0.41 | 1.38 ± 0.35 | Arg | 5.32 ± 0.58 | 3.07 ± 0.54 |
Val * | 6.71 ± 0.20 | 4.26 ± 0.53 | Pro | 2.61 ± 0.08 | 2.36 ± 0.27 |
Met * | 1.86 ± 0.12 | 0.71 ± 0.19 | Total | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Shi, J.; Zhou, Y.; Zou, Y.; Xu, W.; Xia, X.; Wang, D. Preparation, Characterization and Stability of Calcium-Binding Peptides Derived from Chicken Blood. Foods 2024, 13, 2368. https://doi.org/10.3390/foods13152368
Yang J, Shi J, Zhou Y, Zou Y, Xu W, Xia X, Wang D. Preparation, Characterization and Stability of Calcium-Binding Peptides Derived from Chicken Blood. Foods. 2024; 13(15):2368. https://doi.org/10.3390/foods13152368
Chicago/Turabian StyleYang, Jing, Jing Shi, Ying Zhou, Ye Zou, Weimin Xu, Xiudong Xia, and Daoying Wang. 2024. "Preparation, Characterization and Stability of Calcium-Binding Peptides Derived from Chicken Blood" Foods 13, no. 15: 2368. https://doi.org/10.3390/foods13152368
APA StyleYang, J., Shi, J., Zhou, Y., Zou, Y., Xu, W., Xia, X., & Wang, D. (2024). Preparation, Characterization and Stability of Calcium-Binding Peptides Derived from Chicken Blood. Foods, 13(15), 2368. https://doi.org/10.3390/foods13152368