Effects of Salinity on Physicochemical Properties, Flavor Compounds, and Bacterial Communities in Broad Bean Paste-Meju Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Fermentation of Broad Bean Paste-Meju under Different Salt Concentrations
2.2. Physicochemical Properties
2.3. E-Nose Analysis
2.4. Volatile Flavor Compounds Analysis
2.4.1. SPME Method
2.4.2. GC × GC-MS Instrumental Analysis Method
2.5. DNA Extraction and High-Throughput Sequencing Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties during Fermentation of BBP-Meju with Different Salt Concentrations
3.2. Changes in FAA Composition during Fermentation of BBP-Meju with Different Salt Concentrations
3.3. Changes in OA Composition during Fermentation of BBP-Meju with Different Salt Concentrations
3.4. Analysis of E-Nose Response during BBP-Meju Fermentation with Different Salt Concentrations
3.5. Volatile Flavor Profile during BBP-Meju Fermentation with Different Salt Concentrations
3.6. Analysis of Microbial Community during Fermentation of BBP-Meju with Different Salt Concentrations
3.6.1. Analysis of Abundance of Microbial Community
3.6.2. Analysis of Microbial Community Structure
3.7. Correlation of Microbial Community with Volatile Flavor Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiao, Y.; Zhang, K.; Zhang, Z.; Zhang, C.; Sun, Y.; Feng, Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res. Int. 2022, 158, 111575. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chi, Y.; Lv, Y.; Yang, G.; He, Q. Evolution of the volatile flavor compounds of Chinese horse bean-chili-paste. LWT 2019, 102, 131–135. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, L.; Yang, G.; Chi, Y.; Sun, Q.; He, Q. Insight into the Fermentation of Chinese Horse Bean-chili-paste. Food Rev. Int. 2020, 37, 683–705. [Google Scholar] [CrossRef]
- Li, H.; Deng, W.; Lu, Z.-M.; Li, X.; Fan, Z.; Zhang, Q.; Chen, G.; Li, Q.; Ma, Y.; Xu, Z.-H. Salinity plays a dual role in broad bean paste-meju fermentation. LWT 2023, 173, 114181. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, X.; Lv, Y.; Yang, G.; Chi, Y.; He, Q. Physicochemical properties and microbial community dynamics during Chinese horse bean-chili-paste fermentation, revealed by culture-dependent and culture-independent approaches. Food Microbiol. 2020, 85, 103309. [Google Scholar] [CrossRef]
- Li, M.; Fan, W.; Xu, Y. Identification of angiotensin converting enzyme (ACE) inhibitory and antioxidant peptides derived from Pixian broad bean paste. LWT 2021, 151, 112221. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, J.; Xie, Y.; Tang, J.; Wang, Q.; Zhao, J.; Xu, M.; Liu, P. Identification and molecular mechanisms of novel antioxidant peptides from fermented broad bean paste: A combined in silico and in vitro study. Food Chem. 2024, 450, 139297. [Google Scholar] [CrossRef]
- Sichuan Province, Chengdu City, Pi County Technical Supervision Committee; PI County Food Industry Association; Sichuan Pixian Douban Co.; Sichuan Dandan Seasoning Co. GB/T 20560-2006; Product of Geographical Indication—Pixian Douban. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; National Standardization Administration of China: Beijing, China, 2006; p. 1.
- Wu, M.; Wu, X.; Zhu, J.; Li, F.; Wei, X.; Wang, Y. Selenium-enriched and ordinary green tea extracts prevent high blood pressure and alter gut microbiota composition of hypertensive rats caused by high-salt diet. Food Sci. Hum. Wellness 2022, 11, 738–751. [Google Scholar] [CrossRef]
- Lin, X.; Tang, Y.; Hu, Y.; Lu, Y.; Sun, Q.; Lv, Y.; Zhang, Q.; Wu, C.; Zhu, M.; He, Q.; et al. Sodium Reduction in Traditional Fermented Foods: Challenges, Strategies, and Perspectives. J. Agric. Food Chem. 2021, 69, 8065–8080. [Google Scholar] [CrossRef]
- Chen, H.C.; Cao, J.; Zhang, Y.; Ma, Y.; Zhang, L.; Su, X.; Gao, L.; Jing, Y. High salt diet exacerbates cognitive deficits and neurovascular abnormalities in app/ps1 mice and induces ad-like changes in wild-type mice. J. Nutr. Biochem. 2024, 125, 109570. [Google Scholar] [CrossRef]
- WHO/FAO (World Health Organization/Food and Agriculture Organisation). Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series 916; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/publications/i/item/9789240092013 (accessed on 17 June 2024).
- Webster, J.; Trieu, K.; Dunford, E.; Hawkes, C. Target Salt 2025: A Global Overview of National Programs to Encourage the Food Industry to Reduce Salt in Foods. Nutrients 2014, 6, 3274–3287. [Google Scholar] [CrossRef] [PubMed]
- State Council Office of the People’s Republic of China. National Nutrition Program (2017-203). Acta Nutr. Sin. 2017, 39, 315–320. [Google Scholar] [CrossRef]
- Codină, G.G.; Voinea, A.; Dabija, A. Strategies for Reducing Sodium Intake in Bakery Products, a Review. Appl. Sci. 2021, 11, 3093. [Google Scholar] [CrossRef]
- Haddy, F.J. Roles of sodium, potassium, calcium, and natriuretic factors in hypertension. Hypertension 1991, 18 (Suppl. S5), III179. [Google Scholar] [CrossRef] [PubMed]
- Lemann, J.; A Pleuss, J.; Gray, R.W. Potassium Causes Calcium Retention in Healthy Adults. J. Nutr. 1993, 123, 1623–1626. [Google Scholar] [CrossRef] [PubMed]
- Singracha, P.; Niamsiri, N.; Visessanguan, W.; Lertsiri, S.; Assavanig, A. Application of lactic acid bacteria and yeasts as starter cultures for reduced-salt soy sauce (moromi) fermentation. LWT 2017, 78, 181–188. [Google Scholar] [CrossRef]
- Wongthahan, P.; Sae-Eaw, A.; Prinyawiwatkul, W. Sensory lexicon and relationships among brown colour, saltiness perception and sensory liking evaluated by regular users and culinary chefs: A case of soy sauces. Int. J. Food Sci. Technol. 2020, 55, 2841–2850. [Google Scholar] [CrossRef]
- Sun, X.; Lyu, G.; Luan, Y.; Zhao, Z.; Yang, H.; Su, D. Analyses of microbial community of naturally homemade soybean pastes in Liaoning Province of China by Illumina Miseq Sequencing. Food Res. Int. 2018, 111, 50–57. [Google Scholar] [CrossRef]
- Jiang, L.; Shen, S.; Zuo, A.; Chi, Y.; Lu, Y.; He, Q. Unveiling the aromatic differences of low-salt Chinese horse bean-chili-paste using metabolomics and sensomics approaches. Food Chem. 2024, 445, 138746. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, C.; Shan, W.; Zheng, F.; Liu, C.; Wang, J.; Li, Q. Physicochemical, flavor and microbial dynamic changes during low-salt doubanjiang (broad bean paste) fermentation. Food Chem. 2021, 351, 128454. [Google Scholar] [CrossRef]
- Lin, H.; Liao, S.; Zhou, Z.; Yan, Z.; Zhao, J.; Xiang, Y.; Xu, M.; Zhao, J.; Liu, P.; Ding, W.; et al. Investigation into the potential mechanism of Bacillus amyloliquefaciens in the fermentation of broad bean paste by metabolomics and transcriptomics. Food Res. Int. 2024, 183, 114202. [Google Scholar] [CrossRef]
- Kim, M.J.; Kwak, H.S.; Kim, S.S. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang). Food Chem. 2018, 245, 402–409. [Google Scholar] [CrossRef]
- Liang, J.; Li, D.; Shi, R.; Wang, J.; Guo, S.; Ma, Y.; Xiong, K. Effects of microbial community succession on volatile profiles and biogenic amine during sufu fermentation. LWT 2019, 114, 108379. [Google Scholar] [CrossRef]
- Zhao, C.-C.; Kim, D.-W.; Eun, J.-B. Physicochemical properties and bacterial community dynamics of hongeo, a Korean traditional fermented skate product, during fermentation at 10 °C. LWT 2019, 104, 109–119. [Google Scholar] [CrossRef]
- Gil, N.-Y.; Song, J.; Eom, J.S.; Park, S.-Y.; Choi, H.-S. Changes of physicochemical properties of Cheonggukjang prepared with various soybean cultivars and Bacillus subtilis HJ18-9. Korean J. Food Preserv. 2016, 23, 811–818. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ding, W.; Ye, X.; Zhao, X.; Liu, Y.; Zhang, M.; Luo, Y.; Xiong, Y.; Liu, Y.; Che, Z.; Lin, H.; et al. Fermentation characteristics of Pixian broad bean paste in closed system of gradient steady-state temperature field. Food Chem. 2022, 374, 131560. [Google Scholar] [CrossRef]
- Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor compounds in pixian broad-bean paste: Non-volatile organic acids and amino acids. Molecules 2018, 23, 1299. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Liu, T.; An, X.; Zhang, J.; Ma, X.; Cui, J. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC–MS combined with HS-SPME and discrimination with electronic nose. J. Food Sci. Technol. 2017, 54, 130–143. [Google Scholar] [CrossRef]
- Jiang, L.; Lu, Y.; Ma, Y.; Liu, Z.; He, Q. Comprehensive investigation on volatile and non-volatile metabolites in low-salt doubanjiang with different fermentation methods. Food Chem. 2023, 413, 135588. [Google Scholar] [CrossRef]
- Zhao, S.; Niu, C.; Suo, J.; Zan, Y.; Wei, Y.; Zheng, F.; Liu, C.; Wang, J.; Li, Q. Unraveling the mystery of ‘bask in daytime and dewed at night’ technique in doubanjiang (broad bean paste) fermentation. LWT 2021, 149, 111723. [Google Scholar] [CrossRef]
- Xu, D.; Wang, P.; Zhang, X.; Zhang, J.; Sun, Y.; Gao, L.; Wang, W. High-throughput sequencing approach to characterize dynamic changes of the fungal and bacterial communities during the production of sufu, a traditional Chinese fermented soybean food. Food Microbiol. 2020, 86, 103340. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, C.; Dong, L.; Zhang, F.; Wang, X.; Zhao, S.; Li, L. Impact of NaCl on physicochemical properties, microbial community, and pathogen surveillance in the Chinese traditional fermented broad bean (Vicia faba L.) paste. LWT 2024, 199, 116071. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, S.; Du, T.; Xiao, M.; Peng, Z.; Xie, M.; Guan, Q.; Xiong, T. Effects of microbial succession on the dynamics of flavor metabolites and physicochemical properties during soy sauce koji making. Food Biosci. 2023, 53, 102636. [Google Scholar] [CrossRef]
- Shukla, S.; Park, J.; Kim, D.-H.; Hong, S.-Y.; Lee, J.S.; Kim, M. Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control. 2016, 59, 854–861. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, P.; Wu, J.; Tao, D.; Wu, R. Effects of Leuconostoc mesenteroides on physicochemical and microbial succession characterization of soybean paste, Da-jiang. LWT 2019, 115, 108028. [Google Scholar] [CrossRef]
- Yu, S.; Song, J.; Hu, T.; Wang, J.; Liu, X.; Zheng, Y.; Shi, L.; Wan, S.; Wang, M. Unraveling the core functional bacteria and their succession throughout three fermentation stages of broad bean paste with chili. Food Sci. Hum. Wellness 2022, 11, 874–885. [Google Scholar] [CrossRef]
- Jo, Y.; Bang, W.-S.; Kim, M.K. Changes of Physiochemical and Enzymatic Activities of doenjang Prepared with Different Amount of Rice koji during 30 Days of Fermentation. Foods 2021, 10, 372. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- Wang, D. Catalytic Kinetics of Aspergillus Oryzae Protease in High-Salt Environment and Its Application in Soy Sauce Fermenation. PhD Thesis, Jiangnan University, Nanjing, China, 2013. [Google Scholar]
- Shukla, S.; Choi, T.B.; Park, H.-K.; Kim, M.; Lee, I.K.; Kim, J.-K. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang). Food Chem. Toxicol. 2010, 48, 2005–2010. [Google Scholar] [CrossRef]
- Yang, M.; Huang, J.; Zhou, R.; Qi, Q.; Peng, C.; Zhang, L.; Jin, Y.; Wu, C. Characterizing the microbial community of Pixian Doubanjiang and analysing the metabolic pathway of major flavour metabolites. LWT 2021, 143, 111170. [Google Scholar] [CrossRef]
- Wu, S.; Yang, J.; Dong, H.; Liu, Q.; Li, X.; Zeng, X.; Bai, W. Key aroma compounds of Chinese dry-cured Spanish mackerel (Scomberomorus niphonius) and their potential metabolic mechanisms. Food Chem. 2021, 342, 128381. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Wang, J.; Yuan, Q.; Lei, Y.; Peng, W.; Zhang, M.; Li, X.; Sun, X.; Ma, T. Evaluation of the color and aroma characteristics of commercially available Chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem. X 2022, 15, 100427. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Fan, W.; Xu, Y. Characterization of key aroma compounds in pixian broad bean paste through the molecular sensory science technique. LWT 2021, 148, 111743. [Google Scholar] [CrossRef]
- Jia, Y.; Niu, C.-T.; Lu, Z.-M.; Zhang, X.-J.; Chai, L.-J.; Shi, J.-S.; Xu, Z.-H.; Li, Q. A Bottom-Up Approach To Develop a Synthetic Microbial Community Model: Application for Efficient Reduced-Salt Broad Bean Paste Fermentation. Appl. Environ. Microbiol. 2020, 86, e00306–e00320. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Jiang, Q.; Xu, Y.; Xia, W. Biosynthesis of acetate esters by dominate strains, isolated from Chinese traditional fermented fish (Suan yu). Food Chem. 2018, 244, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, C.; Zheng, C.; Liu, J.; Vu, V.H.; Wang, X.; Sun, Q. Characteristics of microbial community and aroma compounds in traditional fermentation of Pixian broad bean paste as compared to industrial fermentation. Int. J. Food Prop. 2017, 20, S2520–S2531. [Google Scholar] [CrossRef]
- Xie, M.; An, F.; Zhao, Y.; Wu, R.; Wu, J. Metagenomic analysis of bacterial community structure and functions during the fermentation of da-jiang, a Chinese traditional fermented food. LWT 2020, 129, 109450. [Google Scholar] [CrossRef]
- Wang, Y.; Sheng, H.-F.; He, Y.; Wu, J.-Y.; Jiang, Y.-X.; Tam, N.F.-Y.; Zhou, H.-W. Comparison of the Levels of Bacterial Diversity in Freshwater, Intertidal Wetland, and Marine Sediments by Using Millions of Illumina Tags. Appl. Environ. Microbiol. 2012, 78, 8264–8271. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R. Topographical and Temporal Diversity of the Human Skin Microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Zhao, B.; Li, S.; Pan, X.; Ren, S.; Qu, C.; Cheng, X. Effect of starter culture mixture of Staphylococcus xylosus and S. carnosus on the quality of dry-cured meat. Food Sci. 2018, 39, 32–38. [Google Scholar]
- Yao, S.; Zhou, R.; Jin, Y.; Zhang, L.; Huang, J.; Wu, C. Co-culture with Tetragenococcus halophilus changed the response of Zygosaccharomyces rouxii to salt stress. Process. Biochem. 2020, 95, 279–287. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Regenstein, J.M.; Yu, D.; Yang, F.; Jiang, Q. Correlations between microbiota succession and flavor formation during fermentation of Chinese low-salt fermented common carp (Cyprinus carpio L.) inoculated with mixed starter cultures. Food Microbiol. 2020, 90, 103487. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-R.; Jeong, D.-Y.; Baik, S.-H. Effects of indigenous yeasts on physicochemical and microbial properties of Korean soy sauce prepared by low-salt fermentation. Food Microbiol. 2015, 51, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Hou, L.; Yao, Y.; Wang, C.; Cao, X. Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100–8 strains: Towards the production of different soy sauce flavors. J. Proteom. 2012, 75, 3914–3924. [Google Scholar] [CrossRef] [PubMed]
- Bull, S.; Yong, F.; Wong, H. The production of aroma by Aspergillus oryzae during the preparation of soy sauce koji. Food Chem. 1985, 17, 251–264. [Google Scholar] [CrossRef]
- Xiwerwanimu, A.; Hainiziguli, N.; Zhao, Q.; Li, S.; Liu, J.; Zhao, H.; Zhao, H. Effects of Bacillus subtilis J-15 secondary metabolites against Verticillium dahliae on diversity of soil fungi. Microbio China 2021, 48, 1997–2007. [Google Scholar] [CrossRef]
- Han, D.M.; Chun, B.H.; Kim, H.M.; Jeon, C.O. Characterization and correlation of microbial communities and metabolite and volatile compounds in doenjang fermentation. Food Res. Int. 2021, 148, 110645. [Google Scholar] [CrossRef]
- Zha, M.; Sun, B.; Wu, Y.; Yin, S.; Wang, C. Improving flavor metabolism of Saccharomyces cerevisiae by mixed culture with Wickerhamomyces anomalus for Chinese Baijiu making. J. Biosci. Bioeng. 2018, 126, 189–195. [Google Scholar] [CrossRef]
- Zhong, A.; Chen, W.; Duan, Y.; Li, K.; Tang, X.; Tian, X.; Wu, Z.; Li, Z.; Wang, Y.; Wang, C. The potential correlation between microbial communities and flavors in traditional fermented sour meat. LWT 2021, 149, 111873. [Google Scholar] [CrossRef]
- Chen, Z.; Geng, Y.; Wang, M.; Lv, D.; Huang, S.; Guan, Y.; Hu, Y. Relationship between microbial community and flavor profile during the fermentation of chopped red chili (Capsicum annuum L.). Food Biosci. 2022, 50, 102071. [Google Scholar] [CrossRef]
- Passoth, V.; Fredlund, E.; Druvefors, U.; Schnürer, J. Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res. 2006, 6, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.M. Pichia anomala: Cell physiology and biotechnology relative to other yeasts. Antonie van Leeuwenhoek 2011, 99, 25–34. [Google Scholar] [CrossRef] [PubMed]
Sensor Number | Sensor Name | Performance Description |
---|---|---|
1 | W1C | Aromatic compounds |
2 | W5S | Broad range, react on nitrogen oxides |
3 | W3C | Ammonia, aromatic compounds |
4 | W6S | Hydrocarbons |
5 | W5C | Alkanes, aromatic compounds |
6 | W1S | Methane, broad range of compounds |
7 | W1W | Sulfur compounds, terpenes |
8 | W2S | Broad range, alcohols |
9 | W2W | Organic sulfur compounds |
10 | W3S | Methane, aliphatic compounds |
Compounds | CAS N. | RI | MW | L7 | M7 | H7 | L35 | M35 | H35 |
---|---|---|---|---|---|---|---|---|---|
Aldehydes | |||||||||
Benzaldehyde | 100-52-7 | 1520 | 106 | 211.20 ± 25.03 | 202.72 ± 31.54 | 105.28 ± 6.93 | 375.42 ± 26.64 | 901.52 ± 142.50 | 590.74 ± 18.71 |
Apricolin | 104-61-0 | 2024 | 156 | 5.64 ± 1.15 | 7.83 ± 1.50 | 4.15 ± 0.37 | 8.64 ± 1.39 | 13.08 ± 2.51 | 8.01 ± 0.96 |
Valeraldehyde | 110-62-3 | 979 | 86 | 21.04 ± 2.31 | 20.42 ± 1.24 | 23.94 ± 2.85 | n.d. | n.d. | n.d. |
Phenylacetaldehyde | 122-78-1 | 1641 | 120 | 184.42 ± 37.72 | 165.04 ± 16 | 103.33 ± 14.12 | 62.40 ± 7.80 | 123.84 ± 15.01 | 78.05 ± 6.01 |
Crotonaldehyde | 123-73-9 | 1039 | 70 | 12.96 ± 2.58 | 9.97 ± 1.44 | 4.77 ± 0.34 | n.d. | n.d. | n.d. |
Nonanal | 124-19-6 | 1391 | 142 | 18.64 ± 2.42 | 5.52 ± 0.65 | 5.97 ± 0.60 | 6.48 ± 0.64 | 10.92 ± 1.50 | 7.00 ± 0.93 |
2-Phenyl-5-methyl-2-hexenal | 21834-92-4 | 2056 | 188 | 3.14 ± 0.36 | 4.18 ± 0.27 | 1.91 ± 0.39 | 0.86 ± 0.06 | 4.39 ± 0.59 | 3.29 ± 0.33 |
2-Phenyl-2-butenal | 4411-89-6 | 1925 | 146 | 1.99 ± 0.53 | 46.13 ± 4.22 | 18.71 ± 2.08 | 41.02 ± 3.72 | 78.61 ± 3.39 | 37.57 ± 1.38 |
2-Heptenal | 57266-86-1 | 1322 | 112 | 62.46 ± 27.04 | 54.47 ± 8.83 | 73.33 ± 7.26 | 127.99 ± 9.04 | 197.97 ± 7.72 | 71.04 ± 4.18 |
Hexanal | 66-25-1 | 1083 | 100 | 77.79 ± 22.37 | 83.92 ± 4.55 | 90.47 ± 6.70 | 129.98 ± 8.11 | 177.17 ± 7.27 | 125.81 ± 17.98 |
5-Hydroxymethylfurfural | 67-47-0 | 2496 | 126 | n.d. | n.d. | n.d. | 10.31 ± 1.34 | 11.90 ± 2.54 | 7.61 ± 0.58 |
Esters | |||||||||
Ethyl phenylacetate | 101-97-3 | 1783 | 164 | 7.71 ± 1.34 | 4.30 ± 0.30 | 2.13 ± 0.91 | 12.83 ± 0.24 | 27.91 ± 2.48 | 12.99 ± 2.23 |
Phenethyl acetate | 103-45-7 | 1813 | 164 | 30.33 ± 2.36 | 17.33 ± 4.73 | 8.01 ± 0.71 | 59.10 ± 7.29 | 171.31 ± 4.41 | 97.81 ± 14.24 |
Ethyl isovalerate | 108-64-5 | 1068 | 130 | 21.34 ± 3.94 | 33.77 ± 7.24 | 32.74 ± 6.23 | 114.48 ± 14.71 | 194.59 ± 5.08 | 74.18 ± 6.29 |
Isobutyl acetate | 110-19-0 | 1012 | 116 | n.d. | n.d. | n.d. | 49.14 ± 5.77 | 85.72 ± 6.25 | 36.79 ± 2.29 |
Isoamyl acetate | 123-92-2 | 1123 | 130 | 33.55 ± 4.54 | 42.07 ± 8.34 | 26.73 ± 3.94 | 1105.69 ± 69.78 | 2318.01 ± 50.17 | 1214.85 ± 36.47 |
Ethyl acetate | 141-78-6 | 888 | 88 | n.d. | n.d. | n.d. | 115.82 ± 4.42 | 4.04 ± 0.86 | n.d. |
Hexyl acetate | 142-92-7 | 1273 | 144 | n.d. | n.d. | n.d. | 12.54 ± 1.81 | 5.97 ± 1.79 | 4.76 ± 0.60 |
3-Hydroxydihydro-2(3H)-furanone | 19444-84-9 | 2142 | 102 | 2.89 ± 0.27 | 7.27 ± 0.65 | 2.65 ± 0.37 | 8.96 ± 1.06 | 19.77 ± 4.84 | 13.33 ± 3.04 |
Pentyl acetate | 628-63-7 | 1176 | 130 | n.d. | n.d. | n.d. | 29.56 ± 5.74 | 4.95 ± 0.84 | 20.61 ± 3.79 |
Ethyl palmitate | 628-97-7 | 2251 | 284 | 20.02 ± 3.69 | 22.43 ± 6.14 | 8.70 ± 0.75 | 22.59 ± 2.25 | 141.25 ± 10.07 | 19.42 ± 2.13 |
Isoamyl isovalerate | 659-70-1 | 1293 | 172 | n.d. | n.d. | n.d. | 26.40 ± 1.51 | 26.07 ± 3.15 | 9.30 ± 1.10 |
Oct-1-en-1-yl acetate | 77149-68-9 | - | 170 | n.d. | n.d. | n.d. | 18.99 ± 3.29 | 13.06 ± 1.52 | 4.14 ± 0.78 |
Ketones | |||||||||
3-Octanone | 106-68-3 | 1253 | 128 | n.d. | n.d. | n.d. | 107.83 ± 13.27 | 100.55 ± 8.66 | 66.61 ± 4.30 |
6-Methylhept-5-en-2-one | 110-93-0 | 1339 | 126 | 5.30 ± 0.61 | 7.51 ± 0.97 | 4.81 ± 0.56 | 6.03 ± 0.78 | 10.69 ± 2.43 | 6.10 ± 1.01 |
2-Octanone | 111-13-7 | 1287 | 128 | 18.48 ± 4.47 | 15.09 ± 5.06 | 13.68 ± 2.29 | 29.07 ± 5.59 | 25.06 ± 3.17 | 24.57 ± 4.55 |
1-Indanone | 83-33-0 | 1969 | 132 | 10.80 ± 1.20 | 4.31 ± 1.17 | 1.71 ± 0.17 | 2.98 ± 0.24 | 3.27 ± 0.56 | n.d. |
Alcohols | |||||||||
2-Ethylhexanol | 104-76-7 | 1491 | 130 | 2.64 ± 0.36 | 2.31 ± 0.65 | 1.99 ± 0.44 | 4.36 ± 0.87 | 2.16 ± 0.76 | 1.22 ± 0.35 |
7-Oxabicyclo[4.1.0]heptan-2-ol | 1192-78-5 | - | 114 | 63.57 ± 11.36 | 53.02 ± 7.55 | 53.54 ± 6.46 | 26.54 ± 3.12 | 50.92 ± 6.88 | 58.01 ± 4.96 |
3-Methyl-1-butanol | 123-51-3 | 1209 | 88 | 257.77 ± 27.04 | 493.88 ± 35.04 | 356.84 ± 32.37 | 1555.05 ± 124.29 | 2279.02 ± 23.54 | 987.25 ± 54.18 |
1-Nonanol | 143-08-8 | 1660 | 144 | 2.11 ± 0.57 | n.d. | n.d. | 614.12 ± 33.58 | 1018.33 ± 69.98 | 1555.05 ± 29.24 |
4-Phenyl-3-buten-2-ol | 17488-65-2 | - | 148 | n.d. | n.d. | n.d. | 5.94 ± 1.52 | 11.41 ± 1.91 | 5.08 ± 0.97 |
Trans-2-Octen-1-ol | 18409-17-1 | 1613 | 128 | n.d. | 123.7 ± 10.07 | 79.07 ± 8.03 | 62.23 ± 7.46 | 71.87 ± 6.98 | 56.19 ± 4.73 |
DL-β-Ethylphenethyl alcohol | 2035-94-1 | 1978 | 150 | n.d. | n.d. | n.d. | 9.05 ± 1.38 | 12.01 ± 2.26 | 4.88 ± 1.35 |
2-Nonen-1-ol | 22104-79-6 | 1692 | 142 | n.d. | n.d. | n.d. | 12.71 ± 2.43 | 30.80 ± 1.85 | 16.21 ± 1.14 |
Hexaethyleneglycol | 2615-15-8 | - | 282 | 22.43 ± 4.92 | 75.40 ± 6.24 | 84.44 ± 7.47 | 61.33 ± 13.09 | 173.39 ± 18.23 | 12.71 ± 0.94 |
1-Octen-3-ol | 3391-86-4 | 1450 | 128 | 1089.31 ± 80.20 | 1955.59 ± 88.13 | 1273.05 ± 57.24 | 1503.75 ± 104.23 | 2574.37 ± 90.06 | 1215.44 ± 66.28 |
3-Methylthiopropanol | 505-10-2 | 1719 | 106 | 25.75 ± 3.18 | 24.68 ± 4.64 | 15.07 ± 3.10 | 105.89 ± 7.47 | 127.21 ± 2.27 | 1585.01 ± 15.91 |
3,6,9,12,15,18,21-Heptaoxatricosane-1,23-diol | 5117-19-1 | - | 370 | 451.37 ± 23.44 | 421.89 ± 67.97 | 277.92 ± 25.86 | 1257.43 ± 41.33 | 2234.17 ± 82.86 | 66.16 ± 3.62 |
2,3-Butanediol | 513-85-9 | 1543 | 90 | 16.22 ± 2.31 | 11.92 ± 2.01 | 11.72 ± 2.61 | 47.86 ± 6.41 | 269.48 ± 6.66 | 516.18 ± 19.89 |
2-Heptanol | 543-49-7 | 1320 | 116 | n.d. | 0.67 ± 0.06 | 0.65 ± 0.15 | 3.92 ± 1.33 | 4.98 ± 0.55 | 2.18 ± 0.50 |
Heptaethylene glycol | 5617-32-3 | - | 326 | 750.05 ± 15.98 | 618.79 ± 27.42 | 517.64 ± 36.38 | 1133.89 ± 103.43 | 1687.66 ± 51.89 | 1092.49 ± 87.83 |
Glycerol | 56-81-5 | 2303 | 92 | n.d. | 20.35 ± 3.68 | n.d. | 57.41 ± 6.31 | 313.04 ± 35.48 | 712.67 ± 29.45 |
3-Octyl alcohol | 589-98-0 | 1393 | 130 | 20.80 ± 9.84 | 28.42 ± 4.40 | 24.21 ± 4.9 | 49.39 ± 6.73 | 117.58 ± 6.76 | 105.33 ± 14.29 |
Ethanol | 64-17-5 | 932 | 46 | 32.05 ± 3.62 | 13.22 ± 1.70 | 2.88 ± 0.70 | 35.72 ± 3.41 | 117.03 ± 8.52 | 7.74 ± 1.12 |
Butanol | 71-36-3 | 1142 | 74 | 2.54 ± 0.46 | 1.91 ± 0.24 | 2.31 ± 0.72 | 3.97 ± 1.06 | 8.01 ± 0.43 | 6.16 ± 0.81 |
Pentanol | 71-41-0 | 1250 | 88 | 16.09 ± 3.36 | 15.23 ± 3.16 | 17.28 ± 3.19 | 42.04 ± 5.10 | 28.54 ± 4.10 | 21.05 ± 2.05 |
Isobutanol | 78-83-1 | 1092 | 74 | n.d. | 16.89 ± 4.27 | 12.81 ± 2.96 | 4.38 ± 0.15 | 9.69 ± 1.25 | 16.02 ± 1.42 |
Furfuryl alcohol | 98-00-0 | 1661 | 98 | 10.31 ± 1.27 | 13.74 ± 3.76 | 6.32 ± 0.56 | 23.23 ± 4.86 | 34.04 ± 1.94 | 20.60 ± 2.27 |
Phenols | |||||||||
Phenol | 108-95-2 | 2000 | 94 | 37.53 ± 2.95 | 32.10 ± 5.87 | 20.88 ± 6.79 | 88.39 ± 5.72 | 58.85 ± 3.54 | 24.00 ± 3.16 |
Phenol,2-methoxy-4-(1E)-1-propen-1-yl | 5932-68-3 | 2362 | 164 | 5.17 ± 0.66 | n.d. | 0.43 ± 0.05 | 11.36 ± 2.70 | n.d. | 6.04 ± 0.64 |
4-Hydroxy-3-methoxystyrene | 7786-61-0 | 2188 | 150 | 4.43 ± 2.34 | 7.63 ± 1.99 | 4.24 ± 0.85 | 1.27 ± 0.07 | 10.29 ± 1.25 | 6.50 ± 0.97 |
1-Naphthalenol | 90-15-3 | - | 144 | 2.19 ± 0.60 | 3.03 ± 0.46 | 3.67 ± 0.46 | 3.87 ± 0.60 | 9.51 ± 1.12 | 12.97 ± 2.35 |
2,4-Di-t-butylphenol | 96-76-4 | 2321 | 206 | 32.58 ± 3.39 | 35.69 ± 7.33 | 21.06 ± 1.74 | 1.27 ± 0.29 | 36.01 ± 3.30 | 20.01 ± 1.92 |
Acids | |||||||||
Octanoic acid | 124-07-2 | 2060 | 144 | 10.17 ± 1.34 | 14.08 ± 4.26 | 4.63 ± 1.05 | 14.57 ± 2.34 | 32.33 ± 1.29 | 12.16 ± 1.72 |
3,6,9-Trioxaundecanedioic acid | 13887-98-4 | - | 222 | n.d. | n.d. | n.d. | 68.78 ± 10.04 | 16.22 ± 0.90 | 6.42 ± 0.67 |
3-Methylbutanoic acid | 503-74-2 | 1666 | 102 | 176.89 ± 15.88 | 304.65 ± 34.84 | 199.65 ± 18.91 | 374.81 ± 21.66 | 1246.03 ± 45.46 | 313.80 ± 25.25 |
Acetic acid | 64-19-7 | 1449 | 60 | 1131.94 ± 98.26 | 1292.95 ± 74.64 | 863.68 ± 41.96 | 2765.65 ± 85.66 | 202.76 ± 39.63 | 101.72 ± 8.92 |
Agaric acid | 666-99-9 | - | 416 | 5.64 ± 1.22 | 2.37 ± 0.61 | 2.22 ± 0.51 | 17.38 ± 1.52 | 14.99 ± 2.76 | 7.53 ± 0.98 |
Isobutyric acid | 79-31-2 | 1570 | 88 | 11.49 ± 3.14 | 17.78 ± 4.31 | 11.42 ± 1.12 | 17.52 ± 2.43 | 42.86 ± 1.66 | 21.70 ± 3.62 |
Others | |||||||||
Styrene | 100-42-5 | 1261 | 104 | n.d. | n.d. | n.d. | 162.42 ± 2.41 | 303.57 ± 16.54 | 321.14 ± 18.16 |
2,3-Dihydrofuran | 1191-99-7 | - | 70 | 11.08 ± 1.21 | n.d. | n.d. | 12.38 ± 2.30 | 26.47 ± 6.20 | 11.16 ± 1.44 |
12-Crown-4 | 294-93-9 | - | 176 | n.d. | n.d. | n.d. | 103.34 ± 17.03 | 33.37 ± 2.26 | 21.69 ± 1.94 |
Dodecyl octaethylene glycol ether | 3055-98-9 | - | 538 | 497.12 ± 26.96 | 439.28 ± 44.62 | 241.99 ± 23.12 | 609.81 ± 61.44 | 572.30 ± 43.08 | 432.97 ± 18.86 |
Hexamethylcyclotrisiloxane | 541-05-9 | - | 222 | 216.53 ± 29.17 | 116.39 ± 24.08 | 129.30 ± 5.65 | 366.79 ± 33.16 | 497.18 ± 10.58 | 231.39 ± 10.99 |
Octadecane,3-ethyl-5-(2-ethylbutyl) | 55282-12-7 | - | 366 | 2.19 ± 1.57 | n.d. | 1.33 ± 0.28 | 12.87 ± 2.08 | 53.12 ± 5.23 | 15.97 ± 1.77 |
Samples | Bacteria | Fungal | ||||
---|---|---|---|---|---|---|
Effective Sequences | High-Quality Sequences | Proportions (%) | Effective Sequences | High-Quality Sequences | Proportions (%) | |
L7a | 58,786 | 51,006 | 86.77 | 79,408 | 77,311 | 97.36 |
L7b | 55,060 | 48,152 | 87.45 | 79,349 | 76,322 | 96.19 |
L7c | 53,262 | 44,432 | 83.42 | 64,427 | 61,232 | 95.04 |
M7a | 59,931 | 52,944 | 88.34 | 79,834 | 77,046 | 96.51 |
M7b | 47,009 | 37,853 | 80.52 | 79,900 | 77,360 | 96.82 |
M7c | 49,382 | 39,638 | 80.27 | 79,670 | 76,885 | 96.50 |
H7a | 60,083 | 48,920 | 81.42 | 79,347 | 76,045 | 95.84 |
H7b | 45,747 | 37,236 | 81.40 | 79,642 | 77,067 | 96.77 |
H7c | 75,497 | 66,553 | 88.15 | 79,429 | 77,070 | 97.03 |
L35a | 59,664 | 53,408 | 89.51 | 79,848 | 77,580 | 97.16 |
L35b | 59,740 | 50,317 | 84.23 | 79,681 | 76,918 | 96.53 |
L35c | 53,049 | 42,808 | 80.70 | 79,504 | 76,834 | 96.64 |
M35a | 56,810 | 49,493 | 87.12 | 79,866 | 76,747 | 96.09 |
M35b | 76,969 | 70,391 | 91.45 | 79,381 | 76,878 | 96.85 |
M35c | 76,296 | 69,324 | 90.86 | 79,952 | 77,843 | 97.36 |
H35a | 60,505 | 50,971 | 84.24 | 79,845 | 77,852 | 97.50 |
H35b | 63,071 | 50,920 | 80.73 | 79,611 | 77,127 | 96.88 |
H35c | 68,939 | 60,942 | 88.40 | 79,808 | 76,747 | 96.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Peng, J.; Zhao, J.; Lei, J.; Huang, Y.; Shao, B. Effects of Salinity on Physicochemical Properties, Flavor Compounds, and Bacterial Communities in Broad Bean Paste-Meju Fermentation. Foods 2024, 13, 2108. https://doi.org/10.3390/foods13132108
Guo Q, Peng J, Zhao J, Lei J, Huang Y, Shao B. Effects of Salinity on Physicochemical Properties, Flavor Compounds, and Bacterial Communities in Broad Bean Paste-Meju Fermentation. Foods. 2024; 13(13):2108. https://doi.org/10.3390/foods13132108
Chicago/Turabian StyleGuo, Qingyan, Jiabao Peng, Jingjing Zhao, Jie Lei, Yukun Huang, and Bing Shao. 2024. "Effects of Salinity on Physicochemical Properties, Flavor Compounds, and Bacterial Communities in Broad Bean Paste-Meju Fermentation" Foods 13, no. 13: 2108. https://doi.org/10.3390/foods13132108
APA StyleGuo, Q., Peng, J., Zhao, J., Lei, J., Huang, Y., & Shao, B. (2024). Effects of Salinity on Physicochemical Properties, Flavor Compounds, and Bacterial Communities in Broad Bean Paste-Meju Fermentation. Foods, 13(13), 2108. https://doi.org/10.3390/foods13132108