Prevalence, Molecular Characterization, and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolated from Raw Beef, Pork, and Chicken Meat in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Prevalence of STEC in Beef, Pork, and Chicken Meat
2.3. Detection of STEC Virulence-Associated Genes and Serogroup-Specific Genes
2.4. Antimicrobial Susceptibility Profile of STEC Isolates
2.5. Detection of ESBL and Colistin-Resistant Genes
3. Results
3.1. Prevalence of STEC in Beef, Pork, and Chicken Meat
3.2. Detection of STEC Virulence-Associated Genes and Serogroup-Specific Genes
3.3. Antimicrobial Susceptibility Profile of STEC Isolates
3.4. Detection of ESBL and Colistin-Resistant Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, X.; Meng, J.; McDermott, P.F.; Ayers, S.; Blickenstaff, K.; Tran, T.T.; Abbott, J.; Zheng, J.; Zhao, S. Presence and characterization of Shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats. Appl. Environ. Microbiol. 2010, 76, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Oporto, B.; Esteban, J.I.; Aduriz, G.; Juste, R.A.; Hurtado, A. Escherichia coli O157: H7 and non-O157 Shiga toxin-producing E. coli in healthy cattle, sheep and swine herds in northern Spain. Zoonoses Public Health 2008, 55, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Mora, A.; Blanco, J.E.; Blanco, M.; Alonso, M.P.; Dhabi, G.; Echeita, A.; González, E.A.; Bernárdez, M.I.; Blanco, J. Antimicrobial resistance of Shiga toxin (verotoxin)-producing Escherichia coli O157: H7 and non-O157 strains isolated from humans, cattle, sheep and food in Spain. Res. Microbiol. 2005, 156, 793–806. [Google Scholar] [CrossRef] [PubMed]
- Batz, M.B.; Hoffmann, S.; Morris, J.G. Ranking the disease burden of 14 pathogens in food sources in the united states using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 2012, 75, 1278–1291. [Google Scholar] [CrossRef]
- Scallan, E.; Griffin, P.M.; Angulo, F.J.; Tauxe, R.V.; Hoekstra, R.M. Foodborne illness acquired in the United states-Unspecified agents. Emerg. Infect. Dis. 2011, 17, 16. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Scallan, E.; Jones-Bitton, A.; Sargeant, J.M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global incidence of human shiga toxin-producing Escherichia coli infections and deaths: A systematic review and knowledge synthesis. Foodborne Pathog. Dis. 2014, 11, 447–455. [Google Scholar] [CrossRef]
- Lathrop, S.; Edge, K.; Bareta, J. Shiga toxin—Producing Escherichia coli, New Mexico, USA, 2004–2007. Emerg. Infect. Dis. 2009, 15, 1289. [Google Scholar] [CrossRef]
- Brooks, J.T.; Sowers, E.G.; Wells, J.G.; Greene, K.D.; Griffin, P.M.; Hoekstra, R.M.; Strockbine, N.A. Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J. Infect. Dis. 2005, 192, 1422–1429. [Google Scholar] [CrossRef]
- Mir, R.A.; Kudva, I.T. Antibiotic-resistant Shiga toxin-producing Escherichia coli: An overview of prevalence and intervention strategies. Zoonoses Public Health 2019, 66, 1–13. [Google Scholar] [CrossRef]
- Hussein, H.S.; Bollinger, L.M. Prevalence of Shiga toxin-producing Escherichia coli in beef cattle. J. Food Prot. 2005, 68, 2224–2241. [Google Scholar] [CrossRef]
- Hussein, H.S. Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J. Anim. Sci. 2007, 85 (Suppl. 13), E63–E72. [Google Scholar] [CrossRef] [PubMed]
- Minh, S.H.; Kimura, E.; Minh, D.H.; Honjoh, K.; Miyamoto, T. Virulence characteristics of Shiga toxin-producing Escherichia coli from raw meats and clinical samples. Microbiol. Immunol. 2015, 59, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Zarei, O.; Shokoohizadeh, L.; Hossainpour, H.; Alikhani, M.Y. The Prevalence of Shiga Toxin-Producing Escherichia coli and Enteropathogenic Escherichia coli Isolated from Raw Chicken Meat Samples. Int. J. Microbiol. 2021, 2021, 3333240. [Google Scholar] [CrossRef] [PubMed]
- Honish, L.; Punja, N.; Nunn, S.; Nelson, D.; Hislop, N.; Gosselin, G.; Stashko, N.; Dittrich, D. Escherichia coli O157:H7 Infections Associated with Contaminated Pork Products—Alberta, Canada, July–October 2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 65, 1477–1481. [Google Scholar] [CrossRef]
- Haque, M.; Bosilevac, J.M.; Chaves, B.D. A review of Shiga-toxin producing Escherichia coli (STEC) contamination in the raw pork production chain. Int. J. Food Microbiol. 2022, 377, 109832. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, S.; Batz, M.B.; Morris, J.G. Annual cost of illness and quality-adjusted life year losses in the united states due to 14 foodborne pathogens. J. Food Prot. 2012, 75, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 20 May 2023).
- Lencina, F.A.; Bertona, M.; Stegmayer, M.A.; Olivero, C.R.; Frizzo, L.S.; Zimmermann, J.A.; Signorini, M.L.; Soto, L.P.; Zbrun, M.V. Prevalence of colistin-resistant Escherichia coli in foods and food-producing animals through the food chain: A worldwide systematic review and meta-analysis. Heliyon 2024, 10, e26579. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crsis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 12 March 2024).
- Vidovic, N.; Vidovic, S. Antimicrobial resistance and food animals: Influence of livestock environment on the emergence and dissemination of antimicrobial resistance. Antibiotics 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock—A Systematic Review and Meta-Analysis. Pathogens. 2022, 11, 659. [Google Scholar] [CrossRef]
- Sun, D.; Jeannot, K.; Xiao, Y.; Knapp, C.W. Editorial: Horizontal gene transfer mediated bacterial antibiotic resistance. Front. Microbiol. 2019, 10, 1933. [Google Scholar] [CrossRef]
- Bai, J.; Paddock, Z.D.; Shi, X.; Li, S.; An, B.; Nagaraja, T.G. Applicability of a multiplex PCR to detect the seven major Shiga toxin–producing Escherichia coli based on genes that code for serogroup-specific O-antigens and major virulence factors in cattle feces. Foodborne PathogDis. 2012, 9, 541–548. [Google Scholar] [CrossRef]
- CLSI Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; CLSI Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018; ISBN 9781684400324. [Google Scholar]
- Nguyen, D.T.A.; Kanki, M.; Do Nguyen, P.; Le, H.T.; Ngo, P.T.; Tran, D.N.M.; Le, N.H.; Van Dang, C.; Kawai, T.; Kawahara, R.; et al. Prevalence, antibiotic resistance, and extended-spectrum and AmpC β-lactamase productivity of Salmonella isolates from raw meat and seafood samples in Ho Chi Minh City, Vietnam. Int. J. Food Microbiol. 2016, 236, 115–122. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. Available online: https://www.ncbi.nlm.nih.gov/pubmed/9254694 (accessed on 16 January 2024). [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef] [PubMed]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef]
- Fantelli, K.; Stephan, R. Prevalence and characteristics of Shigatoxin-producing Escherichia coli and Listeria monocytogenes strains isolated from minced meat in Switzerland. Int. J. Food Microbiol. 2001, 70, 63–69. [Google Scholar] [CrossRef]
- Ju, W.; Shen, J.; Li, Y.; Toro, M.A.; Zhao, S.; Ayers, S.; Najjar, M.B.; Meng, J. Non-O157 Shiga toxin-producing Escherichia coli in retail ground beef and pork in the Washington D.C. area. Food Microbiol. 2012, 32, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, H.; Dehkordi, F.S.; Rahimi, E.; Ezadi, H.; Arab, R. Incidence of Shiga toxin-producing Escherichia coli serogroups in ruminant’s meat. Meat Sci. 2013, 95, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Barlow, R.S.; Gobius, K.S.; Desmarchelier, P.M. Shiga toxin-producing Escherichia coli in ground beef and lamb cuts: Results of a one-year study. Int. J. Food Microbiol. 2006, 111, 1–5. [Google Scholar] [CrossRef]
- Egervärn, M.; Flink, C. Shiga toxin-producing Escherichia coli (STEC) in meat and leafy greens available in the Swedish retail market—Occurrence and diversity of stx subtypes and serotypes. Int. J. Food Microbiol. 2024, 408, 110446. [Google Scholar] [CrossRef] [PubMed]
- Gould, L.H.; Mody, R.K.; Ong, K.L.; Clogher, P.; Cronquist, A.B.; Garman, K.N.; Lathrop, S.; Medus, C.; Spina, N.L.; Webb, T.H.; et al. Increased recognition of non-O157 Shiga toxin–producing Escherichia coli infections in the United States during 2000–2010: Epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog. Dis. 2013, 10, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Krüger, A.; Lucchesi, P.M.; Sanso, A.M.; Etcheverría, A.I.; Bustamante, A.V.; Burgán, J.; Fernández, L.; Fernández, D.; Leotta, G.; Friedrich, A.W.; et al. Genetic characterization of Shiga toxin-producing Escherichia coli O26: H11 strains isolated from animal, food, and clinical samples. Front. Cell. Infect. Microbiol. 2015, 5, 74. [Google Scholar] [CrossRef]
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, e04634. [Google Scholar] [CrossRef]
- Iwu, C.J.; Iweriebor, B.C.; Obi, L.C.; Okoh, A.I. Occurrence of non-O157 Shiga toxin-producing Escherichia coli in two commercial swine farms in the Eastern Cape Province, South Africa. Comp. Immunol. Microbiol. Infect. Dis. 2016, 44, 48–53. [Google Scholar] [CrossRef]
- Gökmen, M.; İlhan, Z.; Tavşanlı, H.; Önen, A.; Ektik, N.; Göçmez, E.B. Prevalence and molecular characterization of shiga toxin-producing Escherichia coli in animal source foods and green leafy vegetables. Food Sci. Technol. Int. 2024, 30, 30–36. [Google Scholar] [CrossRef]
- Ojo, O.E.; Ajuwape, A.T.P.; Otesile, E.B.; Owoade, A.A.; Oyekunle, M.A.; Adetosoye, A.I. Potentially zoonotic shiga toxin-producing Escherichia coli serogroups in the faeces and meat of food-producing animals in Ibadan, Nigeria. Int. J. Food Microbiol. 2010, 142, 214–221. [Google Scholar] [CrossRef]
- Karama, M.; Cenci-Goga, B.T.; Malahlela, M.; Smith, A.M.; Keddy, K.H.; El-Ashram, S.; Kabiru, L.M.; Kalake, A. Virulence Characteristics and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolates from Humans in South Africa: 2006–2013. Toxins 2019, 11, 424. [Google Scholar] [CrossRef]
- Johannes, L.; Römer, W. Shiga toxins—From cell biology to biomedical applications. Nat. Rev. Microbiol. 2010, 8, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Brusa, V.; Aliverti, V.; Aliverti, F.; Ortega, E.E.; de la Torre, J.H.; Linares, L.H.; Sanz, M.E.; Etcheverría, A.I.; Padola, N.L.; Galli, L.; et al. Shiga toxin-producing Escherichia coli in beef retail markets from Argentina. Front. Cell. Infect. Microbiol. 2013, 2, 171. [Google Scholar] [CrossRef]
- Paton, J.C.; Paton, A.W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 1998, 11, 450–479. [Google Scholar] [CrossRef] [PubMed]
- Paton, A.W.; Srimanote, P.; Talbot, U.M.; Wang, H.; Paton, J.C. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J. Exp. Med. 2004, 200, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Werber, D.; Fruth, A.; Buchholz, U.; Prager, R.; Kramer, M.H.; Ammon, A.; Tschäpe, H. Strong Association between Shiga Toxin-Producing Escherichia coli O157 and Virulence Genes stx2 and eae as Possible Explanation for Predominance of Serogroup O157 in Patients with Haemolytic Uraemic Syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 2003, 22, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Nong, F.; Zhang, P.; Meng, J.; Xie, Q.; Li, Y.; Pan, Y.; Zhao, Y.; Liu, H. Characterization of Shiga-toxin producing Escherichia coli (STEC) isolated from retail raw meats in Southeast China. Food Control 2021, 126, 108061. [Google Scholar] [CrossRef]
- Jiang, C.; An, T.; Wang, S.; Wang, G.; Si, W.; Tu, Y.; Liu, Y.; Wu, J.; Liu, S.; Cai, X. Role of the ehxa gene from Escherichia coli serotype O82 in hemolysis, biofilm formation, and in vivo virulence. Can. J. Microbiol. 2015, 61, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Van Cuong, N.; Nhung, N.T.; Nghia, N.H.; Mai Hoa, N.T.; Trung, N.V.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Consumption in Medicated Feeds in Vietnamese Pig and Poultry Production. Ecohealth 2016, 13, 490–498. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shimamoto, T. Molecular analysis of multidrug resistance in Shiga toxin-producing Escherichia coli O157: H7 isolated from meat and dairy products. Int. J. Food Microbiol. 2015, 193, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Rubab, M.; Oh, D.H. Virulence characteristics and antibiotic resistance profiles of shiga toxin-producing Escherichia coli isolates from diverse sources. Antibiotics 2020, 9, 587. [Google Scholar] [CrossRef] [PubMed]
- Cergole-Novella, M.C.; Pignatari, A.C.C.; Castanheira, M.; Guth, B.E.C. Molecular typing of antimicrobial-resistant Shiga-toxin-producing Escherichia coli strains (STEC) in Brazil. Res. Microbiol. 2011, 162, 117–123. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: 6th Revision 2018; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Di, K.N.; Pham, D.T.; Tee, T.S.; Binh, Q.A.; Nguyen, T.C. Antibiotic usage and resistance in animal production in Vietnam: A review of existing literature. Trop. Anim. Health Prod. 2021, 53, 340. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C. Antimicrobial usage in chicken production in the mekong delta of vietnam. Zoonoses Public Health 2015, 62, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Dang, P.K.; Saegerman, C.; Douny, C.; Ton Vu Dinh, T.V.D.; Xuan BoHa, X.B.; Binh Dang Vu, B.D.V.; Ngan Pham Hong, N.P.H.; Scippo, M.L. First Survey on the Use of Antibiotics in Pig and Poultry Production in the Red River Delta Region of Vietnam. Food Public Health 2013, 3, 247–256. [Google Scholar]
- Luu, Q.H.; Nguyen, T.L.A.; Pham, T.N.; Vo, N.G.; Padungtod, P. Antimicrobial use in household, semi-industrialized, and industrialized pig and poultry farms in Viet Nam. Prev. Vet. Med. 2021, 189, 105292. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Hurley, D.; Li, J.; Meng, Q.; Wang, J.; Fanning, S.; Xiong, Y. Characterisation of multidrug-resistant Shiga toxin-producing Escherichia coli cultured from pigs in China: Co-occurrence of extended-spectrum β-lactamase- and mcr-1-encoding genes on plasmids. Int. J. Antimicrob. Agents 2016, 48, 445–448. [Google Scholar] [CrossRef]
Target Gene | Primer | Primer Sequence | Amplicon Size (bp) |
---|---|---|---|
stx1 | stx1-F | TGTCGCATAGTGGAACCTCA | 655 |
stx1-R | TGCGCACTGAGAAGAAGAGA | ||
stx2 | stx2-F | CCATGACAACGGACAGCAGTT | 477 |
stx2-R | TGTCGCCAGTTATCTGACATTC | ||
rfbO157 | O157-F | CAGGTGAAGGTGGAATGGTTGTC | 296 |
O157-R | TTAGAATTGAGACCATCCAATAAG | ||
wzxO45 | O45-F | GGGGCTGTCCAGACAGTTCAT | 890 |
O45-R | TGTACTGCACCCAATGCACCT | ||
wzxO103 | O103-F | GCAGAAAATCAAGGTGATTACG | 740 |
O103-R | GGTTAAAGCCATGCTCAACG | ||
wzqEO121/wzqFO121 | O121-F | TCAGCAGAGTGGAACTAATTTTGT | 587 |
O121-R | TGAGCACTAGATGAAAAGTATGGCT | ||
wzxO145 | O145-F | TCAAGTGTTGGATTAAGAGGGATT | 523 |
O145-R | CACTCGCGGACACAGTACC | ||
wzxO26 | O26-F | AGGGTGCGAATGCCATATT | 417 |
O26-R | GACATAATGACATACCACGAGCA | ||
wzxO111 | O111-F | TGCATCTTCATTATCACACCA | 230 |
O111-R | ACCGCAAATGCGATAATAACA | ||
eae | eae-F | CATTATGGAACGGCAGAGGT | 375 |
eae-R | ACGGATATCGAAGCCATTTG | ||
ehxA | ehxA-F | GCGAGCTAAGCAGCTTGAAT | 199 |
ehxA-R | CTGGAGGCTGCACTAACTCC |
Target Gene | Primer | Primer Sequence | Amplicon Size (bp) |
---|---|---|---|
blaTEM | TEM-F | GGTCGCCGCATACACTATTCTC | 372 |
TEM-R | TTTTATCCGCCTCCATCCAGTC | ||
blaSHV | SHV-F | CCAGCAGGATCTGGTGGACTAC | 231 |
SHV-R | CCGGGAAGCGCCCTCCAT | ||
blaCTX-M-1 | CTX-M1-F | GAATTAGAGCGGGAGTCGGG | 588 |
CTX-M1-R | CACAACCCAGGAAGCAGGC | ||
blaCTX-M-2 | CTX-M2-F | GATGGCGACGCTACCCC | 107 |
CTX-M2-R | CAAGCCGACCTCCCGAAC | ||
blaCTX-M-9 | CTX-M9-F | GTGCAACGGATGATGTTCGC | 475 |
CTX-M9-R | GAAACGTCTCATCGCCGATC | ||
blaCTX-M-8/25 | CTX-M8/25-F | GCGACCCGCGCGATAC | 186 |
CTX-M8/25-R | TGCCGGTTTTATCCCCG |
Target Gene | Primer | Primer Sequence | Amplicon Size (bp) | Reference |
---|---|---|---|---|
mcr-1 | mcr1 f | AGTCCGTTTGTTCTTGTGGC | 320 | [28] |
mcr1 r | AGATCCTTGGTCTCGGCTTG | |||
mcr-2 | mcr2 f | CAAGTGTGTTGGTCGCAGTT | 715 | [28] |
mcr2 r | TCTAGCCCGACAAGCATACC | |||
mcr-3 | mcr 3 f | AAATAAAAATTGTTCCGCTTATG | 929 | [28] |
mcr3 r | AATGGAGATCCCCGTTTTT | |||
mcr-4 | mcr4 f | TCACTTTCATCACTGCGTTG | 1116 | [28] |
mcr4 r | TTGGTCCATGACTACCAATG | |||
mcr-5 | mcr5 f | ATGCGGTTGTCTGCATTTATC | 1644 | [29] |
mcr 5 r | TCATTGTGGTTGTCCTTTTCTG |
Market Type | Meat Type | No. of Samples Tested | Detection of stx Genes in Meat Samples | Isolation of STEC | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Positive Samples (%) | No. of Samples Positive for Gene (%) | Number of Positive Samples (%) | No. of STEC Positive for Gene | |||||||
stx1 | stx2 | stx1 and stx2 | stx1 | stx2 | stx1 and stx2 | |||||
Wet Market | Beef | 36 | 9 (25) | 2 (5.56) | 8 (22.22) | 1 (2.78) | 4 (11.11) | 0 | 7 | 0 |
Pork | 36 | 6 (16.67) | 0 (0) | 6 (16.67) | 0 (0) | 2 (5.56) | 0 | 3 | 0 | |
Chicken | 36 | 6 (16.67) | 2 (5.56) | 5 (13.89) | 1 (2.78) | 1 (2.78) | 2 | 0 | 0 | |
Total | 108 | 21 (19.44) | 4 (3.7) | 19 (17.59) | 2(1.85) | 7 (6.48) | 2 | 10 | 0 | |
Supermarket | Beef | 36 | 8 (22.22) | 3 (8.33) | 5 (13.89) | 0 (0) | 3 (8.33) | 0 | 6 | 0 |
Pork | 36 | 5 (13.89) | 2 (5.56) | 3 (8.33) | 0 (0) | 2 (5.56) | 0 | 3 | 0 | |
Chicken | 36 | 1 (2.78) | 0 (0) | 1 (2.78) | 0 (0) | 0 (0) | 0 | 0 | 0 | |
Total | 108 | 14 (12.96) | 5 (4.63) | 9 (8.33) | 0 (0) | 5 (4.63) | 0 | 9 | 0 | |
Total | Beef | 72 | 17 (23.61) | 5 (6.94) | 13 (18.06) | 1 (1.39) | 7 (9.72) | 0 | 13 | 0 |
Pork | 72 | 11 (15.28) | 2 (2.78) | 9 (12.5) | 0 (0) | 4 (5.56) | 0 | 6 | 0 | |
Chicken | 72 | 7 (9.72) | 2 (2.78) | 6 (8.33) | 1 (1.39) | 1 (1.39) | 2 | 0 | 0 | |
Total | 216 | 35 (16.2) | 9 (4.17) | 28 (12.96) | 2 (0.93) | 12 (5.56) | 2 | 19 | 0 |
Meat Type | Serotype | stx Gene | Accessory Virulence Gene | Antibiotic Resistance Pattern | |
---|---|---|---|---|---|
eae | ehxA | ||||
Beef (n = 7) | UST | stx2 | + | + | AMP-STR-TET-FLO-STX |
UST | stx2 | − | − | AMP-TET | |
UST | stx2 | − | − | TET-FLO-STX | |
UST | stx2 | − | + | AMP-STR-TET-STX | |
UST | stx2 | − | + | AMP-STR-TET-NAL-STX | |
O157 | stx2 | + | + | AMP-GEN-STR-TET-CST-FLO-AZM-STX | |
UST | stx2 | − | + | AMP-CTX-FEP-CAZ-STR-TET-FLO-CIP-NAL-STX | |
Pork (n = 4) | UST | stx2 | − | + | AMP-AZM |
O26 | stx2 | + | − | AMP-STR-TET-FLO-STX | |
UST | stx2 | − | − | AMP-STR-TET-FLO-STX | |
UST | stx2 | − | − | AMP-STR-TET-CST-FLO-NAL-STX | |
Chicken (n = 1) | O111 | stx1 | + | + | AMP-CTX-FEP-CAZ-GEN-STR-TET-CST-FLO-AZM-CIP-NAL-STX |
Antibiotic Class | Antibiotic | No. of Isolates (Resistance Rate %) | |||
---|---|---|---|---|---|
Beef (n = 7) | Pork (n = 4) | Chicken (n = 1) | Total (n = 12) | ||
Penicillins | ampicillin | 6 (85.71) | 4 (100) | 1 (100) | 11 (91.67) |
cefoxitin | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Cephalosporins | cefotaxime | 1 (14.29) | 0 (0) | 1 (100) | 2 (16.67) |
ceftazidime | 1 (14.29) | 0 (0) | 1 (100) | 2 (16.67) | |
cefepime | 1 (14.29) | 0 (0) | 1 (100) | 2 (16.67) | |
Cabarpenems | meropenem | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Polymyxins | colistin | 1 (14.29) | 1 (25) | 1 (100) | 3 (25) |
Aminoglycosides | gentamicin | 1 (14.29) | 0 (0) | 1 (100) | 2 (16.67) |
streptomycin | 5 (71.43) | 3 (75) | 1 (100) | 9 (75) | |
Tetracyclines | tetracycline | 7 (100) | 3 (75) | 1 (100) | 11 (91.67) |
Phenicols | florfenicol | 4 (57.14) | 3 (75) | 1 (100) | 8 (66.67) |
Macrolides | azithromycin | 1 (14.29) | 1 (25) | 1 (100) | 3 (25) |
Fluoroquinolones | ciprofloxacin | 1 (14.29) | 0 (0) | 1 (100) | 2 (16.67) |
Quinolones | nalidixic acid | 2 (28.57) | 1 (25) | 1 (100) | 4 (33.33) |
Sulfonamides | trimethoprim/ sulfamethoxazole | 6 (85.71) | 3 (75) | 1 (100) | 10 (83.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, H.M.; Ha, C.T.T.; Hoa, T.T.K.; Hung, L.V.; Thang, N.V.; Son, H.M. Prevalence, Molecular Characterization, and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolated from Raw Beef, Pork, and Chicken Meat in Vietnam. Foods 2024, 13, 2059. https://doi.org/10.3390/foods13132059
Duc HM, Ha CTT, Hoa TTK, Hung LV, Thang NV, Son HM. Prevalence, Molecular Characterization, and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolated from Raw Beef, Pork, and Chicken Meat in Vietnam. Foods. 2024; 13(13):2059. https://doi.org/10.3390/foods13132059
Chicago/Turabian StyleDuc, Hoang Minh, Cam Thi Thu Ha, Tran Thi Khanh Hoa, Le Van Hung, Nguyen Van Thang, and Hoang Minh Son. 2024. "Prevalence, Molecular Characterization, and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolated from Raw Beef, Pork, and Chicken Meat in Vietnam" Foods 13, no. 13: 2059. https://doi.org/10.3390/foods13132059
APA StyleDuc, H. M., Ha, C. T. T., Hoa, T. T. K., Hung, L. V., Thang, N. V., & Son, H. M. (2024). Prevalence, Molecular Characterization, and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli Isolated from Raw Beef, Pork, and Chicken Meat in Vietnam. Foods, 13(13), 2059. https://doi.org/10.3390/foods13132059