Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Vanillin Solution
2.3. Encapsulation
2.4. Preparation of the Whey Protein Beverage
2.5. Microbial Inactivation
2.6. Enumeration of Survival Cells
2.7. Modeling the Survival Curves
2.7.1. Modified Gompertz Model
2.7.2. Weibull Model
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Whey Protein Beverage and the Encapsulated Systems
3.2. Microbial Inactivation
3.3. Modeling the Survival Curves
3.3.1. Modified Gompertz Model
3.3.2. Weibull Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Chen, L.; Kang, Y.; He, D.; Yang, B.; Wu, K. Cinnamon Essential Oil Nanoemulsions by High-Pressure Homogenization: Formulation, Stability, and Antimicrobial Activity. LWT 2021, 147, 111660. [Google Scholar] [CrossRef]
- Yazdanfar, N.; Manafi, L.; Ebrahiminejad, B.; Mazaheri, Y.; Sadighara, P.; Basaran, B.; Mohamadi, S. Evaluation of Sodium Benzoate and Potassium Sorbate Preservative Concentrations in Different Sauce Samples in Urmia, Iran. J. Food Prot. 2023, 86, 100118. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S. Antibacterial Activity and Mechanism of Cinnamon Essential Oil against Escherichia Coli and Staphylococcus Aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Raynaldo, F.A.; Xu, Y.; Yolandani; Wang, Q.; Wu, B.; Li, D. Biological Control and Other Alternatives to Chemical Fungicides in Controlling Postharvest Disease of Fruits Caused by Alternaria alternata and Botrytis cinerea. Food Innov. Adv. 2024, 3, 135–143. [Google Scholar] [CrossRef]
- Qin, W.; Tang, S.; Chen, C.; Xie, J. Preparation and Characterization of Cinnamon Essential Oil Pickering Emulsion Stabilized by Zein/Carboxylated Cellulose Nanocrystals Composite Nanoparticles. Food Hydrocoll. 2024, 147, 109321. [Google Scholar] [CrossRef]
- Cava-Roda, R.; Taboada-Rodríguez, A.; López-Gómez, A.; Martínez-Hernández, G.B.; Marín-Iniesta, F. Synergistic Antimicrobial Activities of Combinations of Vanillin and Essential Oils of Cinnamon Bark, Cinnamon Leaves, and Cloves. Foods 2021, 10, 1406. [Google Scholar] [CrossRef] [PubMed]
- He, T.-F.; Wang, L.-H.; Niu, D.; Wen, Q.; Zeng, X.-A. Cinnamaldehyde Inhibit Escherichia Coli Associated with Membrane Disruption and Oxidative Damage. Arch. Microbiol. 2019, 201, 451–458. [Google Scholar] [CrossRef]
- Babic, M.; Glisic, M.; Zdravkovc, N.; Djordjevic, J.; Velebit, B.; Ledina, T.; Baltic, M.Z.; Boskovic, M. Inhibition of Staphylococcus Aureus by Cinnamaldehyde and Its Effect on Sensory Properties of Milk. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 12042. [Google Scholar] [CrossRef]
- Guan, P.; Wang, X.; Dong, Z.; Song, M.; Zhu, H.; Suo, B. Cinnamaldehyde Inactivates Listeria Monocytogenes at a Low Temperature in Ground Pork by Disturbing the Expression of Stress Regulatory Genes. Food Biosci. 2023, 51, 102277. [Google Scholar] [CrossRef]
- Sun, L.; Rogiers, G.; Michiels, C.W. The Natural Antimicrobial Trans-Cinnamaldehyde Interferes with UDP-N-Acetylglucosamine Biosynthesis and Cell Wall Homeostasis in Listeria Monocytogenes. Foods 2021, 10, 1666. [Google Scholar] [CrossRef]
- Song, L.; Yang, H.; Meng, X.; Su, R.; Cheng, S.; Wang, H.; Bai, X.; Guo, D.; Lü, X.; Xia, X.; et al. Inhibitory Effects of Trans-Cinnamaldehyde Against Pseudomonas Aeruginosa Biofilm Formation. Foodborne Pathog. Dis. 2023, 20, 47–58. [Google Scholar] [CrossRef]
- Topa, S.H.; Palombo, E.A.; Kingshott, P.; Blackall, L.L. Activity of Cinnamaldehyde on Quorum Sensing and Biofilm Susceptibility to Antibiotics in Pseudomonas Aeruginosa. Microorganisms 2020, 8, 455. [Google Scholar] [CrossRef]
- Qu, S.; Yang, K.; Chen, L.; Liu, M.; Geng, Q.; He, X.; Li, Y.; Liu, Y.; Tian, J. Cinnamaldehyde, a Promising Natural Preservative Against Aspergillus Flavus. Front. Microbiol. 2019, 10, 2895. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Bi, Y.; Xue, H.; Wang, Y.; Zong, Y.; Prusky, D. Antifungal Activity of Cinnamaldehyde against Fusarium Sambucinum Involves Inhibition of Ergosterol Biosynthesis. J. Appl. Microbiol. 2020, 129, 256–265. [Google Scholar] [CrossRef]
- Saracino, I.M.; Foschi, C.; Pavoni, M.; Spigarelli, R.; Valerii, M.C.; Spisni, E. Antifungal Activity of Natural Compounds vs. Candida Spp.: A Mixture of Cinnamaldehyde and Eugenol Shows Promising In Vitro Results. Antibiotics 2022, 11, 73. [Google Scholar] [CrossRef]
- Liang, D.; Xing, F.; Selvaraj, J.N.; Liu, X.; Wang, L.; Hua, H.; Zhou, L.; Zhao, Y.; Wang, Y.; Liu, Y. Inhibitory Effect of Cinnamaldehyde, Citral, and Eugenol on Aflatoxin Biosynthetic Gene Expression and Aflatoxin B1 Biosynthesis in Aspergillus Flavus. J. Food Sci. 2015, 80, M2917–M2924. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, L.; Ma, J.; Yu, Q.; Yu, X.; Hussain, S.; Li, X.; Li, Y.; Guan, Y.; Li, Y.; et al. Microencapsulation Enhances the Antifungal Activity of Cinnamaldehyde during the Period of Peanut Storage. LWT 2023, 180, 114657. [Google Scholar] [CrossRef]
- Schenk, M.; Ferrario, M.; Guerrero, S. Antimicrobial Activity of Binary and Ternary Mixtures of Vanillin, Citral, and Potassium Sorbate in Laboratory Media and Fruit Purées. Food Bioproc Technol. 2018, 11, 324–333. [Google Scholar] [CrossRef]
- Bambace, M.F.; Gerard, L.M.; Moreira, d.R.M. An Approach to Improve the Safety and Quality of Ready-to-Eat Blueberries. J. Food Saf. 2019, 39, e12602. [Google Scholar] [CrossRef]
- Kimani, B.G.; Takó, M.; Veres, C.; Krisch, J.; Papp, T.; Kerekes, E.B.; Vágvölgyi, C. Activity of Binary Combinations of Natural Phenolics and Synthetic Food Preservatives against Food Spoilage Yeasts. Foods 2023, 12, 1338. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X. Vanillin and Its Derivatives, Potential Promising Antifungal Agents, Inhibit Aspergillus Flavus Spores via Destroying the Integrity of Cell Membrane Rather than Cell Wall. Grain Oil Sci. Technol. 2021, 4, 54–61. [Google Scholar] [CrossRef]
- Krogsgård Nielsen, C.; Kjems, J.; Mygind, T.; Snabe, T.; Schwarz, K.; Serfert, Y.; Meyer, R.L. Enhancing the Antibacterial Efficacy of Isoeugenol by Emulsion Encapsulation. Int. J. Food Microbiol. 2016, 229, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Graciá, C.; González-Bermúdez, C.A.; Cabellero-Valcárcel, A.M.; Santaella-Pascual, M.; Frontela-Saseta, C. Use of Herbs and Spices for Food Preservation: Advantages and Limitations. Curr. Opin. Food Sci. 2015, 6, 38–43. [Google Scholar] [CrossRef]
- Perricone, M.; Arace, E.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Bioactivity of Essential Oils: A Review on Their Interaction with Food Components. Front. Microbiol. 2015, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.C.; Procópio, F.R.; de Figueiredo Furtado, G.; Munhoz Moya, A.M.T.; Cazarin, C.B.B.; Hubinger, M.D. Cinnamon and Paprika Oleoresin Emulsions: A Study of Physicochemical Stability and Antioxidant Synergism. Food Res. Int. 2021, 150, 110777. [Google Scholar] [CrossRef] [PubMed]
- Orizano-Ponce, E.; Sepúlveda, F.; Ortiz-Viedma, J.; Char, C. Heat Sensitization of Escherichia Coli by the Natural Antimicrobials Vanillin and Emulsified Citral in Blended Carrot-Orange Juice. Food Microbiol. 2022, 107, 104058. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.I.; Parente, J.F.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Microencapsulation of Essential Oils: A Review. Polymers 2022, 14, 1730. [Google Scholar] [CrossRef] [PubMed]
- Donsì, F.; Cuomo, A.; Marchese, E.; Ferrari, G. Infusion of Essential Oils for Food Stabilization: Unraveling the Role of Nanoemulsion-Based Delivery Systems on Mass Transfer and Antimicrobial Activity. Innov. Food Sci. Emerg. Technol. 2014, 22, 212–220. [Google Scholar] [CrossRef]
- Huang, K.; Liu, R.; Zhang, Y.; Guan, X. Characteristics of Two Cedarwood Essential Oil Emulsions and Their Antioxidant and Antibacterial Activities. Food Chem. 2021, 346, 128970. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Fabrication, Stability and Efficacy of Dual-Component Antimicrobial Nanoemulsions: Essential Oil (Thyme Oil) and Cationic Surfactant (Lauric Arginate). Food Chem. 2015, 172, 298–304. [Google Scholar] [CrossRef]
- Wang, Y.; Ai, C.; Wang, H.; Chen, C.; Teng, H.; Xiao, J.; Chen, L. Emulsion and Its Application in the Food Field: An Update Review. eFood 2023, 4, e102. [Google Scholar] [CrossRef]
- Sharma, M.; Mann, B.; Pothuraju, R.; Sharma, R.; Kumar, R. Physico-Chemical Characterization of Ultrasound Assisted Clove Oil-Loaded Nanoemulsion: As Enhanced Antimicrobial Potential. Biotechnol. Rep. 2022, 34, e00720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Q.; Critzer, F.; Davidson, P.M.; Zhong, Q. Organic Thyme Oil Emulsion as an Alternative Washing Solution to Enhance the Microbial Safety of Organic Cantaloupes. Food Control 2016, 67, 31–38. [Google Scholar] [CrossRef]
- Mauriello, E.; Ferrari, G.; Donsì, F. Effect of Formulation on Properties, Stability, Carvacrol Release and Antimicrobial Activity of Carvacrol Emulsions. Colloids Surf. B Biointerfaces 2021, 197, 111424. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda, F.; Oyarzun-Ampuero, F.; Matiacevich, S.; Ortiz-Viedma, J.; Lemus-Mondaca, R.; Char, C. Use of Whey Protein Concentrate to Encapsulate Hydrophobic Natural Antimicrobials to Improve Their Incorporation into High Moisture Foods Enhancing Their Antimicrobial Activity. Innov. Food Sci. Emerg. Technol. 2024, 94, 103687. [Google Scholar] [CrossRef]
- Wu, S.; Yang, N.; Jin, Y.; Xu, X.; Jin, Z.; Xie, Z. Effects of Induced Electric Field (IEF) on the Reduction of Saccharomyces Cerevisiae and Quality of Fresh Apple Juice. Food Chem. 2020, 325, 126943. [Google Scholar] [CrossRef] [PubMed]
- Linton, R.H.; Carter, W.H.; Pierson, M.D.; Hackney, C.R. Use of a Modified Gompertz Equation to Model Nonlinear Survival Curves for Listeria Monocytogenes Scott A. J. Food Prot. 1995, 58, 946–954. [Google Scholar] [CrossRef]
- Peleg, M.; Cole, M.B. Reinterpretation of Microbial Survival Curves. Crit. Rev. Food Sci. Nutr. 1998, 38, 353–380. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Shen, S.; Xu, J.; Lin, S.; Yuan, Y.; Jones, G.S. Synergistic Interactions of Cinnamaldehyde in Combination with Carvacrol against Food-Borne Bacteria. Food Control 2013, 34, 619–623. [Google Scholar] [CrossRef]
- Shaaban, H. Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application. In Essential Oils—Bioactive Compounds, New Perspectives and Applications; Santana De Oliveira, M., Almeida Da Costa, W., Gomes Silva, S., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-83962-698-2. [Google Scholar]
- Baskaran, S.A.; Amalaradjou, M.A.R.; Hoagland, T.; Venkitanarayanan, K. Inactivation of Escherichia Coli O157:H7 in Apple Juice and Apple Cider by Trans-Cinnamaldehyde. Int. J. Food Microbiol. 2010, 141, 126–129. [Google Scholar] [CrossRef]
- Jo, Y.-J.; Chun, J.-Y.; Kwon, Y.-J.; Min, S.-G.; Hong, G.-P.; Choi, M.-J. Physical and Antimicrobial Properties of Trans-Cinnamaldehyde Nanoemulsions in Watermelon Juice. LWT-Food Sci. Technol. 2015, 60, 444–451. [Google Scholar] [CrossRef]
- Hebishy, E.; Collette, L.; Iheozor-Ejiofor, P.; Onarinde, B.A. Stability and Antimicrobial Activity of Lemongrass Essential Oil in Nanoemulsions Produced by High-intensity Ultrasounds and Stabilized by Soy Lecithin, Hydrolyzed Whey Proteins, Gum Arabic, or Their Ternary Admixture. J. Food Process Preserv. 2022, 46, e16840. [Google Scholar] [CrossRef]
- Liao, W.; Dumas, E.; Ghnimi, S.; Elaissari, A.; Gharsallaoui, A. Effect of Emulsifier and Droplet Size on the Antibacterial Properties of Emulsions and Emulsion-based Films Containing Essential Oil Compounds. J. Food Process Preserv. 2021, 45, e16072. [Google Scholar] [CrossRef]
- Buranasuksombat, U.; Kwon, Y.J.; Turner, M.; Bhandari, B. Influence of Emulsion Droplet Size on Antimicrobial Properties. Food Sci. Biotechnol. 2011, 20, 793–800. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification. J. Agric. Food Chem. 2013, 61, 8906–8913. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.L.; Lei, L.L.; Zhang, Q.; Li, Y. Physical Stability and Antimicrobial Activity of Encapsulated Cinnamaldehyde by Self-Emulsifying Nanoemulsion. J. Food Process Eng. 2016, 39, 462–471. [Google Scholar] [CrossRef]
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Narbad, A. The Potential Application of Vanillin in Preventing Yeast Spoilage of Soft Drinks and Fruit Juices. J. Food Prot. 2004, 67, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Cava-Roda, R.M.; Taboada, A.; Palop, A.; López-Gómez, A.; Marin-Iniesta, F. Heat Resistance of Listeria Monocytogenes in Semi-Skim Milk Supplemented with Vanillin. Int. J. Food Microbiol. 2012, 157, 314–318. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Fitzgerald, D.J.; Stratford, M.; Gasson, M.J.; Ueckert, J.; Bos, A.; Narbad, A. Mode of Antimicrobial Action of Vanillin against Escherichia Coli, Lactobacillus Plantarum and Listeria Innocua. J. Appl. Microbiol. 2004, 97, 104–113. [Google Scholar] [CrossRef]
- Guerrero, S.; Tognon, M.; Alzamora, S.M. Response of Saccharomyces Cerevisiae to the Combined Action of Ultrasound and Low Weight Chitosan. Food Control 2005, 16, 131–139. [Google Scholar] [CrossRef]
- Char, C.; Cisternas, L.; Pérez, F.; Guerrero, S. Effect of Emulsification on the Antimicrobial Activity of Carvacrol. CYTA-J. Food 2016, 14, 186–192. [Google Scholar] [CrossRef]
- Peleg, M. Microbial Inactivation Kinetics Models, Survival Curves Shapes, and the Temporal Distributions of the Individual Germs Deactivation. Food Eng. Rev. 2024, 16, 163–178. [Google Scholar] [CrossRef]
- García Carrillo, M.; Ferrario, M.; Guerrero, S.; García Carrillo, M. Study of the Inactivation of Some Microorganisms in Turbid Carrot-Orange Juice Blend Processed by Ultraviolet Light Assisted by Mild Heat Treatment. J. Food Eng. 2017, 212, 213–225. [Google Scholar] [CrossRef]
Microorganism | Treatment (g/L) | C | A | B | VE% (R2adj) | Fisher |
---|---|---|---|---|---|---|
S. cerevisiae | CIN 0.75 | −6.28 | 1.24 | −0.36 | 93.4 | 65 * |
CIN 1.0 | −6.86 | 1.03 | −0.35 | 98.1 | 238 ** | |
E-CIN 0.75 | −6.16 | 1.42 | −0.47 | 93.3 | 64 * | |
E-CIN 1.0 | −7.05 | 1.19 | −0.44 | 99.8 | 2074 ** | |
L. innocua | CIN 0.75 | −3.71 | 1.31 | −0.13 | 99.9 | 3458 ** |
E-CIN 0.75 | −4.13 | 0.97 | −0.20 | 99.1 | 490 ** | |
E. coli | CIN 0.75 | −1.97 | 0.60 | −0.11 | 99.8 | 2027 ** |
CIN 1.0 | −2.30 | 0.49 | −0.11 | 99.8 | 2744 ** | |
E-CIN 0.75 | −2.09 | 0.89 | −0.16 | 98.5 | 300 ** | |
E-CIN 1.0 | −2.96 | 0.93 | −0.13 | 98.4 | 272 ** |
Microorganism | Treatments (g/L) | C | A | B | VE% (R2adj.) | Fisher |
---|---|---|---|---|---|---|
S. cerevisiae | VN 1.0 | −1.25 | 0.37 | −0.21 | 95.7 | 143 * |
VN 1.5 | −1.48 | 0.24 | −0.29 | 96.4 | 207 * | |
E-VN 1.0 | −1.39 | 0.38 | −0.26 | 98.4 | 417 ** | |
E-VN 1.5 | −1.45 | 0.39 | −0.30 | 98.2 | 409 ** | |
L. innocua | VN 1.5 | −1.69 | 1.49 | −0.21 | 98.8 | 330 ** |
E-VN 1.5 | −1.48 | 1.06 | −0.14 | 99.1 | 457 ** | |
E. coli | VN 1.0 | −0.29 | 1.59 | −0.34 | 99.5 | 996 ** |
VN 1.5 | −0.69 | 0.72 | −0.13 | 99.2 | 553 ** | |
E-VN 1.0 | −0.41 | 1.12 | −0.20 | 99.7 | 1296 ** | |
E-VN 1.5 | −0.95 | 1.10 | −0.12 | 99.3 | 560 ** |
Microorganism | Treatment (g/L) | C | A | B | VE% (R2adj) | Fisher |
---|---|---|---|---|---|---|
S. cerevisiae | E-CIN 0.75 + E-VN 1.0 | −6.43 | 0.09 | −1.07 | 99.7 | 1020 ** |
E-CIN 1.0 + E-VN 1.5 | −6.08 | 0.35 | −1.59 | 99.4 | 688 ** | |
L. innocua | E-CIN 0.75 + E-VN 1.0 | −4.90 | 1.83 | −0.19 | 99.0 | 324 ** |
E-CIN 1.0 + E-VN 1.5 | −5.16 | 1.82 | −0.19 | 97.0 | 104 * | |
E. coli | E-CIN 0.75 + E-VN 1.0 | −3.11 | 2.27 | −0.18 | 96.5 | 77 * |
E-CIN 1.0 + E-VN 1.5 | −4.92 | 2.03 | −0.16 | 98.8 | 230 ** |
Microorganism | Treatment (g/L) | b (day−n) | n | VE% (R2adj) | Fisher | Mode (day) | Mean (day) | Variance (day2) | Skewness (-) |
---|---|---|---|---|---|---|---|---|---|
S. cerevisiae | CIN 0.75 | 0.48 | 1.17 | 97.5 | 144 * | 0.37 | 1.75 | 2.2 | 1.8 |
CIN 1.0 | 0.68 | 1.04 | 99.6 | 872 * | 0.07 | 1.43 | 1.9 | 2.0 | |
E-CIN 0.75 | 0.54 | 1.24 | 98.1 | 187 * | 0.43 | 1.53 | 1.5 | 1.8 | |
E-CIN 1.0 | 0.78 | 1.09 | 99.1 | 377 * | 0.12 | 1.22 | 1.3 | 2.0 | |
L. innocua | CIN 0.75 | 0.05 | 1.41 | 99.8 | 1352 * | 3.62 | 7.98 | 33.1 | 1.6 |
E-CIN 0.75 | 0.28 | 0.94 | 98.4 | 247 * | 0.20 | 3.96 | 17.8 | 2.3 | |
E. coli | CIN 0.75 | 0.08 | 0.99 | 99.7 | 1275 * | 0.16 | 13.81 | 195.5 | 2.1 |
CIN 1.0 | 0.10 | 0.94 | 99.7 | 1283 * | 0.62 | 11.64 | 154.2 | 2.3 | |
E-CIN 0.75 | 0.11 | 1.00 | 99.5 | 722 * | 0.00 | 9.51 | 90.3 | 2.1 | |
E-CIN 1.0 | 0.10 | 1.10 | 98.6 | 640 * | 0.95 | 7.88 | 51.2 | 1.9 |
Microorganism | Treatment | b (day−n) | n | VE% (R2adj.) | Fisher | Mode (day) | Mean (day) | Variance (day2) | Skewness (-) |
---|---|---|---|---|---|---|---|---|---|
S. cerevisiae | VN 1.0 | 0.15 | 0.68 | 98.6 | 361 ** | 5.45 | 21.31 | 1048.5 | 3.5 |
VN 1.5 | 0.30 | 0.49 | 99.7 | 1852 ** | 12.74 | 24.10 | 3123.1 | 6.5 | |
E-VN 1.0 | 0.23 | 0.59 | 99.4 | 983 ** | 6.79 | 19.14 | 1196.4 | 4.4 | |
E-VN 1.5 | 0.30 | 0.51 | 99.1 | 658 ** | 9.43 | 19.91 | 1846.7 | 5.8 | |
L. innocua | VN 1.5 | 0.046 | 1.28 | 99.9 | 4737 ** | 3.38 | 10.15 | 63.5 | 1.7 |
E-VN 1.5 | 0.046 | 1.16 | 99.9 | 5261 ** | 2.57 | 13.63 | 139.3 | 1.9 | |
E. coli | VN 1.0 | 0.028 | 0.90 | 95.8 | 91 * | 4.63 | 56.05 | 3889.3 | 2.4 |
VN 1.5 | 0.030 | 1.00 | 99.2 | 447 ** | 0.01 | 33.81 | 1144.0 | 2.1 | |
E-VN 1.0 | 0.024 | 1.01 | 98.9 | 334 ** | 0.40 | 40.76 | 1630.1 | 2.1 | |
E-VN 1.5 | 0.019 | 1.25 | 99.5 | 618 ** | 6.65 | 22.46 | 327.1 | 1.7 |
Microorganism | Treatment (g/L) | b (day−n) | n | VE% (R2adj) | Fisher | Mode (day) | Mean (day) | Variance (day2) | Skewness (-) |
---|---|---|---|---|---|---|---|---|---|
S. cerevisiae | E-CIN 0.75 + E-VN 1.0 | 2.02 | 0.49 | 94.9 | 60 ** | 0.26 | 0.49 | 1.3 | 6.4 |
E-CIN 1.0 + E-VN 1.5 | 2.52 | 0.41 | 91.9 | 42 ** | 0.25 | 0.32 | 0.9 | 9.7 | |
L. innocua | E-CIN 0.75 + E-VN 1.0 | 0.029 | 1.79 | 99.9 | 2029 *** | 4.54 | 6.35 | 13.4 | 1.4 |
E-CIN 1.0 + E-VN 1.5 | 0.036 | 1.78 | 99.9 | 2273 *** | 4.09 | 5.80 | 11.4 | 1.4 | |
E. coli | E-CIN 0.75 + E-VN 1.0 | 0.017 | 1.68 | 93.6 | 34 * | 6.68 | 10.25 | 39.5 | 1.4 |
E-CIN 1.0 + E-VN 1.5 | 0.024 | 1.67 | 95.7 | 53 ** | 5.36 | 8.29 | 26.1 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepúlveda, F.; Puente-Diaz, L.; Ortiz-Viedma, J.; Rodríguez, A.; Char, C. Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity. Foods 2024, 13, 2032. https://doi.org/10.3390/foods13132032
Sepúlveda F, Puente-Diaz L, Ortiz-Viedma J, Rodríguez A, Char C. Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity. Foods. 2024; 13(13):2032. https://doi.org/10.3390/foods13132032
Chicago/Turabian StyleSepúlveda, Francisco, Luis Puente-Diaz, Jaime Ortiz-Viedma, Alicia Rodríguez, and Cielo Char. 2024. "Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity" Foods 13, no. 13: 2032. https://doi.org/10.3390/foods13132032
APA StyleSepúlveda, F., Puente-Diaz, L., Ortiz-Viedma, J., Rodríguez, A., & Char, C. (2024). Encapsulation of Cinnamaldehyde and Vanillin as a Strategy to Increase Their Antimicrobial Activity. Foods, 13(13), 2032. https://doi.org/10.3390/foods13132032