Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Material
2.2. FAME Analysis
2.3. Determination of Phytosterols
2.4. Determination of Carotenoids
2.5. Determination of Phenolic Compounds
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trovato, G.M. Behavior, nutrition and lifestyle in a comprehensive health and disease paradigm: Skills and knowledge for a predictive, preventive and personalized medicine. EPMA J. 2012, 3, 8. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic compounds of pomegranate by-products (outer skin, mesocarp, divider membrane) and their antioxidant activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef] [PubMed]
- Farkas, O.; Jakus, J.; Héberger, K. Quantitative structure–antioxidant activity relationships of flavonoid compounds. Molecules 2004, 9, 1079–1088. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Bio. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Kurasiak-Popowska, D.; Ryńska, B.; Stuper-Szablewska, K. Analysis of Distribution of Selected Bioactive Compounds in Camelina sativa from Seeds to Pomace and Oil. Agronomy 2019, 9, 168. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Sati, S.C.; Sati, N.; Rawat, U.; Sati, O.P. Medicinal Plants as a Source of Antioxidants. Res. J. Phytochem. 2010, 4, 213–224. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kałucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Xu, D.-P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Li, H.-B. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources. Int. J. Mol. Sci. 2017, 18, 96. [Google Scholar] [CrossRef]
- Hoffman, R.; Gerber, M. Food Processing and the Mediterranean Diet. Nutrients 2015, 7, 7925–7964. [Google Scholar] [CrossRef] [PubMed]
- Sydor, M.; Kurasik-Popowska, D.; Stuper-Szablewska, K.; Rogoziński, T. Camelina sativa. Status quo and future perspectives. Ind. Crop. Prod. 2022, 187, 115531. [Google Scholar] [CrossRef]
- Tavarini, S.; De Leo, M.; Matteo, R.; Lazzeri, L.; Braca, A.; Angelini, L.G. Flaxseed and Camelina Meals as Potential Sources of Health-Beneficial Compounds. Plants 2021, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Zehr, K.R.; Walker, M.K. Omega-3 polyunsaturated fatty acids improve endothelial function in humans at risk for atherosclerosis: A review. Prost. Other Lipid Mediat. 2018, 134, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Mildner-Szkudlarz, S.; Siger, A.; Szwengiel, A.; Bajerska, J. Natural compounds from grape by-products enhance nutritive value and reduce formation of CML in model muffins. Food Chem. 2015, 172, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Kurasiak-Popowska, D.; Graczyk, M.; Przybylska-Balcerek, A.; Stuper-Szablewska, K.; Szwajkowska-Michałek, L. An Analysis of Variability in the Content of Phenolic Acids and Flavonoids in Camelina Seeds Depending on Weather Conditions, Functional Form, and Genotypes. Molecules 2022, 27, 3364. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, Z.; Grahovac, N.; Uletilović, D.; Kevrešan, Ž.; Kravić, S.; Durović, A.; Marjanović-Jeromela, A. Exploring the nutritional potential of Camelina sativa genotypes: A study on minerals and bioactive compounds. Ratar. Povrt. 2023, 60, 49–60. [Google Scholar] [CrossRef]
- Zanetti, F.; Alberghini, B.; Marjanović Jeromela, A.; Grahovac, N.; Rajković, D.; Kiprovski, B.; Monti, A. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 2021, 41, 2. [Google Scholar] [CrossRef]
- Piravi-vanak, Z.; Azadmard-Damirchi, S.; Kahrizi, D.; Mooraki, N.; Ercisli, S.; Savage, G.P.; Rostami Ahmadvandi, H.; Martinez, F. Physicochemical properties of oil extracted from camelina (Camelina sativa) seeds as a new source of vegetable oil in different regions of Iran. J. Mol. Liq. 2022, 345. [Google Scholar] [CrossRef]
- Mondor, M.; Hernández-Álvarez, A.J. Camelina sativa Composition, Attributes, and Applications: A Review. Eur. J. Lipid Sci. Technol. 2022, 124, 2100035. [Google Scholar] [CrossRef]
- Kiczorowska, B.; Samolińska, W.; Andrejko, D.; Kiczorowski, P.; Antoszkiewicz, Z.; Zając, M.; Winiarska-Mieczan, A.; Bąkowski, M. Comparative analysis of selected bioactive components (fatty acids, tocopherols, xanthophyll, lycopene, phenols) and basic nutrients in raw and thermally processed camelina, sunflower, and flax seeds (Camelina sativa L. Crantz, Helianthus L., and Linum L.). J. Food Sci. Technol. 2019, 56, 4296–4310. [Google Scholar] [CrossRef] [PubMed]
- Kurasiak-Popowska, D.; Stuper-Szablewska, K.; Nawracała, J. Camelina oil as a natural source of carotenoids for the cosmetics industry. Przem. Chem. 2017, 96, 2077–2080. [Google Scholar]
- Veljković, V.B.; Kostić, M.D.; Stamenković, O.S. Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Ind. Crop. Prod. 2022, 178, 114539. [Google Scholar] [CrossRef]
- Callaway, J.; Schwab, U.; Harvima, I.; Halonen, P.; Mykkänen, O.; Hyvönen, P.; Järvinen, T. Efficacy of dietary hempseed oil in patients with atopic dermatitis. J. Dermatol. Treat. 2005, 16, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Ghidoli, M.; Ponzoni, E.; Araniti, F.; Miglio, D.; Pilu, R. Genetic Improvement of Camelina sativa (L.) Crantz: Opportunities and Challenges. Plants 2023, 12, 570. [Google Scholar] [CrossRef] [PubMed]
- Ilić, P.N.; Rakita, S.M.; Spasevski, N.J.; Đuragić, O.M.; Marjanović Jeromela, A.M.; Cvejić, S.; Zanetti, F. Nutritive value of serbian camelina genotypes as an alternative feed ingredient. Food Feed Res. 2022, 49, 209–221. [Google Scholar] [CrossRef]
- Lopez, C.; Sotin, H.; Rabesona, H.; Novales, B.; Le Quéré, J.-M.; Froissard, M.; Faure, J.-D.; Guyot, S.; Anton, M. Oil Bodies from Chia (Salvia hispanica L.) and Camelina (Camelina sativa L.) Seeds for Innovative Food Applications: Microstructure, Composition and Physical Stability. Foods 2023, 12, 211. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega 6/omega 3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Pozzo, S.; Piergiovanni, A.R.; Ponzoni, E.; Brambilla, I.M.; Galasso, I. Evaluation of nutritional and antinutritional compounds in a collection of Camelina sativa varieties. J. Crop Improv. 2023, 37, 934–952. [Google Scholar] [CrossRef]
- Kumari, M.; Tannins, J.S. An Antinutrient with Positive Effect to Manage Diabetes. Res. J. Recent Sci. 2012, 1, 2502. [Google Scholar]
- Schlemmer, U.; Frølich, W.; Prieto, R.M.; Grases, F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol. Nutr. Food Res. 2009, 53, 330–375. [Google Scholar] [CrossRef]
- Stuper-Szablewska, K.; Buśko, M.; Góral, T.; Perkowski, J. The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi. Food Chem. 2014, 153, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Stuper-Szablewska, K.; Rogoziński, T.; Perkowski, J. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents. Arh. Hig. Rada. Toxicol. 2017, 68, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Stuper-Szablewska, K.; Kurasiak-Popowska, D.; Nawracała, J.; Perkowski, J. Study of metabolite profiles in winter wheat cultivars inducted by Fusarium infection. Cereal Res. Comm. 2016, 44, 572–584. [Google Scholar] [CrossRef]
- Hooda, S.; Jood, S. Organoleptic and nutritional evaluation of wheat biscuits supplemented with untreated and treated fenugreek flour. Food Chem. 2005, 90, 427–435. [Google Scholar] [CrossRef]
- Soupas, L.; Huikko, L.; Lampi, A.M.; Piironen, V. Pan-frying may induce phytosterol oxidation. Food Chem. 2007, 101, 286–297. [Google Scholar] [CrossRef]
- Kmiecik, D.; Korczak, J.; Rudzińska, M.; Kobus-Cisowska, J.; Gramza-Michałowska, A.; Hęś, M. β-Sitosterol and campesterol stabilisation by natural and synthetic antioxidants during heating. Food Chem. 2011, 128, 937–942. [Google Scholar] [CrossRef]
- Rudzińska, M.; Uchman, W.; Wąsowicz, E. Plant sterols in food technology. Acta Sci. Polo. Technol. Aliment. 2005, 4, 147–156. [Google Scholar]
- Aued-Pimentel, S.; Takemoto, E.; Antoniassi, R.; Badolato, E.S.G. Composition of tocopherols in sesame seed oil: An indicative of adulteration. Grasas Aceites 2006, 57, 205–210. [Google Scholar] [CrossRef]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.L.; Almeida, F.N.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. Camp. 2014, 34, 379–385. [Google Scholar] [CrossRef]
- Irías-Mata, A.; Stuetz, W.; Sus, N.; Hammann, S.; Gralla, K.; Cordero-Solano, A.; Vetter, W.; Frank, J. Tocopherols, Tocomonoenols, and Tocotrienols in Oils: A Comparison between Varieties and Chemical versus Mechanical Extraction. J. Agric. Food Chem. 2017, 65, 7476–7482. [Google Scholar] [CrossRef] [PubMed]
- Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593–600. [Google Scholar] [CrossRef]
- Ng, M.H.; Choo, Y.M.; Ma, A.N.; Chuah, C.H.; Hashim, M.A. Separation of vitamin E (tocopherol, tocotrienol, and tocomonoenol) in palm oil. Lipids 2004, 39, 1031–1035. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Alamprese, C.; Ratti, S. Tocopherols and tocotrienols as free radical-scavengers in refined vegetable oils and their stability during deep-fat frying. Food Chem. 2007, 102, 812–817. [Google Scholar] [CrossRef]
- Amoah, I.; Taarji, N.; Johnson, P.-N.T.; Barrett, J.; Cairncross, C.; Rush, E. Plant-Based Food By-Products: Prospects for Valorisation in Functional Bread Development. Sustainability 2020, 12, 7785. [Google Scholar] [CrossRef]
Fatty Acids | BnO | CsO | CsS | MBnO | MCsO | MCsS | MCsOS | |
---|---|---|---|---|---|---|---|---|
Formula | Name (Acronym) | |||||||
C14:0 | Myristic acid | 0.00 | 0.20 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
C15:0 | Pentadecanoic acid | 0.00 | 0.00 | 0.00 | 0.60 | 0.00 | 0.00 | 0.00 |
C15:1 | Pentadecenoic acid | 0.00 | 0.20 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
C16:0 | Palmitic acid (PA) | 4.40 | 5.90 | 5.10 | 19.23 | 13.26 | 8.23 | 5.39 |
C16:1 | Palmitoleic acid | 0.20 | 0.80 | 0.60 | 0.00 | 0.00 | 0.10 | 0.00 |
C17:0 | Margaric acid | 0.10 | 0.10 | 0.10 | 18.23 | 30.25 | 23.15 | 26.23 |
C17:1 | 10-heptadecenoic acid | 0.00 | 0.10 | 0.20 | 0.00 | 0.00 | 0.00 | 0.00 |
C18:0 | Stearic acid | 1.70 | 2.10 | 2.10 | 8.55 | 0.00 | 1.06 | 0.65 |
C18:1 | Oleic acid | 64.23 | 13.52 | 13.2 | 35.63 | 14.06 | 10.22 | 3.56 |
C18:2ω-6 | Linoleic acid (LA) | 16.20 | 17.90 | 16.3 | 4.58 | 5.13 | 12.52 | 4.36 |
C18:3ω-6 | y-Linolenic acid (GLA) | 0.10 | 0.30 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 |
C18:3ω-3 | α- Linolenic acid (ALA) | 9.20 | 36.02 | 35.9 | 1.36 | 26.22 | 26.36 | 29.66 |
C20:0 | Arachidic acid (ARA) | 0.40 | 4.60 | 1.30 | 12.36 | 8.25 | 0.60 | 10.23 |
C20:1 | c-11-eicosenoic acid | 1.20 | 15.63 | 24.4 | 0.00 | 3.25 | 18.56 | 20.56 |
C20:2 | c-11, 14-eicosadienoic acid | 0.10 | 0.10 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 |
C22:1 | Erucic acid (EU) | 0.30 | 2.60 | 0.90 | 0.00 | 0.30 | 0.00 | 0.00 |
C24:0 | Lignoceric acid | 0.30 | 0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
C24:1 | Nervonic acid | 0.00 | 0.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
BnO | CsO | CsS | MBnO | MCsO | MCsS | MCsOS | |
---|---|---|---|---|---|---|---|
Campesterol | 271.3 ± 1.58 b | 120.3 ± 0.08 a | 118.2 ± 0.91 a | 259.4 ± 1.29 c | 116.5 ± 1.01 b | 106.4 ± 0.88 a | 146.4 ± 1.02 b |
Stigmasterol | 3.5 ± 0.02 b | 1.1 ± 0.01 a | ND | 2.0 ± 0.02 b | 0.6 ± 0.01 a | ND | 1.9 ± 0.02 b |
β-sitosterol | 356.4 ± 1.98 ab | 385.2 ± 2.11 b | 321.6 ± 2.04 a | 321.3 ± 2.13 a | 369.0 ± 2.19 b | 305.2 ± 1.86 a | 456.4 ± 2.56 c |
delta 5-avenasterol | 26.6 ± 0.03 a | 46.4 ± 0.04 ab | 57.3 ± 0.04 b | 26.5 ± 0.04 a | 37.6 ± 0.04 b | 54.2 ± 0.05 c | 66.5 ± 0.06 d |
Brassicasterol | 70.3 ± 0.04 c | 10.3 ± 0.03 a | 27.0 ± 0.03 b | 59.4 ± 0.06 c | 8.7 ± 0.02 a | 20.4 ± 0.04 b | 25.3 ± 0.03 b |
BnO | CsO | CsS | MBnO | MCsO | MCsS | MCsOS | |
---|---|---|---|---|---|---|---|
Lutein | 5.12 ± 0.02 a | 14.58 ± 0.08 b | 16.10 ± 0.03 b | 2.16 ± 0.02 a | 6.23 ± 0.02 b | 8.22 ± 0.01 b | 13.52 ± 0.09 c |
Zeaxanthin | 2.05 ± 0.02 a | 6.54 ± 0.03 b | 7.09 ± 0.04 b | 0.66 ± 0.01 a | 2.33 ± 0.02 b | 5.62 ± 0.03 b | 9.25 ± 0.09 c |
Beta-carotene | 89.36 ± 0.41 a | 120.74 ± 0.59 b | 133.69 ± 0.60 b | 43.25 ± 0.26 a | 79.58 ± 0.39 b | 111.36 ± 0.42 c | 149.65 ± 0.62 d |
BnO | CsO | CsS | MBnO | MCsO | MCsS | MCsOS | ||
---|---|---|---|---|---|---|---|---|
Flavonoid aglycones | Apigenin | 26.36 ± 0.51 a | 85.24 ± 0.91 b | 94.62 ± 1.07 b | 20.16 ± 0.52 a | 80.74 ± 0.61 b | 89.65 ± 0.61 b | 116.85 ± 1.02 c |
Catechin | 2.45 ± 0.05 a | 7.26 ± 0.06 b | 9.23 ± 0.10 b | 1.82 ± 0.04 a | 6.89 ± 0.08 b | 8.16 ± 0.11 b | 12.52 ± 0.16 b | |
Kaempferol | 16.22 ± 0.24 a | 48.25 ± 0.71 b | 40.45 ± 0.65 b | 14.52 ± 0.21 a | 39.56 ± 0.71 b | 36.75 ± 0.65 b | 61.25 ± 0.92 c | |
Luteolin | 10.25 ± 0.15 a | 55.25 ± 0.76 b | 107.09 ± 0.98 c | 8.98 ± 0.10 a | 49.52 ± 0.73 b | 89.99 ± 1.33 c | 146.52 ± 2.01 d | |
Naringenin | 35.23 ± 0.56 a | 59.25 ± 0.82 b | 86.39 ± 1.01 c | 26.56 ± 0.39 a | 47.12 ± 0.71 b | 72.35 ± 1.01 c | 119.85 ± 2.35 d | |
Quercetin | 29.56 ± 0.32 a | 119.25 ± 1.03 c | 46.69 ± 0.42 b | 25.85 ± 0.35 a | 100.52 ± 1.42 b | 32.52 ± 0.48 a | 126.56 ± 1.76 c | |
Rutin | 6.58 ± 0.07 a | 10.41 ± 0.02 a | 34.01 ± 0.03 b | 5.22 ± 0.07 a | 8.96 ± 0.12 a | 26.85 ± 0.41 b | 33.56 ± 0.36 c | |
Vitexin | 29.36 ± 0.51 a | 50.41 ± 0.91 b | 41.96 ± 0.82 b | 24.13 ± 0.48 a | 42.16 ± 0.79 b | 35.69 ± 0.69 ab | 70.45 ± 1.26 c | |
Phenolic acids | 4-hydroxybenzoic | 31.25 ± 0.46 a | 52.14 ± 0.52 b | 174.12 ± 1.68 c | 6.56 ± 0.11 a | 14.52 ± 0.24 b | 36.52 ± 0.61 c | 39.52 ± 0.66 c |
Caffeic | 28.63 ± 0.31 a | 106.24 ± 1.21 b | 149.93 ± 1.92 c | 5.84 ± 0.12 a | 12.63 ± 0.24 b | 26.56 ± 0.50 c | 45.69 ± 0.85 d | |
Chlorogenic | 56.36 ± 0.57 a | 165.33 ± 1.62 c | 149.61 ± 1.35 b | 16.36 ± 0.26 a | 46.52 ± 0.91 c | 36.22 ± 0.72 b | 59.85 ± 1.26 d | |
Ferulic | 28.55 ± 0.50 a | 46.37 ± 0.72 b | 92.42 ± 1.65 c | 6.85 ± 0.07 a | 10.52 ± 0.12 a | 24.25 ± 0.27 b | 30.56 ± 0.29 c | |
Gallic | 10.45 ± 0.15 a | 12.33 ± 0.15 a | 25.97 ± 0.21 b | 2.41 ± 0.03 a | 3.45 ± 0.03 a | 6.52 ± 0.06 b | 8.98 ± 0.11 c | |
p-Coumaric | 1.06 ± 0.01 a | 4.12 ± 0.02 b | 13.62 ± 0.09 c | 0.16 ± 0.01 a | 1.65 ± 0.02 a | 4.85 ± 0.06 b | 6.89 ± 0.06 c | |
Protocatechuic | 44.52 ± 0.81 a | 65.33 ± 1.17 b | 181.02 ± 3.26 c | 16.36 ± 0.31 a | 21.63 ± 0.39 b | 68.12 ± 0.75 c | 72.66 ± 0.82 c | |
Sinapic | 76.36 ± 0.77 a | 65.302 ± 1.25 b | 107.86 ± 3.25 c | 21.36 ± 0.39 a | 65.25 ± 0.65 b | 119.63 ± 1.21 c | 100.85 ± 1.00 c | |
Syringic | 33.52 ± 0.45 a | 63.24 ± 0.72 b | 115.71 ± 1.11 c | 13.25 ± 0.21 a | 15.62 ± 0.21 a | 36.54 ± 0.35 b | 49.85 ± 0.52 c | |
t-Cinnamic | 37.42 ± 0.40 a | 52.33 ± 0.49 b | 104.99 ± 0.98 c | 14.79 ± 0.20 a | 22.41 ± 0.25 b | 38.52 ± 0.41 c | 60.45 ± 0.72 d | |
Vanillin | 26.56 ± 0.36 a | 59.37 ± 0.62 b | 30.90 ± 0.39 a | 4.69 ± 0.06 a | 12.36 ± 0.15 b | 6.36 ± 0.09 ab | 26.52 ± 0.51 c | |
Vanillic acid | 3.45 ± 0.03 b | 0.70 ± 0.01 a | 1.85 ± 0.02 a | 10.55 ± 0.15 b | 6.85 ± 0.07 a | 16.85 ± 0.20 c | 34.16 ± 0.49 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilska, A.; Kurasiak-Popowska, D.; Szablewski, T.; Radzimirska-Graczyk, M.; Stuper-Szablewska, K. Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value. Foods 2024, 13, 2027. https://doi.org/10.3390/foods13132027
Bilska A, Kurasiak-Popowska D, Szablewski T, Radzimirska-Graczyk M, Stuper-Szablewska K. Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value. Foods. 2024; 13(13):2027. https://doi.org/10.3390/foods13132027
Chicago/Turabian StyleBilska, Agnieszka, Danuta Kurasiak-Popowska, Tomasz Szablewski, Monika Radzimirska-Graczyk, and Kinga Stuper-Szablewska. 2024. "Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value" Foods 13, no. 13: 2027. https://doi.org/10.3390/foods13132027
APA StyleBilska, A., Kurasiak-Popowska, D., Szablewski, T., Radzimirska-Graczyk, M., & Stuper-Szablewska, K. (2024). Camelina sativa Seeds and Oil as Ingredients in Model Muffins in Order to Enhance Their Health-Promoting Value. Foods, 13(13), 2027. https://doi.org/10.3390/foods13132027