Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Main Instruments and Equipment
2.3. Experimental Technical Process Chart
2.4. Extraction of PsP
2.4.1. Distinguishment of Young and Mature Rhizomes, and DESs Preparation
2.4.2. Extraction and Purification
2.5. Chemical Composition Analysis
2.5.1. Determination of PsP
2.5.2. Determination of Protein Content in PsP Solution
2.6. Molecular Weight Determination of PsP
2.7. Detection of Monosaccharide Component
2.8. Analysis by Infrared Spectroscopy
2.9. In Vitro Antioxidant Activity
2.9.1. DPPH Radical Scavenging Rate
2.9.2. ABTS Radical Scavenging Rate
2.9.3. Total Oxyradical Scavenging Ability
2.9.4. In Vitro Catalase Activity Determination
2.10. Statistical Analysis
3. Results
3.1. Comparisons of PsP Extraction Rates and the PsP Contents at Each Extraction Stage between Young and Mature Rhizomes
3.2. Comparison of Molecular Weight of PsP between Young and Mature Rhizomes
3.3. Composition of Monosaccharide Compositions of PsP between Young and Mature Rhizomes
3.4. Comparison of Infrared Spectroscopic Analysis of PsP between Young and Mature Rhizomes
3.5. Comparisons of Antioxidant Ability of PsP between Young and Mature Rhizomes
3.5.1. Comparison of DPPH and ABTS Scavenging Ability Analysis
3.5.2. Comparison of Total Oxyradical Scavenging Ability Analysis
3.5.3. Comparison of In Vitro Catalase Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
P. sibiricum | Polygonatum sibiricum |
PsP | Polygonatum sibiricum Polysaccharide |
DESs | Deep eutectic solvents |
UAE-DESs | Ultrasound-assisted extraction-deep eutectic solvents |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ABTS | 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfoniacid) |
BSA | Bovine serum albumin |
UP | Ultrapure |
TFA | Trifluoroacetic acid |
PMP | 1-phenyl-3-methyl-5-pyrazolone |
SO | Sarcopenia obesity |
References
- Ali, M.; Bahadur, S.; Hussain, A.; Saeed, S.; Khuram, I.; Ullah, M.; Shao, J.W.; Akhtar, N. Foliar epidermal micromorphology and its taxonomic significance in Polygonatum (Asparagaceae) using scanning electron microscopy. Microsc. Res. Tech. 2020, 83, 1381–1390. [Google Scholar] [CrossRef]
- Zhao, P.; Li, X.; Wang, Y.; Zhang, X.; Jia, H.; Guo, L.; Huang, L.; Gao, W. Comparative studies on characterization, saccharide mapping and antiglycation activity of polysaccharides from different Polygonatum ssp. J. Pharm. Biomed. Anal. 2020, 186, 113243. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shen, M.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Gan, X.; Li, Y.; Chen, J.; Xu, Y.; Shi, S.; Li, T.; Li, B.; Wang, H.; Wang, S. Review on the genus Polygonatum polysaccharides: Extraction, purification, structural characteristics and bioactivities. Int. J. Biol. Macromol. 2023, 229, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Patil, S.; Qian, A.; Zhao, C. Bioactive Compounds of Polygonatum sibiricum—Therapeutic Effect and Biological Activity. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 26–37. [Google Scholar] [CrossRef]
- Cheng, X.; Ji, H.; Cheng, C.; Sun, Y.; Cheng, H.; Wang, D.; Pan, Y.; Liu, X. Comprehensive determination of the processing level of rhizome of Polygonatum sibiricum by macroscopic, micromorphological, and microscopic characterizations. Microsc. Res. Tech. 2022, 85, 2669–2678. [Google Scholar] [CrossRef]
- Huang, G.; Mei, X.; Hu, J. The Antioxidant Activities of Natural Polysaccharides. Curr. Drug Targets 2017, 18, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Xie, Q.; Wang, H.; Hu, Y.; Ren, B.; Li, X. Recent advances in plant polysaccharide-mediated nano drug delivery systems. Int. J. Biol. Macromol. 2020, 165, 2668–2683. [Google Scholar] [CrossRef]
- Ullah, S.; Khalil, A.A.; Shaukat, F.; Song, Y. Sources, Extraction and Biomedical Properties of Polysaccharides. Foods 2019, 8, 304. [Google Scholar] [CrossRef]
- Wang, E.; Chen, X.; Wang, K.; Wang, J.; Chen, D.; Geng, Y.; Lai, W.; Wei, X. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish. Fish. Shellfish. Immunol. 2016, 59, 196–202. [Google Scholar] [CrossRef]
- Di, T.; Chen, G.; Sun, Y.; Ou, S.; Zeng, X.; Ye, H. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J. Funct. Foods 2017, 28, 64–75. [Google Scholar] [CrossRef]
- Liu, S.; Jia, Q.J.; Peng, Y.Q.; Feng, T.H.; Hu, S.T.; Dong, J.E.; Liang, Z.S. Advances in Mechanism Research on Polygonatum in Prevention and Treatment of Diabetes. Front. Pharmacol. 2022, 13, 758501. [Google Scholar] [CrossRef] [PubMed]
- Pauly, M.; Keegstra, K. Biosynthesis of the Plant Cell Wall Matrix Polysaccharide Xyloglucan. Annu. Rev. Plant Biol. 2016, 67, 235–259. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Li, X.; Wang, Y.; Yan, L.; Guo, L.; Huang, L.; Gao, W. Characterisation and saccharide mapping of polysaccharides from four common Polygonatum spp. Carbohydr. Polym. 2020, 233, 115836. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2015, 132, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, L.; Su, X.; Li, Q.; Guo, H.; Liu, Z.; Wei, Z.; Wang, F. Research on the Impact of Deep Eutectic Solvent and Hot-Water Extraction Methods on the Structure of Polygonatum sibiricum Polysaccharides. Molecules 2023, 28, 6981. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Tang, W.; Han, C.; Nie, S. Advances in Polygonatum sibiricum polysaccharides: Extraction, purification, structure, biosynthesis, and bioactivity. Front. Nutr. 2022, 9, 1074671. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.L.; Li, X.P.; Zhu, Y.L.; Yi, G.Q.; Wang, W.; Chen, X.Y.; Deng, G.M.; Yang, L.; Cai, H.Z.; Tong, Q.Z.; et al. Polygonatum sibiricum polysaccharides (PSP) improve the palmitic acid (PA)-induced inhibition of survival, inflammation, and glucose uptake in skeletal muscle cells. Bioengineered 2021, 12, 10147–10159. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Song, Z.; Xie, P.; Li, L.; Wang, B.; Peng, D.; Zhu, G. Polygonatum sibiricum polysaccharide prevents depression-like behaviors by reducing oxidative stress, inflammation, and cellular and synaptic damage. J. Ethnopharmacol. 2021, 275, 114164. [Google Scholar] [CrossRef]
- Long, T.; Liu, Z.; Shang, J.; Zhou, X.; Yu, S.; Tian, H.; Bao, Y. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Int. J. Biol. Macromol. 2018, 111, 813–821. [Google Scholar] [CrossRef]
- Kakar, M.U.; Karim, H.; Shabir, G.; Iqbal, I.; Akram, M.; Ahmad, S.; Shafi, M.; Gul, P.; Riaz, S.; Rehman, R.U.; et al. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci. Nutr. 2023, 11, 3655–3674. [Google Scholar] [CrossRef] [PubMed]
- Xiaowei, C.; Wei, W.; Hong, G.; Hui, C.; Xiaofei, Z.; Haonan, W.; Yumeng, W.; Xuelan, Z.; Chunchao, H. Review of Polygonatum sibiricum: A new natural cosmetic ingredient. Pharmazie 2019, 74, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Huang, Y.; Yang, Y.; Tian, Y. The Difference of Physicochemical Indexes and Chemical Components in Different Parts of Polygonatum kingianum. J. Agric. 2021, 11, 70–75. [Google Scholar]
- Sun, C.; Wang, G.; Sun, J.; Yin, J.; Huang, J.; Li, Z.; Mu, D.; He, M.; Liu, T.; Cheng, J.; et al. A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method. Foods 2023, 12, 3438. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Vasil’eva, I.S.; Shumakovich, G.P.; Zaitseva, E.A.; Yaropolov, A.I. Deep Eutectic Solvents for Biotechnology Applications. Biochemistry 2023, 88, S150–S175. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Zamora, C.; González-Sálamo, J.; Hernández-Borges, J. Deep Eutectic Solvents Application in Food Analysis. Molecules 2021, 26, 6846. [Google Scholar] [CrossRef]
- Rachiero, G.P.; Berton, P.; Shamshina, J. Deep Eutectic Solvents: Alternative Solvents for Biomass-Based Waste Valorization. Molecules 2022, 27, 6606. [Google Scholar] [CrossRef]
- Maran, J.P.; Priya, B. Ultrasound-assisted extraction of polysaccharide from Nephelium lappaceum L. fruit peel. Int. J. Biol. Macromol. 2014, 70, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.B.; Yang, X.; Wang, J.; Zhao, H.T.; Lu, W.H.; Cui, J.; Cheng, C.L.; Zou, P.; Huang, W.W.; Wang, P.; et al. Chemical composition and antioxidant activities of three polysaccharide fractions from pine cones. Int. J. Mol. Sci. 2012, 13, 14262–14277. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Zhang, X.; Wang, Y.; Qiang, Y.; Wang, B.; Zou, J.; Niu, J.; Wang, Z. Structural characterization and antioxidant activity of Polygonatum sibiricum polysaccharides. Carbohydr. Polym. 2022, 291, 119524. [Google Scholar] [CrossRef]
- Chen, P.; Ding, S.; Yan, Z.; Liu, H.; Tu, J.; Chen, Y.; Zhang, X. Structural Characteristic and In-Vitro Anticancer Activities of Dandelion Leaf Polysaccharides from Pressurized Hot Water Extraction. Nutrients 2022, 15, 80. [Google Scholar] [CrossRef]
- Deore, U.V.; Mahajan, H.S. Isolation and structural characterization of mucilaginous polysaccharides obtained from the seeds of Cassia uniflora for industrial application. Food Chem. 2021, 351, 129262. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zeng, J.; Gong, P.; Wu, Y.; Li, H. Effect of steaming process on the structural characteristics and antioxidant activities of polysaccharides from Polygonatum sibiricum rhizomes. Glycoconj. J. 2021, 38, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Huang, G. Extraction, separation, modification, structural characterization, and antioxidant activity of plant polysaccharides. Chem. Biol. Drug Des. 2020, 96, 1209–1222. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Weydert, C.J.; Cullen, J.J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Liu, X.; Xu, S.; Shao, P.; Li, J.; Chen, Z.; Wang, X.; Lin, Y.; Renard, C. Advances in green solvents for production of polysaccharide-based packaging films: Insights of ionic liquids and deep eutectic solvents. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1030–1057. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, X.; Miao, J.; Jing, S.; Li, X.; Huang, L.; Gao, W. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi. Int. J. Biol. Macromol. 2017, 102, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.Y.; Yu, J.; Jiao, J.S.; Dong, X.D.; Yu, S.S.; Liu, A.J. Ultrasonic-Assisted Extraction of Codonopsis pilosula Glucofructan: Optimization, Structure, and Immunoregulatory Activity. Nutrients 2022, 14, 927. [Google Scholar] [CrossRef]
- Polka, D.; Podsędek, A.; Koziołkiewicz, M. Comparison of Chemical Composition and Antioxidant Capacity of Fruit, Flower and Bark of Viburnum opulus. Plant Foods Hum. Nutr. 2019, 74, 436–442. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X.; Yang, Q.; Yu, Z.; Zhao, Z.; Yi, T.; Chen, H. Comparison of the immunoregulatory function of different constituents in radix astragali and radix hedysari. J. Biomed. Biotechnol. 2010, 2010, 479426. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, F.F.; Xiao, J.P.; Wei, J.Y.; Tang, L.Y.; Yang, H.J. Research advances in chemical constituents and pharmacological activities of different parts of Eucommia ulmoides. Zhongguo Zhong Yao Za Zhi 2020, 45, 497–512. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Zhang, X.; Huang, S.; Feng, X.; Zhang, X.; Xiang, D. A monomeric polysaccharide from Polygonatum sibiricum improves cognitive functions in a model of Alzheimer’s disease by reshaping the gut microbiota. Int. J. Biol. Macromol. 2022, 213, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.; Liu, H.; Zhu, Y.; Xin, H.; Ma, Y.; Chen, Z. Effects of Polygonatum sibiricum on Physicochemical Properties, Biological Compounds, and Functionality of Fermented Soymilk. Foods 2023, 12, 2715. [Google Scholar] [CrossRef]
- Andreoli, M.C.C.; Totoli, C. Peritoneal Dialysis. Rev. Assoc. Med. Bras. 1992 2020, 66 (Suppl. S1), s37–s44. [Google Scholar] [CrossRef] [PubMed]
- Lijun, N.; Yuanyuan, W.; Wanying, H.; Liguo, Z. Monosaccharide Composition, Activity and Their Correlation Analysis in Eight Polysaccharides. J. Tianjin Univ. 2014, 47, 326–330. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, X.; Ma, J.; Zhang, M.; Wu, H. Structural Elucidation of a Novel Pectin-Polysaccharide from the Petal of Saussurea laniceps and the Mechanism of its Anti-HBV Activity. Carbohydr. Polym. 2019, 223, 115077. [Google Scholar] [CrossRef]
- Jing, Y.; Yan, M.; Zhang, H.; Liu, D.; Qiu, X.; Hu, B.; Zhang, D.; Zheng, Y.; Wu, L. Effects of Extraction Methods on the Physicochemical Properties and Biological Activities of Polysaccharides from Polygonatum sibiricum. Foods 2023, 12, 2088. [Google Scholar] [CrossRef]
The Name of Product | The Code of Product | Company (City, State, Country) |
---|---|---|
2,2-diphenyl-1-picrylhydrazyl (DPPH) | BSF220911 | Shanghai Shifeng biological technology Co., Ltd. (Shanghai, China) |
2,20-azino-bis(3-ethylbenzothiazoline-6- sulfonic acid) (ABTS) | 221899 | Aladdin, Inc. (Shanghai, China) |
Bovine serum albumin (BSA) | WXBC7961V | Sigma Co., Ltd. (St. Louis, MO, USA) |
D-Glucose anhydrous-RM | RMT13890 | Beijing Manhagebio-tech, Co., Ltd. (Beijing, China) |
Coomassie brilliant blue G-250 | 727Y032 | Beijing Solarbio life science, Inc. (Beijing, China) |
Catalase (CAT) Assay Kit | 20221008 | Beijing Solarbio life science, Inc. (Beijing, China) |
Catalase | 1129Y021 | Beijing Solarbio life science, Inc. (Beijing, China) |
TSK-gel G3000 PWXL column | 0008033 | Guangzhou Lubex Scientific Instrument, Co., Ltd. (Guangzhou, China) |
Eclipse XDB-C18 | 7995118-585 | Agilent Technologies, Inc. (Santa Clara, CA, USA) |
Sephadex G-50 | #9048-71-9 | Shanghai yuanye Bio-Technology Co., Ltd. (Shanghai, China) |
Material (mg) | Extraction Yield mg (%) | Deproteinization mg (%) | Inside of Dialysis Bag mg (%) | Outside of Dialysis Bag mg (%) | End Product mg (%) | Purity % |
---|---|---|---|---|---|---|
Young rhizome PsP (1250) | 423.50 ± 24.32 (33.88 ± 1.95)% | 136.13 ± 10.94 (10.89 ± 0.64)% | 33.67 ± 2.69 (2.69 ± 0.22)% | 87.79 ± 2.63 (7.02 ± 0.21)% | 37.42 ± 2.48 (2.99 ± 0.20)% | (98.24 ± 0.47)% * |
Mature rhizome PsP (1250) | 563.46 ± 23.96 (45.08 ± 1.92)% | 242.61 ± 10.69 (19.38 ± 0.86)% | 83.95 ± 4.78 (6.71 ± 0.38)% | 137.29 ± 1.77 (10.98 ± 0.22)% | 67.83 ± 2.14 (5.43 ± 0.17)% | (98.28 ± 0.30)% * |
Sample | Retention Times (min) | Mw (Da) |
---|---|---|
Young rhizome PsP | 15.898 | 2100 |
Mature rhizome PsP | 15.472 | 4600 |
Sample | Man | GlcN | Rha | GlcNAc | GlcA | GalA | Glc | Gal | Xyl | Fuc |
---|---|---|---|---|---|---|---|---|---|---|
Young rhizome PsP | 1.34 | 0.00 | 0.04 | 0.00 | 0.00 | 0.26 | 1.00 | 0.39 | 0.15 | 0.00 |
Mature rhizome PsP | 1.27 | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 1.00 | 0.17 | 0.09 | 0.00 |
Type of Experiment | Young Rhizome PsP (mg/mL) | Mature Rhizome PsP (mg/mL) | Vitamin C (μg/mL) |
---|---|---|---|
Scavenging rate of DPPH radical | 38.89 | 54.77 | 9.86 |
Scavenging rate of ABTS radical | 56.58 | 49.15 | 16.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, J.; Xu, Y.; Sun, C.; Qu, W.; Du, H.; He, M.; Huo, J.; Sun, J.; Huang, J.; et al. Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes. Foods 2024, 13, 2010. https://doi.org/10.3390/foods13132010
Chen Y, Liu J, Xu Y, Sun C, Qu W, Du H, He M, Huo J, Sun J, Huang J, et al. Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes. Foods. 2024; 13(13):2010. https://doi.org/10.3390/foods13132010
Chicago/Turabian StyleChen, Yan, Jing Liu, Yifan Xu, Chaoqun Sun, Wenjie Qu, Hanchen Du, Menglu He, Junsheng Huo, Jing Sun, Jian Huang, and et al. 2024. "Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes" Foods 13, no. 13: 2010. https://doi.org/10.3390/foods13132010
APA StyleChen, Y., Liu, J., Xu, Y., Sun, C., Qu, W., Du, H., He, M., Huo, J., Sun, J., Huang, J., & Yin, J. (2024). Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes. Foods, 13(13), 2010. https://doi.org/10.3390/foods13132010