Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea (Pisum sativum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Metabolite Sample Preparation
2.3. UPLC Conditions
2.4. ESI-Q TRAP-MS/MS
2.5. Identification of Metabolites
2.6. Statistical Analysis
2.7. Differential Metabolites Selected
2.8. KEGG Annotation and Enrichment Analysis
3. Results and Discussion
3.1. Metabolite Profiles of Different Peas
3.2. Identification of the Differentially Accumulated Metabolites (DAMs)
3.3. Comparative Analysis of the Important Nutrients and Anti-Nutrients in Peas
3.4. Identification and Comparative Analysis of the Flavonoid Metabolites in Peas
3.5. Putative Metabolic Pathway of Flavonoids in Peas
3.6. The Guiding Significance of This Study for Future Work
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, J.; Li, X.; Zhang, Y.; Yang, Y.; Sun, R.; Li, Y.; Gao, J.; Han, Y. Differential flavonoids and carotenoids profiles in grains of six poaceae crops. Foods 2022, 11, 2068. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, J.; Yu, X.; You, Y. The potential pharmacological mechanism of prunetin against osteoporosis: Transcriptome analysis, molecular docking, and experimental approaches. Toxicol. Mech. Methods 2023, 34, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Gu, Z.; Manthey, F.; Chen, B.; Rao, J. Comparison of the Proximate Compositions, Nutritional Minerals, Pasting Properties, and Aroma Differences of Flours from Selected Yellow Pea Cultivars Grown across the Northern Great Plains. ACS Food Sci. Technol. 2021, 1, 1529–1537. [Google Scholar] [CrossRef]
- Guo, F.; Xiong, H.; Wang, X.; Jiang, L.; Yu, N.; Hu, Z.; Sun, Y.; Tsao, R. Phenolics of green pea (Pisum sativum L.) hulls, their plasma and urinary metabolites, bioavailability, and in vivo antioxidant activities in a rat model. J. Agric. Food Chem. 2019, 67, 11955–11968. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Tsao, R.; Wang, X.; Jiang, L.; Sun, Y.; Xiong, H. Phenolics of yellow pea (Pisum sativum L.) hulls, their plasma and urinary metabolites, organ distribution, and in vivo antioxidant activities. J. Agric. Food Chem. 2021, 69, 5013–5025. [Google Scholar] [CrossRef]
- Hradilova, I.; Trněný, O.; Valkova, M.; Cechová, M.; Janská, A.; Prokešová, L.; Aamir, K.; Krezdorn, N.; Rotter, B.; Winter, P. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.). Front. Plant Sci. 2017, 8, 542. [Google Scholar] [CrossRef] [PubMed]
- Vigeolas, H.; Chinoy, C.; Zuther, E.; Blessington, B.; Geigenberger, P.; Domoney, C. Combined metabolomic and genetic approaches reveal a link between the polyamine pathway and albumin 2 in developing pea seeds. Plant Physiol. 2008, 146, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar Sistani, N.; Kaul, H.-P.; Desalegn, G.; Wienkoop, S. Rhizobium impacts on seed productivity, quality, and protection of Pisum sativum upon disease stress caused by Didymella pinodes: Phenotypic, proteomic, and metabolomic traits. Front. Plant Sci. 2017, 8, 1961. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, X.; Lang, Z.; Zhang, C.; Li, L.; He, Y.; Liu, N.; Zhu, Y.; Hong, G. Comparison of Nutritional Diversity in Five Fresh Legumes Using Flavonoids Metabolomics and Postharvest Botrytis cinerea Defense Analysis of Peas Mediated by Sakuranetin. J. Agric. Food Chem. 2024, 72, 6053–6063. [Google Scholar] [CrossRef]
- Puzanskiy, R.; Yemelyanov, V.; Kliukova, M.; Shavarda, A.; Shtark, O.Y.; Yurkov, A.; Shishova, M. Optimization of metabolite profiling for black medick (Medicago lupulina) and peas (Pisum sativum). Appl. Biochem. Microbiol. 2018, 54, 442–448. [Google Scholar] [CrossRef]
- Zhong, X.; Yang, M.; Zhang, X.; Fan, Y.; Wang, X.; Xiang, C. Comparative analysis of transcriptome and metabolome explores the underlying mechanism of pod color variation in pea (Pisum sativum L.). J. Plant Biochem. Biotechnol. 2024, 33, 144–156. [Google Scholar] [CrossRef]
- Calabrese, V.; Schmitz-Afonso, I.; Riah-Anglet, W.; Trinsoutrot-Gattin, I.; Pawlak, B.; Afonso, C. Direct introduction MALDI FTICR MS based on dried droplet deposition applied to non-targeted metabolomics on Pisum Sativum root exudates. Talanta 2023, 253, 123901. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, S.; Chen, G.; Lu, X.; Wei, R.; Xu, L.; Feng, X.; Yang, X.; Chai, Q.; Zhang, X. New insights into the occurrence of continuous cropping obstacles in pea (Pisum sativum L.) from soil bacterial communities, root metabolism and gene transcription. BMC Plant Biol. 2023, 23, 226. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Ma, S.; Chen, G.; Lu, X.; Zhang, C.; Wei, R.; Feng, X.; Xu, L.; Zhang, X.; Chai, Q. Transcriptomics and metabolomics revealed the synthesis and potential role of flavonoids in pea roots under continuous cropping obstacles. Physiol. Plant. 2024, 176, e14185. [Google Scholar] [CrossRef]
- Szablińska-Piernik, J.; Lahuta, L.B. Metabolite profiling of semi-leafless pea (Pisum sativum L.) under progressive soil drought and subsequent re-watering. J. Plant Physiol. 2021, 256, 153314. [Google Scholar] [CrossRef] [PubMed]
- Szablińska-Piernik, J.; Lahuta, L.B. Changes in Polar Metabolites during Seed Germination and Early Seedling Development of Pea, Cucumber, and Wheat. Agriculture 2023, 13, 2278. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, Y.; Wang, Y.; Li, M.; Li, K.; Liu, X.; Fang, C.; Luo, J. Metabolomic analysis reveals nutritional diversity among three staple crops and three fruits. Foods 2022, 11, 550. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhai, G.; Li, X.; Tao, H.; Li, L.; He, Y.; Zhang, X.; Wang, F.; Hong, G.; Zhu, Y. Metabolomics reveals nutritional diversity among six coarse cereals and antioxidant activity analysis of grain sorghum and sweet sorghum. Antioxidants 2022, 11, 1984. [Google Scholar] [CrossRef] [PubMed]
- Darnton-Hill, I. Public health aspects in the prevention and control of vitamin deficiencies. Curr. Dev. Nutr. 2019, 3, nzz075. [Google Scholar] [CrossRef]
- Sawada, Y.; Akiyama, K.; Sakata, A.; Kuwahara, A.; Otsuki, H.; Sakurai, T.; Saito, K.; Hirai, M.Y. Widely targeted metabolomics based on large-scale MS/MS data for elucidating metabolite accumulation patterns in plants. Plant Cell Physiol. 2009, 50, 37–47. [Google Scholar] [CrossRef]
- Sun, W.; Chen, Z.; Hong, J.; Shi, J. Promoting human nutrition and health through plant metabolomics: Current status and challenges. Biology 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cui, D.; Ma, X.; Han, B.; Han, L. Comparative analysis of rice reveals insights into the mechanism of colored rice via widely targeted metabolomics. Food Chem. 2023, 399, 133926. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Li, K.; Shi, Y.; Li, Y.; Dong, L.; Liu, L.; Li, M.; Ren, H.; Liu, X.; Fang, C. Cross-species comparison of metabolomics to decipher the metabolic diversity in ten fruits. Metabolites 2021, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Zabermawi, N.M.; Zabermawi, N.M.; Burollus, M.A.; Shafi, M.E.; Alagawany, M.; Yehia, N.; Askar, A.M.; Alsafy, S.A.; Noreldin, A.E. Nutritional aspects and health benefits of bioactive plant compounds against infectious diseases: A review. Food Rev. Int. 2023, 39, 2138–2160. [Google Scholar] [CrossRef]
- Wu, D.; Li, W.; Wan, J.; Hu, Y.; Gan, R.; Zou, L. A Comprehensive Review of Pea (Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023, 12, 2527. [Google Scholar] [CrossRef] [PubMed]
- Scholtes, C.; Giguère, V. Transcriptional control of energy metabolism by nuclear receptors. Nat. Rev. Mol. Cell Biol. 2022, 23, 750–770. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Shan, L.; Shi, Y.; Zhao, Y.; Mu, Q.; Cui, Y.; Chai, X.; Wang, Y. Exploration of the variations of amino acids in Massa Medicata Fermentata and their effects on gastrointestinal diseases. LWT 2023, 173, 114309. [Google Scholar] [CrossRef]
- Cheng, S. Research Article Research on the Characteristic of Energy Metabolism of Aerobics Sports and Reasonable Nutrition Supplement. Adv. J. Food Sci. Technol. 2015, 8, 658–661. [Google Scholar] [CrossRef]
- Alt, K.W.; Al-Ahmad, A.; Woelber, J.P. Nutrition and Health in Human Evolution–Past to Present. Nutrients 2022, 14, 3594. [Google Scholar] [CrossRef]
- Barman, B.; Kushwaha, A.; Thakur, M.K. Vitamin B12-folic acid supplementation regulates neuronal immediate early gene expression and improves hippocampal dendritic arborization and memory in old male mice. Neurochem. Int. 2021, 150, 105181. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, V.; Thakur, A. An overview of anti-nutritional factors in food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Sesikashvili, O.; Zverev, S.; Gamkrelidze, E.; Mardaleishvili, N.; Tsagareishvili, S. Improvement in the nutritional value of legumes through inactivation of alkaloids. J. Food Nutr. Res. 2022, 61, 323. [Google Scholar]
- Yan, Y.; Li, X.; Zhang, C.; Lv, L.; Gao, B.; Li, M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021, 10, 318. [Google Scholar] [CrossRef]
- Meena, A.K.; Venktaraman, P.; Ganji, K.; Kumar, N.; Singh, R.; Dixit, A.K.; Ilavarasan, R.; Srikanth, N.; Dhiman, K.S. Assessing the effect of Shodhana (detoxification) process using chromatographic profiling (HPTLC, HPLC, LC-MS, and GC-MS) and estimation of toxic content Abrine in Abrus precatorius L. (Gunja) seeds. J. Drug Res. Ayurvedic Sci. 2021, 6, 162. [Google Scholar] [CrossRef]
- Abookleesh, F.L.; Al-Anzi, B.S.; Ullah, A. Potential antiviral action of alkaloids. Molecules 2022, 27, 903. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Y.; Bajpai, V.K.; El-Kammar, H.A.; Simal-Gandara, J.; Cao, H.; Cheng, K.-W.; Wang, M.; Arroo, R.R.; Zou, L. Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives. Crit. Rev. Food Sci. Nutr. 2023, 63, 2773–2789. [Google Scholar] [CrossRef]
- Ma, C.; Feng, Y.; Zhou, S.; Zhang, J.; Guo, B.; Xiong, Y.; Wu, S.; Li, Y.; Li, Y.; Li, C. Metabolomics and transcriptomics provide insights into the molecular mechanisms of anthocyanin accumulation in the seed coat of differently colored mung bean (Vigna radiata L.). Plant Physiol. Biochem. 2023, 200, 107739. [Google Scholar] [CrossRef]
- Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules 2019, 24, 1076. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhang, Y.J.; Zhu, G.Y.; Shi, X.C.; Chen, X.; Herrera-Balandrano, D.D.; Liu, F.Q.; Laborda, P. Occurrence of isoflavones in soybean sprouts and strategies to enhance their content: A review. J. Food Sci. 2022, 87, 1961–1982. [Google Scholar] [CrossRef]
- Alshehri, M.M.; Sharifi-Rad, J.; Herrera-Bravo, J.; Jara, E.L.; Salazar, L.A.; Kregiel, D.; Uprety, Y.; Akram, M.; Iqbal, M.; Martorell, M. Therapeutic potential of isoflavones with an emphasis on daidzein. Oxid. Med. Cell. Longev. 2021, 2021, 6331630. [Google Scholar] [CrossRef]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol. 2022, 13, 820969. [Google Scholar] [CrossRef]
- Feng, Z.-J.; Lai, W.-F. Chemical and Biological Properties of Biochanin A and Its Pharmaceutical Applications. Pharmaceutics 2023, 15, 1105. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, S.; Liu, J.; Feng, Q.; Wei, R.; Yu, H.; Wang, B.; Zhang, Y.; Bai, X. Widely targeted metabolomics provides new insights into the flavonoid metabolism in ‘Kyoho’ grapes under a two-crop-a-year cultivation system. Horticulturae 2023, 9, 154. [Google Scholar] [CrossRef]
- Shu, P.; Zhang, Z.; Wu, Y.; Chen, Y.; Li, K.; Deng, H.; Zhang, J.; Zhang, X.; Wang, J.; Liu, Z. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). New Phytol. 2023, 238, 2064–2079. [Google Scholar] [CrossRef]
- Liang, L.; Li, W.; Tian, M.; Pan, J.; Feng, Z. Metabolomic profiling of five hulless barley (Hordeum vulgare L.) with different: Study on the metabolite difference of five hulless barley with different colors based on metabonomics approach. Genet. Resour. Crop Evol. 2022, 69, 1843–1853. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Liu, Z.; Wang, L.; Lin-Wang, K.; Zhu, J.; Bi, Z.; Sun, C.; Zhang, J.; Bai, J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023, 26, 105903. [Google Scholar] [CrossRef]
- Zhang, R.; Li, M.; Tang, C.; Jiang, B.; Yao, Z.; Mo, X.; Wang, Z. Combining metabolomics and transcriptomics to reveal the mechanism of coloration in purple and cream mutant of sweet potato (Ipomoea batatas L.). Front. Plant Sci. 2022, 13, 877695. [Google Scholar] [CrossRef]
- Xiao, L.; Cao, S.; Shang, X.; Xie, X.; Zeng, W.; Lu, L.; Kong, Q.; Yan, H. Metabolomic and transcriptomic profiling reveals distinct nutritional properties of cassavas with different flesh colors. Food Chem. Mol. Sci. 2021, 2, 100016. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, G.; Chen, J.; Liu, X.; Lu, X.; Chen, H.; Tian, Y. Integrated metabolome and transcriptome analysis unveils novel pathway involved in the formation of yellow peel in cucumber. Int. J. Mol. Sci. 2021, 22, 1494. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, J.; Liu, Z.; Wang, J.; Yang, B.; Chen, W.; Ou, L.; Dai, X.; Zhang, Z.; Zou, X. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chem. 2020, 306, 125629. [Google Scholar] [CrossRef]
- Li, Y.; Nie, J.; Shi, L.; Xie, Y.; Tan, D.; Yang, X.; Zhang, C.; Zheng, J. Transcriptomic and metabolomic profiling reveals the mechanisms of color and taste development in cherry tomato cultivars. LWT 2022, 167, 113810. [Google Scholar] [CrossRef]
- Zhang, J.; Qiu, X.; Tan, Q.; Xiao, Q.; Mei, S. A comparative metabolomics study of flavonoids in radish with different skin and flesh colors (Raphanus sativus L.). J. Agric. Food Chem. 2020, 68, 14463–14470. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Zhou, L.; You, S.; Deng, H.; Chen, Y.; Alseekh, S.; Yuan, Y.; Fu, R.; Zhang, Z. MicroTom metabolic network: Rewiring tomato metabolic regulatory network throughout the growth cycle. Mol. Plant 2020, 13, 1203–1218. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Chen, H.; Long, J.; Song, J.; Xie, L.; Li, X. Calycosin: A review of its pharmacological effects and application prospects. Expert Rev. Anti-Infect. Ther. 2021, 19, 911–925. [Google Scholar] [CrossRef]
- Mirsafaei, L.; Reiner, Ž.; Shafabakhsh, R.; Asemi, Z. Molecular and biological functions of quercetin as a natural solution for cardiovascular disease prevention and treatment. Plant Foods Hum. Nutr. 2020, 75, 307–315. [Google Scholar] [CrossRef]
- Ganai, S.A.; Sheikh, F.A.; Baba, Z.A.; Mir, M.A.; Mantoo, M.A.; Yatoo, M.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated. Phytother. Res. 2021, 35, 3509–3532. [Google Scholar] [CrossRef]
Compound | Pea | Sorghum | Oat | Quinoa | Buckwheat | Millet | Coix | FoxtailMillet | Broomcornmillet | Sorghum | Barley | Rice | Maize | Wheat | Potato | Sweetpotato | Cassavas | CherryTomato | Micro-Tomtomato | Radish | Cucumber | Pepper | Grapes | Red-FleshKiwifruit |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2′-Hydroxydaidzein | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||
2′-Hydroxygenistein | + | + | + | + | + | + | ||||||||||||||||||
6-Hydroxydaidzein | + | + | + | + | ||||||||||||||||||||
Aracarpene2 | + | + | ||||||||||||||||||||||
BiochaninA | + | + | + | + | + | + | + | + | + | |||||||||||||||
Calycosin | + | + | + | + | + | + | + | |||||||||||||||||
Calycosin-7-O-glucoside | + | + | ||||||||||||||||||||||
Daidzein | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||||
Daidzin | + | + | + | + | + | + | ||||||||||||||||||
Formononetin | + | + | + | + | ||||||||||||||||||||
Genistein | + | + | + | + | + | |||||||||||||||||||
Genistein-7-O-galactoside | + | + | ||||||||||||||||||||||
Genistein-8-C-glucoside | + | + | ||||||||||||||||||||||
Genistin | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||
Glycitein | + | + | + | + | ||||||||||||||||||||
Glycitin | + | + | + | |||||||||||||||||||||
Ononin | + | + | + | |||||||||||||||||||||
Orobol | + | + | + | + | + | + | + | |||||||||||||||||
Prunetin | + | + | + | + | + | + | + | + | ||||||||||||||||
Sissotrin | + | + | + | + | + | |||||||||||||||||||
Otherisoflavone | 20 | 1 | 1 | 1 | 2 | 1 | 1 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Li, L.; Chen, H.; Han, X.; Liu, L.; Liu, C. Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea (Pisum sativum L.). Foods 2024, 13, 1970. https://doi.org/10.3390/foods13131970
Sun L, Li L, Chen H, Han X, Liu L, Liu C. Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea (Pisum sativum L.). Foods. 2024; 13(13):1970. https://doi.org/10.3390/foods13131970
Chicago/Turabian StyleSun, Longqing, Li Li, Hongwei Chen, Xuesong Han, Liangjun Liu, and Changyan Liu. 2024. "Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea (Pisum sativum L.)" Foods 13, no. 13: 1970. https://doi.org/10.3390/foods13131970
APA StyleSun, L., Li, L., Chen, H., Han, X., Liu, L., & Liu, C. (2024). Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea (Pisum sativum L.). Foods, 13(13), 1970. https://doi.org/10.3390/foods13131970