Strategies and Challenges of Microbiota Regulation in Baijiu Brewing
Abstract
:1. Introduction
2. The Source and Composition of the Microbiota for Baijiu Brewing
2.1. Sources of Microbiota in Baijiu Brewing
2.2. Composition of Baijiu Brewing Microbiota
2.2.1. Microbiota Composition of Matured Daqu
2.2.2. Composition of the Microbiota during the Fermentation Stage of Fermented Grains
3. Microbiota Regulation of Baijiu Based on Functional Strains of Bacteria
3.1. Microbial Intervention Baijiu Brewing Strategy
3.2. Single Strain Biological Enhanced Baijiu Brewing
3.3. Multi-Strain Biological Enhanced Baijiu Brewing
4. Microbiota Regulation of Baijiu Based on Technology and Raw Materials
4.1. Relationship between Raw Materials and Microbiota and Regulatory Strategies
4.2. Relationship between Technology and Microbiota and Regulation Strategies
5. Microbiota Regulation of Baijiu Brewing Based on Synthetic Microbiota
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourdichon, F.; Arias, E.; Babuchowski, A.; Bueckle, A.; Dal Bello, F.; Dubois, A.; Fontana, A.; Fritz, D.; Kemperman, R.; Laulund, S.; et al. The forgotten role of food cultures. FEMS Microbiol. Lett. 2021, 368, fnab085. [Google Scholar] [CrossRef]
- Terefe, N.S.; Augustin, M.A. Fermentation for tailoring the technological and health related functionality of food products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2887–2913. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Huang, D.; Han, B.; Ning, X.; Yu, D.; Guo, H.; Zou, Y.; Jing, W.; Luo, H. Correlation: Between Autochthonous Microbial Diversity and Volatile Metabolites During the Fermentation of Nongxiang Daqu. Front. Microbiol. 2021, 12, 688981. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Zhu, Y.; Xu, Y. Mystery behind Chinese liquor fermentation. Trends Food Sci. Technol. 2017, 63, 18–28. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tan, Y.; Wang, H.; Yang, F.; Chen, L.; Hao, F.; Lv, X.; Du, H.; Xu, Y. Effect of Pichia on shaping the fermentation microbial community of sauce-flavor Baijiu. Int. J. Food Microbiol. 2021, 336, 108898. [Google Scholar] [CrossRef]
- Huang, H.; Wu, Y.; Chen, H.; Hou, Y.; Wang, J.; Hong, J.; Zhao, D.; Sun, J.; Huang, M.; Sun, B. Identification of regionalmarkers based on the flavor molecular matrix analysis of sauce-aroma style baijiu. J. Sci. Food Agric. 2023, 103, 7434–7444. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Xue, Y.; Chen, X.; Han, B. Integrated multi-omics approaches to understand microbiome assembly in Jiuqu, a mixed-culture starter. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4076–4107. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Lu, Z.-M.; Chai, L.-J.; Zhang, X.; Li, Q.; Wang, S.; Shen, C.; Shi, J.; Xu, Z. Cooperation within the microbial consortia of fermented grains and pit mud drives organic acid synthesis in strong-flavor Baijiu production. Food Res. Int. 2021, 147, 110449. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sun, B.; Fan, G.; Fan, G.; Teng, C.; Xiong, K.; Zhu, Y.; Li, J.; Li, X. The brewing process and microbial diversity of strong flavour Chinese spirits: A review. J. Inst. Brew. 2017, 123, 5–12. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Liu, Y.; Hui, M.; Pan, C. Functional microorganisms in Baijiu Daqu: Research progress and fortification strategy for application. Front. Microbiol. 2023, 14, 1119675. [Google Scholar] [CrossRef] [PubMed]
- Pan, F.; Qiu, S.; Lv, Y.; Li, D. Exploring the controllability of the Baijiu fermentation process with microbiota orientation. Food Res. Int. 2023, 173, 113249. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, M.; Zhao, D.; Zheng, J.; Dai, M.; Li, X.; Li, W.; Zhang, C.; Sun, B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023, 12, 12030644. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, H.; Xu, Y. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor. Int. J. Food Microbiol. 2017, 244, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Du, H.; Zhang, Y.; Xu, Y. Environmental Microbiota Drives Microbial Succession and Metabolic Profiles during Chinese Liquor Fermentation. Appl. Environ. Microbiol. 2018, 84, e02369-17. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Lu, J.; Nie, Y.; Li, C.; Du, H.; Xu, Y. Amino Acids Drive the Deterministic Assembly Process of Fungal Community and Affect the Flavor Metabolites in Baijiu Fermentation. Microbiol. Spectr. 2023, 11, e0264022. [Google Scholar] [CrossRef] [PubMed]
- Parente, E.; Guidone, A.; Matera, A.; De Filippis, F.; Mauriello, G.; Ricciardi, A. Microbial community dynamics in thermophilic undefined milk starter cultures. Int. J. Food Microbiol. 2016, 217, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, C.; Ding, X.; Zheng, J.; Zhou, R. Characterisation of microbial communities in Chinese liquor fermentation starters Daqu using nested PCR-DGGE. World J. Microbiol. Biotechnol. 2014, 30, 3055–3063. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, A.; Kozawa, M.; Tokuda, K.; Enomoto, T.; Koyanagi, T. Robust Domination of Lactobacillus sakei in Microbiota During Traditional Japanese Sake Starter Yamahai-Moto Fermentation and the Accompanying Changes in Metabolites. Curr. Microbiol. 2018, 75, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.E.; Button, J.E.; Santarelli, M.; Dutton, R. Cheese Rind Communities Provide Tractable Systems for In Situ and In Vitro Studies of Microbial Diversity. Cell 2014, 158, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Niwa, R.; Kobayashi, K.; Nakagawa, T.; Hoshino, G.; Tsuchida, Y. A dark matter in sake brewing: Origin of microbes producing a Kimoto-style fermentation starter. Front. Microbiol. 2023, 14, 1112638. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, Z.; Ma, D.; Liu, X.; Li, Y.; Ren, D.; Zhu, Y.; Zhao, H.; Qin, H.; Huang, M.; et al. Distance decay pattern of fermented-related microorganisms in the sauce-flavor Baijiu producing region. Food Biosci. 2023, 51, 102305. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Nie, Y.; Wu, X. Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities. ISME J. 2021, 15, 1387–1401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Zheng, J.; Xie, J.; Zhao, D.; Qiao, Z.; Huang, D.; Luo, H. Effects of environmental factors on the microbial community changes during medium-high temperature Daqu manufacturing. Food Res. Int. 2022, 153, 110955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, C.; Xing, G.; Yan, Z.; Chen, Y. Evaluation of microbial communities of Chinese Feng-flavor Daqu with effects of environmental factors using traceability analysis. Sci. Rep. 2023, 13, 7657. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, X.; Zhang, Y.; Zhang, S.; Dong, Y.; Zhang, X.; Mao, J. Exploring the impacts of raw materials and environments on the microbiota in Chinese Daqu starter. Int. J. Food Microbiol. 2019, 297, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, Y.; Ma, D.; Zhang, S.; Dong, Y.; Zhang, X.; Mao, J. Environment microorganism and mature daqu powder shaped microbial community formation in mechanically strong-flavor daqu. Food Biosci. 2023, 52, 102467. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Ding, F.; Deng, W.; Wang, X.; Xue, Y.; Chen, X.; Han, B. Multidimensional profiling indicates the shifts and functionality of wheat-origin microbiota during high-temperature Daqu incubation. Food Res. Int. 2022, 156, 111191. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, C.; Zhao, H.; Min, W.; Zhu, H.; Wang, H.; Lu, H.; Li, X.; Xu, Y.; Li, W. Effect of Environmental Microorganisms on Fermentation Microbial Community of Sauce-Flavor baijiu. Foods 2023, 12, 12010010. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zheng, J.; Huang, D.; Huang, Z.; Ye, G.; Luo, H. Characterization of physicochemical properties, volatile compounds and microbial community structure in four types of Daqu. LWT-Food Sci. Technol. 2023, 184, 115064. [Google Scholar] [CrossRef]
- Ma, S.; Shang, Z.; Chen, J.; Shen, Y.; Li, Z.; Huang, D.; Luo, H. Differences in structure, volatile metabolites, and functions of microbial communities in Nongxiangxing daqu from different production areas. LWT-Food Sci. Technol. 2022, 166, 113784. [Google Scholar] [CrossRef]
- Zheng, X.-W.; Yan, Z.; Nout, M.J.R.; Boekhout, T.; Han., B.-Z.; Zwietering, M.; Smid, E. Characterization of the microbial community in different types of Daqu samples as revealed by 16S rRNA and 26S rRNA gene clone libraries. World J. Microbiol. Biotechnol. 2015, 31, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Yang, Y.; Lu, Z.-M.; Chai, L.; Zhang, X.; Wang, S.; Shen, C.; Shi, J.; Xu, Z. Daqu microbiota exhibits species-specific and periodic succession features in Chinese baijiu fermentation process. Food Microbiol. 2021, 98, 103766. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Du, H.; Zhang, Y.; Xu, Y. Unraveling Core Functional Microbiota in Traditional Solid-State Fermentation by High-Throughput Amplicons and Metatranscriptomics Sequencing. Front. Microbiol. 2017, 8, 1294. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, S.-T.; Lu, Z.-M.; Zhang, X.; Chai, L.; Shen, C.; Shi, J.; Xu, Z. Metagenomics unveils microbial roles involved in metabolic network of flavor development in medium-temperature daqu starter. Food Res. Int. 2021, 140, 110037. [Google Scholar] [CrossRef]
- Wang, Y.; Gai, J.; Hou, Q.; Zhao, H.; Shan, C.; Guo, Z. Ultra-high-depth macrogenomic sequencing revealed differences in microbial composition and function between high temperature and medium-high temperature Daqu. World J. Microbiol. Biotechnol. 2023, 39, 03772–03774. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Mao, X.; Liu, D.; Ning, X.; Shen, Y.; Chen, B.; Nie, H.; Huang, D.; Luo, H. Comparative Analysis of Physicochemical Properties and Microbial Composition in High-Temperature Daqu with Different Colors. Front. Microbiol. 2020, 11, 588117. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Chai, L.J.; Fang, G.Y.; Mei, J.; Lu, Z.; Zhang, X.; Xiao, C.; Wang, S.; Shen, C.; Shi, J.; et al. Spatial heterogeneity of the microbiome and metabolome profiles of high-temperature Daqu in the same workshop. Food Res. Int. 2022, 156, 111298. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, L.; Peng, Z.; Zhang, Q.; Huang, W.; Yang, F.; Du, G.; Zhang, J.; Wang, L. Analysis of environmental driving factors on Core Functional Community during Daqu fermentation. Food Res. Int. 2022, 157, 111286. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, S.; Zhao, Y.; Xia, Y.; Zhang, R.; Ran, M.; Wu, Z.; Zhang, W. The active synergetic microbiota with Aspergillus as the core dominates the metabolic network of ester synthesis in medium-high temperature Daqu. Food Microbiol. 2023, 115, 104336. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Peng, Z.; Zhu, Q.; Zheng, T.; Liu, X.; Yang, J.; Zhang, J.; Li, J. Exploration of seasonal fermentation differences and the possibility of flavor substances as regulatory factors in Daqu. Food Res. Int. 2023, 168, 112686. [Google Scholar] [CrossRef]
- Cao, J.; Zheng, Y.; Zhao, T.; Mao, H.; Fang, S.; Chen, M.; Liu, S. Changes in the microbial community structure during the digitally managed fermentation of medium-temperature Daqu. Food Sci. Technol. 2022, 42, e87122. [Google Scholar] [CrossRef]
- Xiao, C.; Lu, Z.-M.; Zhang, X.-J.; Wang, S.; Ao, L.; Shen, C.; Shi, J.; Xu, Z. Bio-Heat Is a Key Environmental Driver Shaping the Microbial Community of Medium-Temperature Daqu. Appl. Environ. Microbiol. 2017, 83, e01550-17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liang, F.; Wu, Y.; Ban, S.; Huang, H.; Xu, Y.; Wang, X.; Wu, Q. Unraveling multifunction of low-temperature Daqu in simultaneous saccharification and fermentation of Chinese light aroma type liquor. Int. J. Food Microbiol. 2023, 397, 110202. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Jia, L.L.; Zhang, Z.X.; Zhang, M.; Huang, X.; Chen, X.; Han, B. Comparison of physicochemical characteristics and microbiome profiles of low-temperature Daqu with and without adding tartary buckwheat. Food Biosci. 2022, 49, 101931. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Y.; Cai, W.; Ni, H.; Zhao, H.; Zhang, Z.; Liu, Z.; Liu, J.; Zhong, J.; Guo, Z. Metagenomic and physicochemical analyses reveal microbial community and functional differences between three types of low-temperature Daqu. Food Res. Int. 2022, 156, 111167. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, X.; Yang, B.; Zhang, X.; Han, Y.; Chen, X.; Han, B. Contrasting the microbial community and metabolic profile of three types of light-flavor Daqu. Food Biosci. 2021, 44, 101395. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Hu, X.; Huang, Y. Analysis of bacterial diversity and functional differences of Jiang-flavored Daqu produced in different seasons. Front. Nutr. 2023, 9, 1078132. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.H.; Chai, L.J.; Wang, H.-M.; Lu, Z.; Zhang, X.; Xiao, C.; Wang, S.; Shen, C.; Shi, J.; Xu, Z. Bacteria and filamentous fungi running a relay race in Daqu fermentation enable macromolecular degradation and flavor substance formation. Int. J. Food Microbiol. 2023, 390, 110118. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, Y.; Ni, H.; Liu, Z.; Liu, J.; Zhong, J.; Hou, Q.; Shan, C.; Yang, X.; Guo, Z. Diversity of microbiota, microbial functions, and flavor in different types of low-temperature Daqu. Food Res. Int. 2021, 150, 110734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, S.; Ren, Q. Analysis of Bacterial Diversity in Fermented Grains of Baijiu Based on Culturomics and Amplicon Sequencing. Fermentation 2023, 9, 9030260. [Google Scholar] [CrossRef]
- Gao, J.; Liu, G.; Li, A.; Liang, C.; Ren, C.; Xu, Y. Domination of pit mud microbes in the formation of diverse flavour compounds during Chinese strong aroma-type Baijiu fermentation. LWT-Food Sci. Technol. 2021, 137, 110442. [Google Scholar] [CrossRef]
- Yin, X.; Yoshizaki, Y.; Ikenaga, M.; Han, X.; Okutsu, K.; Futagami, T.; Tamaki, H.; Takamine, K. Manufactural impact of the solid-state saccharification process in rice-flavor baijiu production. J. Biosci. Bioeng. 2020, 129, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.F.; Wu, Y.F.; Zhang, C.N.; Niu, J.; Zhao, J.; Li, W.; Li, X. Comparison of fungal communities and flavour substances in surface and inner layers of fermented grains during stacking fermentation of sauce-flavour baijiu. J. Biosci. Bioeng. 2023, 136, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, R.Y.; Liu, C.; Chen, L.; Yang, F.; Wang, L. Spatiotemporal accumulation differences of volatile compounds and bacteria metabolizing pickle like odor compounds during stacking fermentation of Maotai-flavor baijiu. Food Chem. 2023, 426, 136668. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xian, C.; Li, P.; Wang, X.; Song, D.; Zhao, L.; Zhang, C. The spatio-temporal diversity and succession of microbial community and its environment driving factors during stacking fermentation of Maotai-flavor baijiu. Food Res. Int. 2023, 169, 112892. [Google Scholar] [CrossRef]
- Dai, Y.J.; Tian, Z.G.; Meng, W.N.; Li, Z. Microbial Diversity and Physicochemical Characteristics of the Maotai-Flavored Liquor Fermentation Process. J. Nanosci. Nanotechnol. 2020, 20, 4097–4109. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Tan, Y.; Lv, X.; Chen, L.; Yang, F.; Wang, H.; Du, H.; Wang, L.; Xu, Y. Microbial Community Succession and Its Environment Driving Factors During Initial Fermentation of Maotai-Flavor Baijiu. Front. Microbiol. 2021, 12, 669201. [Google Scholar] [CrossRef] [PubMed]
- Liang, E.R.; Zhang, C.N.; Lang, Y.; Li, X.; Hu, S.; Xu, Y.; Li, W.; Sun, B. Changes in Microbial Communities and Volatile Compounds during the Seventh Round of Sauce-Flavor baijiu Fermentation in Beijing Region. J. Am. Soc. Brew. Chem. 2023, 2253704. [Google Scholar] [CrossRef]
- Ren, T.T.; Su, W.; Mu, Y.C.; Qi, Q.; Zhang, D. Study on the correlation between microbial communities with physicochemical properties and flavor substances in the Xiasha round of cave-brewed sauce-flavor Baijiu. Front. Microbiol. 2023, 14, 1124817. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Q.; Wu, M.Q.; Niu, J.L.; Lin, M.; Zhu, H.; Wang, K.; Li, X.; Sun, B. Characteristics and Correlation of the Microbial Communities and Flavor Compounds during the First Three Rounds of Fermentation in Chinese Sauce-Flavor Baijiu. Foods 2023, 12, 12010207. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Lin, Y.; Chen, K.; Ou, M.; Zhang, J. Physicochemical Factors Affecting Microbiota Dynamics During Traditional Solid-State Fermentation of Chinese Strong-Flavor Baijiu. Front. Microbiol. 2020, 11, 02090. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, D.; Yang, C.; Yin, Q.; Liu, S.; Shen, C.; Mao, J. Microbial community succession patterns and drivers of Luxiang-flavor Jiupei during long fermentation. Front. Microbiol. 2023, 14, 1109719. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, X.; Mu, D.; Xu, B.; Xu, X.; Chang, Q.; Li, X. Profiling the influence of physicochemical parameters on the microbial community and flavor substances of zaopei. J. Sci. Food Agric. 2021, 101, 6300–6310. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Zhao, C.Q.; Luo, H.B. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review. Front. Microbiol. 2018, 9, 00671. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, Y.; Liu, Z.; Liu, J.; Zhong, J.; Hou, Q.; Yang, X.; Shan, C.; Guo, Z. Depth-depended quality comparison of light-flavor fermented grains from two fermentation rounds. Food Res. Int. 2022, 159, 111587. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fan, Y.; Lu, T.; Kang, J.; Pang, X.; Han, B.; Chen, J. Composition and Metabolic Functions of the Microbiome in Fermented Grain during Light-Flavor Baijiu Fermentation. Microorganisms 2020, 8, 8091281. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.M.; Hu, Y.A.; Jia, L.L.; Zhang, M.; Zhang, Z.; Huang, X.; Chen, X.; Han, B. Response of microbial community assembly and succession pattern to abiotic factors during the second round of light-flavor Baijiu fermentation. Food Res. Int. 2022, 162, 111915. [Google Scholar] [CrossRef]
- Luo, L.-J.; Song, L.; Han, Y.; Zhen, P.; Zhao, X.; Zhou, X.; Wei, Y.; Yu, H.; Han, P.; Bai, F. Microbial communities and their correlation with flavor compound formation during the mechanized production of light-flavor Baijiu. Food Res. Int. 2023, 172, 113139. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.N.; Han, B.Z.; Huang, X.N.; Zhang, X.; Hou, L.; Cao, M.; Gao, L.; Hu, G.; Chen, J. Effect of the environment microbiota on the flavour of light-flavour Baijiu during spontaneous fermentation. Sci. Rep. 2018, 8, 21814. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lei, X.; Zhang, X.; Guan, T.; Wang, L.; Zhang, Z.; Yu, X.; Tu, J.; Peng, N.; Liang, Y.; et al. Characteristics of the Microbial Community in the Production of Chinese Rice-Flavor Baijiu and Comparisons with the Microflora of Other Flavors of Baijiu. Front. Microbiol. 2021, 12, 673670. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.Y.; Peng, L.Y.; Fei, Y.T.; Liang, J.; Bai, W.; Liu, G. Screening ester-producing yeasts to fortify the brewing of rice-flavor Baijiu for enhanced aromas. Bioengineered 2023, 14, 2255423. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, M.; Qu, C.; Fei, Y.; Liang, J.; Bai, W.; Zhao, W.; Xiao, G.; Liu, G. Characterization and Correlation of Microbiota and Higher Alcohols Based on Metagenomic and Metabolite Profiling during Rice-Flavor Baijiu Fermentation. Foods 2023, 12, 12142720. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, L.; Xiang, D.; Huang, H.; Han, Y.; Zhen, P.; Shi, B.; Chen, S.; Xu, Y. Characterization of key aroma compounds in aged Qingxiangxing baijiu by comparative aroma extract dilution analysis, quantitative measurements, aroma recombination, and omission studies. Food Chem. 2023, 419, 136027. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Ma, R. Cross-modal interactions caused by nonvolatile compounds derived from fermentation, distillation and aging to harmonize flavor. Crit. Rev. Food Sci. Nutr. 2023, 2172714. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, Y.; Wang, J.; Hong, J.; Tian, W.; Zhao, D.; Sun, J.; Huang, M.; Li, H.; Zheng, F.; et al. Uncover the Flavor Code of Roasted Sesame for Sesame Flavor Baijiu: Advance on the Revelation of Aroma Compounds in Sesame Flavor Baijiu by Means of Modern Separation Technology and Molecular Sensory Evaluation. Foods 2022, 11, 11070998. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Tian, W.; Zhao, D. Research progress of trace components in sesame-aroma type of baijiu. Food Res. Int. 2020, 137, 109695. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.A.; Wang, J.; Wang, R.F.; Zhang, N.; Zheng, F. A review on flavor of Baijiu and other world-renowned distilled liquors. Food Chem. X 2023, 20, 100870. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Wang, Y.; Wang, W.; Shu, N.; Hou, Q.; Tang, F.; Shan, C.; Yang, X.; Guo, Z. Insights into the Aroma Profile of Sauce-Flavor Baijiu by GC-IMS Combined with Multivariate Statistical Analysis. J. Anal. Methods Chem. 2022, 2022, 4614330. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Yao, Z.; Xiao, Q.; Xiao, Z.; Ma, N.; Zhu, J. Characterization of the key aroma compounds in different light aroma type Chinese liquors by GC-olfactometry, GC-FPD, quantitative measurements, and aroma recombination. Food Chem. 2017, 233, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yang, Q.; Peng, L.; Xu, L.; Chen, J.; Zhu, Y.; Wei, X. Exploring core functional fungi driving the metabolic conversion in the industrial pile fermentation of Qingzhuan tea. Food Res. Int. 2024, 178, 113979. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Z.-F.; Mao, J.; Zhou, Z.; Zhang, J.; Shen, C.; Wang, S.; Marco, M.; Mao, J. Integrated meta-omics approaches reveal Saccharopolyspora as the core functional genus in huangjiu fermentations. NPJ Biofilms Microbiomes 2023, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Huang, J.; Zhou, R.; Zhang, S.; Qin, H.; Tang, H.; Pan, Q.; Tang, H. Bioaugmented Daqu-induced variation in community succession rate strengthens the interaction and metabolic function of microbiota during strong-flavor Baijiu fermentation. LWT-Food Sci. Technol. 2023, 182, 114806. [Google Scholar] [CrossRef]
- Pang, Z.; Hao, J.; Li, W.; Du, B.; Guo, C.; Li, X.; Sun, B. Investigation into spatial profile of microbial community dynamics and flavor metabolites during the bioaugmented solid-state fermentation of Baijiu. Food Biosci. 2023, 56, 103292. [Google Scholar] [CrossRef]
- Arikawa, K.; Hosokawa, M. Uncultured prokaryotic genomes in the spotlight: An examination of publicly available data from metagenomics and single-cell genomics. Comput. Struct. Biotechnol. J. 2023, 21, 4508–4518. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, L.; Xing, X.; Sun, Z.; Gu, H.; Lu, X.; Li, Z.; Ren, Q. Culturing Bacteria From Fermentation Pit Muds of Baijiu with Culturomics and Amplicon-Based Metagenomic Approaches. Front. Microbiol. 2020, 11, 01223. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Huang, J.; Zhou, R.; Zhang, S.; Qin, H.; Tang, H.; Pan, Q.; Tang, H. Characterization of the differences in aroma-active compounds in strong-flavor Baijiu induced by bioaugmented Daqu using metabolomics and sensomics approaches. Food Chem. 2023, 424, 136429. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, L.; Yang, F.; Wang, H.; Wang, L. Yeasts and their importance to the flavour of traditional Chinese liquor: A review. J. Inst. Brew. 2019, 125, 214–221. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, Y.; Zeng, K.; Chen, D.; Li, Z.; Guo, H.; Huang, D.; Wang, X.; Luo, H. Effect of Bacillus subtilis fortified inoculation on the microbial communities in different niches of Daqu. J. Biosci. Bioeng. 2022, 134, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Fan, G.; Fu, Z.; Wang, W.; Xu, Y.; Teng, C.; Zhang, C.; Yang, R.; Sun, B.; Li, X. Effects of fortification of Daqu with various yeasts on microbial community structure and flavor metabolism. Food Res. Int. 2020, 129, 108837. [Google Scholar] [CrossRef]
- Xing, X.; Wang, Y.; Huo, N.; Wang, R. Candida Ethanolica Strain Y18 Enhances Aroma of Shanxi Aged-vinegar. Food Sci. Technol. Res. 2018, 24, 1069–1081. [Google Scholar] [CrossRef]
- Du, H.; Song, Z.; Zhang, M.; Nie, Y.; Xu, Y. The deletion of Schizosaccharomyces pombe decreased the production of flavor-related metabolites during traditional Baijiu fermentation. Food Res. Int. 2021, 140, 109872. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.H.; Fan, G.S.; Li, X.T.; Fu, Z.; Liang, X.; Sun, B. Application of Wickerhamomyces anomalus in Simulated Solid-State Fermentation for Baijiu Production: Changes of Microbial Community Structure and Flavor Metabolism. Front. Microbiol. 2020, 11, 598758. [Google Scholar] [CrossRef]
- Xiaoru, C.; Jun, H.; RongqIng, Z.; Zhang, S.; Dong, Y.; Wang, C.; Wang, X.; Wu, C.; Jin, Y. Effects of fortifying patterns on the characteristics of strong flavor type Daqu. Food Ferment. Ind. 2021, 47, 50–55. [Google Scholar]
- Jiahui, C. Effect of Bioaugmented Inoculation Onphysichemical Characteristics and Microbiotadynamics during Daqu Fermentation Using Autochthonous Bacillus Strains; Wuhan Polytechnic University: Wuhan, China, 2022. [Google Scholar]
- Zhou, H.; Xu, S.; Xu, B.; Jiang, C.; Zhao, E.; Xu, Q.; Hong, J.; Li, X. Effect of Caproicibacterium lactatifermentans inoculation on the microbial succession and flavor formation of pit mud used in Chinese Baijiu fermentation. Food Res. Int. 2024, 175, 113730. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qian, Z.; Zhou, S.; Yu, W.; Wei, J.; Wang, Y.; Liu, X.; Hao, W. Screening, identification of mold with high saccharifying power from light-flavor Daqu and its volatile favor compounds. China Brew. 2023, 42, 72–78. [Google Scholar]
- Ma, P.; Xia, H.; Li-Ling, W.; Shi, B.; Wei, J.; Wang, P. Optimization of esterifying enzyme production by compound mould and difference of volatilemetabolites in intensified fermentation of Baijiu. J. Food Saf. Qual. 2023, 14, 144–154. [Google Scholar]
- Wei, J.; Du, H.; Zhang, H.; Nie, Y.; Xu, Y. Mannitol and erythritol reduce the ethanol yield during Chinese Baijiu production. Int. J. Food Microbiol. 2021, 337, 108933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Du, H.; Xu, Y. Volatile Organic Compound-Mediated Antifungal Activity of Pichia spp. and Its Effect on the Metabolic Profiles of Fermentation Communities. Appl. Environ. Microbiol. 2021, 87, e02992-20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wu, D.; Lin, Y.; Wang, X.; Kong, H.; Tanaka, S. Substrate and Product Inhibition on Yeast Performance in Ethanol Fermentation. Energy Fuels 2015, 29, 1019–1027. [Google Scholar] [CrossRef]
- Zigiang, Z.; Chunhui, W.; Liwei, Z.; Deng, J.; Huang, Z.; Liu, M.; Ren, Z. Solation of Mold from Medium High Temperature Daqu and Preparation of Fuqu. Mod. Food Sci. Technol. 2022, 38, 165–172. [Google Scholar]
- Liu, H.L.; Sun, B.G. Effect of Fermentation Processing on the Flavor of Baijiu. J. Agric. Food Chem. 2018, 66, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Li, Y.; Yang, Y.; Huang, Z.; Wang, S.; Huang, D.; Luo, H.; Zhao, L. Dynamic analysis Caffeic acid production driven by the key physicochemical factor and microbial community succession in Baijiu Daqu: A multi-microorganism fermentation of solid-state fermentation system. LWT-Food Sci. Technol. 2023, 190, 115542. [Google Scholar] [CrossRef]
- Li, P.; Lin, W.F.; Liu, X.; Wang, X.; Gan, X.; Luo, L.; Lin, W. Effect of bioaugmented inoculation on microbiota dynamics during solid-state fermentation of Daqu starter using autochthonous of Bacillus, Pediococcus, Wickerhamomyces and Saccharomycopsis. Food Microbiol. 2017, 61, 83–92. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Dong, Y.; Huang, J.; Wang, X.; Zhang, S.; Wu, C.; Jin, Y.; Zhou, R. Alteration of microbial community for improving flavor character of Daqu by inoculation with Bacillus velezensis and Bacillus subtilis. LWT-Food Sci. Technol. 2019, 111, 1–8. [Google Scholar] [CrossRef]
- Xu, P.; Wu, Y.; Chen, H.; Liu, Y.; Yang, N.; Mao, Y.; Tian, L.; He, Z.; Qiu, X.; Guan, T. Promoting microbial community succession and improving the content of esters and aromatic compounds in strong-flavor Daqu via bioaugmentation inoculation. Food Biosci. 2023, 56, 103299. [Google Scholar] [CrossRef]
- Mu, Y.; Huang, J.; Zhou, R.; Zhang, S.; Qin, H.; Dong, Y.; Wang, C.; Wang, X.; Pan, Q.; Tang, H. Comprehensive analysis for the bioturbation effect of space mutation and biofortification on strong-flavor Daqu by high-throughput sequencing, volatile analysis and metabolomics. Food Chem. 2023, 403, 134440. [Google Scholar] [CrossRef] [PubMed]
- Guan, T.; Wu, X.; Hou, R.; Tian, L.; Huang, Q.; Zhao, F.; Liu, Y.; Jiao, S.; Xiang, S.; Zhang, J.; et al. Application of Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis for Nongxiangxing baijiu fermentation: Improves the microbial communities and flavor of upper fermented grain. Food Res. Int. 2023, 169, 112885. [Google Scholar] [CrossRef] [PubMed]
- Jian, G. Screening and Application of Functional Strains of Fen-Flavor Liquor; Hubei University of Technology: Wuhan, China, 2018. [Google Scholar]
- Xianglin, D. Research and Application of Psychedelic Art in Experimental Typefaces; Sichuan Agricultural University: Ya’an, China, 2022. [Google Scholar]
- Zhao, H.M.; Guo, X.N.; Zhu, K.X. Impact of solid state fermentation on nutritional, physical and flavor properties of wheat bran. Food Chem. 2017, 217, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Wei, J.; Baosheng, L.; Dong, J.; Wang, X.; Su, Z.; Han, X.; Huang, F.; Luan, C.; Hao, J.; et al. Analysis of Characteristic Flavor Compounds in Single-Grain Chinese Baiilu Brewed from Different Raw Materials. Food Sci. 2020, 41, 234–238. [Google Scholar]
- Liu, C.J.; Gong, X.W.; Zhao, G.; Htet, M.; Jia, Z.; Yan, Z.; Liu, L.; Zhai, Q.; Huang, T.; Deng, X.; et al. Liquor Flavour Is Associated with the Physicochemical Property and Microbial Diversity of Fermented Grains in Waxy and Non-waxy Sorghum (Sorghum bicolor) During Fermentation. Front. Microbiol. 2021, 12, 618458. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Wei, S.; Yingchun, M.; Zheng, P.; Wang, H. Effects of Diferent Raw Materials on Microbial Community Structure and Diversity in jiang-flavor Daqu. Food Sci. 2022, 43, 133–141. [Google Scholar]
- Ma, X.; Zhou, H. Hovenia acerba Lindl.: An insight into botany, phytochemistry, bioactivity, quality control, and exploitation. J. Food Biochem. 2022, 46, e14434. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, Y.; Qiang, M.; Wang, J. Structural elucidation of a pectin-type polysaccharide from Hovenia dulcis peduncles and its proliferative activity on RAW264.7 cells. Int. J. Biol. Macromol. 2017, 104 Pt A, 1246–1253. [Google Scholar] [CrossRef]
- Zhao, M.; Yi, Y.; Zhang, Q.; Chen, J.; Zuo, Y. Optimization of Brewing Technology of Hovenia acerba-Sorghum Co-fermented Distilled Liquor and Its Characteristic Flavor Substances and Antioxidant Activity in Vitro. Sci. Technol. Food Ind. 2023, 44, 224–232. [Google Scholar]
- Zhang, J.; Zhao, M.; Chen, J.; Zhu, Y.; Xiao, C.; Li, Q.; Weng, X.; Duan, Y.; Zuo, Y. The improvement of Hovenia acerba-sorghum co-fermentation in terms of microbial diversity, functional ingredients, and volatile flavor components during Baijiu fermentation. Front. Microbiol. 2023, 14, 1299917. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Feng, S.; Wu, Q.; Huang, H.; Chen, Z.; Li, S.; Xu, Y. Raw Material Regulates Flavor Formation via Driving Microbiota in Chinese Liquor Fermentation. Front. Microbiol. 2019, 10, 1520. [Google Scholar] [CrossRef]
- Li, H.; He, R.; Xiong, X.; Zhang, M.; Yang, T.; Jiang, Z.; Ma, L.; Yi, L.; Ma, X. Dynamic diversification of bacterial functional groups in the Baiyunbian liquor stacking fermentation process. Ann. Microbiol. 2016, 66, 1229–1237. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Lin, B.; Zhu, H.; Jiang, W.; Yang, Q.; Chen, S. Effects of ultra-long fermentation time on the microbial community and flavor components of light-flavor Xiaoqu Baijiu based on fermentation tanks. World J. Microbiol. Biotechnol. 2022, 38, 3. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Zhu, H.; Wang, H.; Lu, H.; Zhang, C.; Li, X.; Xu, Y.; Li, W.; Wang, Y. Turning over fermented grains elevating heap temperature and driving microbial community succession during the heap fermentation of sauce-flavor baijiu. LWT-Food Sci. Technol. 2022, 172, 114173. [Google Scholar] [CrossRef]
- Gao, L.; Xie, F.; Ren, X.; Wang, J.; Du, L.; Wei, Y.; Zhou, J.; He, G. Correlation between microbial diversity and flavor metabolism in Huangshui: A by-product of solid-state fermentation Baijiu. LWT-Food Sci. Technol. 2023, 181, 114767. [Google Scholar] [CrossRef]
- He, F.; Yang, H.; Zeng, L.; Hu, H.; Hu, C. Production and characterization of bacterial cellulose obtained by Gluconacetobacter xylinus utilizing the by-products from Baijiu production. Bioprocess Biosyst. Eng. 2020, 43, 927–936. [Google Scholar] [CrossRef]
- Fan, B.; Xiang, L.; Yu, Y.; Chen, X.; Wu, Q.; Zhao, K.; Yang, Z.; Xiong, X.; Huang, X.; Zheng, Q. Solid-state fermentation with pretreated rice husk: Green technology for the distilled spirit (Baijiu) production. Environ. Technol. Innov. 2020, 20, 101049. [Google Scholar] [CrossRef]
- Xu, X.; Feng, W.; Guo, L.; Huang, X.; Shi, B. Controlled synthesis of distiller’s grains biochar for turbidity removal in Baijiu. Sci. Total Environ. 2023, 867, 161382. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Wu, J.; Feng, Y.; Pan, G.; Ma, Y.; Jiang, J.; Yang, X.; Xue, R.; Wu, R.; Zhao, M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2773–2801. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhu, Y.; Fang, C.; Wijffels, R.; Xu, Y. Can we control microbiota in spontaneous food fermentation?—Chinese liquor as a case example. Trends Food Sci. Technol. 2021, 110, 321–331. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Q.; Nie, Y.; Wu, J.; Xu, Y. Construction of Synthetic Microbiota for Reproducible Flavor Compound Metabolism in Chinese Light-Aroma-Type Liquor Produced by Solid-State Fermentation. Appl. Environ. Microbiol. 2019, 85, e03090-18. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Qin, J.; Ye, F.; Ding, F.; Liu, G.; Li, A.; Ren, C.; Xu, Y. Constructing simplified microbial consortia to improve the key flavour compounds during strong aroma-type Baijiu fermentation. Int. J. Food Microbiol. 2022, 369, 109594. [Google Scholar] [CrossRef]
- Du, R.; Jiang, J.; Qu, G.; Wu, Q.; Xu, Y. Directionally controlling flavor compound profile based on the structure of synthetic microbial community in Chinese liquor fermentation. Food Microbiol. 2023, 114, 104305. [Google Scholar] [CrossRef] [PubMed]
Types of Daqu | Research Methods | Marker Microbiota Composition | References |
---|---|---|---|
High-temperature Daqu | Ultra-high-depth macrogenomic sequencing | Lactobacillus, Weissella, Kroppenstedtia, Sphingomonas, Saccharopolyspora, Pediococcus, Leuconostoc, Staphylococcus | [35] |
High-throughput sequencing technology (16S rRNA, ITS) | Kroppenstedtia, Bacillus, Saccharopolyspora, Thermoascus, Thermomyces | [36] | |
High-throughput sequencing technology (16S rRNA, ITS) | Oceanobacillus, Thermomyces, Kroppenstedtia, Thermoascus | [37] | |
ITS High throughput sequencing | Ascomycota, Basidiomycota, Thermomyces, Thermoascus, Aspergillus | [37] | |
Metagenomic sequencing | Kroppenstedtia, Thermoactinomyces, Bacillus, Acinetobacter, Aspergillus, Byssochlamy, Thermoascus, Thermomyces | [38] | |
Medium–high-temperature Daqu | High-throughput sequencing technology | Bacillus, Weissella, Thermoactinomyces, Lactobacillus, Thermoascus, Thermomyces, Kodamaea, Aspergillus | [23] |
Ultra-high-depth macrogenomic sequencing | Lactobacillus, Weissella, Kroppenstedtia, Sphingomonas, Alcelaphine | [35] | |
Metatranscriptomic | Aspergillus, Bacillus, Leuconostoc, Pediococcus, Eurotiales, Bacillales, Saccharomycetales | [39] | |
High-throughput sequencing technology (16S rRNA, ITS) | Weissella, Thermoascus, Bacillus, Pichia, Thermomyces, Lactobacillus | [40] | |
Medium-temperature Daqu | High-throughput sequencing technology | Weissella, Lactobacillus, Pediococcus, Saccharopolyspora, Thermoascus, Issatchenkia, Candida | [41] |
High-throughput sequencing technology | Weissella, Leuconostoc, Bacillus, Lactobacillus, Thermoascus, Thermomyces, Candida | [42] | |
Low-temperature Daqu | High-throughput sequencing technology | Lactobacillus, Pantoea, Staphylococcus, Saccharomycopsis, Wickerhamomyces, Aspergillus, Millerozyma | [43] |
High-throughput sequencing technology | Kroppenstedtia, Bacillus, Saccharomycopsis, Issatchenkia, Cladosporium, Aspergillus | [44] | |
Metagenomic | Bacillus, Streptomyces, Pantoea, Kosakonia, Lactiplantibacillus, Saccharopolyspora | [45] | |
High-throughput sequencing technology | Lactobacillus, Weissella, Pichia, Saccharomycopsis | [46] |
Type of Baijiu | Core Microbiota Composition | References |
---|---|---|
Sauce-flavor Baijiu/Moutai-flavor Baijiu | Pichia, Schizosaccharomyces, Thermomyces, Thermoascus, Aspergillus, Byssochlamys, Saccharomyces, Lactobacillus, Kroppenstedtia, Oceanobacillus | [56,57,58,59,60] |
Luzhou-flavor Baijiu/strong-flavor Baijiu | Lactobacillus, Weissella, Acetobacter, Aspergillus, Caproiciproducens, Issatchenkia, Pichia, Candida, Rhizopus, Kazachstani | [61,62,63,64] |
Fen-flavor Baijiu/light-flavor Baijiu | Lactobacillus, Pichia, Saccharomyces, Bacillus, Lichtheimia, Pantoea, Cladosporium, Pediococcus, Monascus, Aspergillus, Rhizopus | [65,66,67,68,69] |
Rice-flavor Baijiu | Rhizopus, Saccharomyces, Parasitella, Absidia, Lichtheimia, Bacillus, Lactobacillus, Weissella, Pediococcus, Lactococcus, Acetobacter | [70,71,72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Liu, Y.; Li, H.; Hui, M.; Pan, C. Strategies and Challenges of Microbiota Regulation in Baijiu Brewing. Foods 2024, 13, 1954. https://doi.org/10.3390/foods13121954
Zhang P, Liu Y, Li H, Hui M, Pan C. Strategies and Challenges of Microbiota Regulation in Baijiu Brewing. Foods. 2024; 13(12):1954. https://doi.org/10.3390/foods13121954
Chicago/Turabian StyleZhang, Pengpeng, Yanbo Liu, Haideng Li, Ming Hui, and Chunmei Pan. 2024. "Strategies and Challenges of Microbiota Regulation in Baijiu Brewing" Foods 13, no. 12: 1954. https://doi.org/10.3390/foods13121954
APA StyleZhang, P., Liu, Y., Li, H., Hui, M., & Pan, C. (2024). Strategies and Challenges of Microbiota Regulation in Baijiu Brewing. Foods, 13(12), 1954. https://doi.org/10.3390/foods13121954