Pork Meat Composition and Health: A Review of the Evidence
Abstract
:1. Introduction
2. History Facts and Data on Pork Meat Consumption
3. Nutritional Composition
3.1. Fat Content and Fatty Acid Profile
3.2. Micronutrient Composition
3.3. Special Cuts Composition
4. Influence of Pork Meat Consumption in Health Outcomes
4.1. Cardiometabolic Health
Reference | Study Features | Result Summary |
---|---|---|
Davidson et al. [50] | 191 men and women LDL 130–190 mg/dL Experimental group was instructed to consume 170 g (6 oz) of meat. 5 to 7 days per week for 36 weeks At least 80% in the form of lean beef. veal. or pork | There were no significant differences in the results produced by the intervention diets in low-density lipoprotein cholesterol and elevations in high-density lipoprotein cholesterol levels |
Rubio et al. [51] | 44 healthy individuals 6 weeks with 5 weeks for washout Double crossover Veal vs. pork meat (150 g/day) | Lean pork and veal produce similar effects on the lipid profiles of healthy subjects |
Hunninghake et al. [53] | N = 145 men and women Hypercholesterolemia 2 × 36 w with 4-week washout phase 170 g red meat/day vs. white | The diet including pork meat was similarly effective for reducing LDL cholesterol and elevating HDL cholesterol concentrations |
Stewart et al. [54] | 20 adult women Standard pork and lard or the modified pork and lard PUFA enriched pork meat Crossover | The decreases in plasma total cholesterol, LDL cholesterol and SFA contents were most likely a response to the decreased dietary intake of SFAs |
O’ Connor et al. [55] | 41 subjects 2 × 5 weeks MedDiet. one of 2 versions: MedRed vs. MedControl 500 g vs. 200 g red meat/week 4 weeks washout between | Total cholesterol decreased, greater reductions occurred with MedRed than with MedControl |
Wade et al. [56] | 31 Adults 45–80 years old A 24-week parallel crossover design trial MD intervention with 2–3 weekly servings of pork (MedPork) with an LF control intervention | No significant differences were observed |
Montoro-Garcia et al. [57] | 54 volunteers with stage 1 prehypertension and/or hypercholesterolemia and/or basal glucose >100 mg/dL 80 g cured ham with added bioactive compounds 2 × 4 weeks with a 2 week washout | Total cholesterol levels also decreased significantly after dry-cured ham intake |
4.2. Body Weight, Obesity and/or Adiposity
Reference | Study Features | Result Summary |
---|---|---|
Mikkelsen et al. [67] | N = 12, only men RCT BMI 26–32 4-day isoenergetic intervention 3-way crossover (1) Low-fat, high pork-meat protein diet (pork diet); (2) Low-fat, high-soy-protein diet (soy diet); (3) Low-fat, high-carbohydrate diet (carbohydrate diet) | There were no differences in body weight between the three protocols |
Campbell W. & Tang, M. [63] | N = 28, only women 12-week 750 kcal/d energy-deficit diet containing higher or normal protein In the high protein group, 40% was from pork meat Normal diet was egg-lacto-vegetarian | Postmenopausal women in both NP and HP (40% pork) energy restriction diet groups showed decreases in BMI, fat mass and lean mass (p < 0.001); however, no difference was found between normal protein and higher protein diet on BMI, fat mass and lean mass |
Murphy et al. [62] | N = 49, adults 140 g/day chicken, 150 g pork or beef Crossover design: 3 months, 1-week washout | There was no difference in BMI, body fat percentage, fat mass, abdominal fat, lean mass, WC and HC when comparing pork group with beef or chicken diet group (p > 0.05); WHR was lower in pork group than beef and chicken group (p = 0.046) |
4.3. Pork Meat Consumption and Cancer Risk
4.4. Other Health Outcomes
5. Pork Meat in a Sustainable and Healthy Dietary Pattern
6. Discussion
7. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of Red Meat and Processed Meat and Cancer Incidence: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- Shi, W.; Huang, X.; Schooling, C.M.; Zhao, J.V. Red Meat Consumption, Cardiovascular Diseases, and Diabetes: A Systematic Review and Meta-Analysis. Eur. Heart J. 2023, 44, 2626–2635. [Google Scholar] [CrossRef]
- Di, Y.; Ding, L.; Gao, L.; Huang, H. Association of Meat Consumption with the Risk of Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. BMC Cancer 2023, 23, 782. [Google Scholar] [CrossRef] [PubMed]
- Herforth, A.; Arimond, M.; Álvarez-Sánchez, C.; Coates, J.; Christianson, K.; Muehlhoff, E. A Global Review of Food-Based Dietary Guidelines. Adv. Nutr. 2019, 10, 590–605. [Google Scholar] [CrossRef]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Cheung, K.; Milio, K.; Zworth, M.; Bartoszko, J.J.; Valli, C.; et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-Analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 703. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Satija, A.; Blondin, S.A.; Janiszewski, M.; Emlen, E.; O’Connor, L.E.; Campbell, W.W.; Hu, F.B.; Willett, W.C.; Stampfer, M.J. Meta-Analysis of Randomized Controlled Trials of Red Meat Consumption in Comparison with Various Comparison Diets on Cardiovascular Risk Factors. Circulation 2019, 139, 1828–1845. [Google Scholar] [CrossRef]
- Lescinsky, H.; Afshin, A.; Ashbaugh, C.; Bisignano, C.; Brauer, M.; Ferrara, G.; Hay, S.I.; He, J.; Iannucci, V.; Marczak, L.B.; et al. Health Effects Associated with Consumption of Unprocessed Red Meat: A Burden of Proof Study. Nat. Med. 2022, 28, 2075–2082. [Google Scholar] [CrossRef]
- Keeton, J.T.; Dikeman, M.E. ‘Red’ and ‘White’ Meats—Terms That Lead to Confusion. Anim. Front. 2017, 7, 29–33. [Google Scholar] [CrossRef]
- Covaciu, F.-D.; Feher, I.; Cristea, G.; Dehelean, A. Nutritional Quality and Safety Assessment of Pork Meat Cuts from Romania: Fatty Acids and Elemental Profile. Foods 2024, 13, 804. [Google Scholar] [CrossRef]
- Geletu, U.S.; Usmael, M.A.; Mummed, Y.Y.; Ibrahim, A.M. Quality of Cattle Meat and Its Compositional Constituents. Vet. Med. Int. 2021, 2021, 7340495. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Composition Differences between Organic and Conventional Meat: A Systematic Literature Review and Meta-Analysis. Br. J. Nutr. 2016, 115, 994–1011. [Google Scholar] [CrossRef] [PubMed]
- Boldo, E.; Fernández De Larrea, N.; Pollán, M.; Martín, V.; Obón-Santacana, M.; Guevara, M.; Castaño-Vinyals, G.; Canga, J.M.; Pérez-Gómez, B.; Gómez-Acebo, I.; et al. Meat Intake, Cooking Methods, Doneness Preferences and Risk of Gastric Adenocarcinoma in the MCC-Spain Study. Nutrients 2022, 14, 4852. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Franco, B.; Rodríguez-Ayala, M.; Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-García, J.; Lopez-Garcia, E.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Association of Cooking Patterns with Inflammatory and Cardio-Metabolic Risk Biomarkers. Nutrients 2021, 13, 633. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Herrick, K.A.; Parsons, R.; Reedy, J. Heterogeneity in Meat Food Groups Can Meaningfully Alter Population-Level Intake Estimates of Red Meat and Poultry. Front. Nutr. 2021, 8, 778369. [Google Scholar] [CrossRef] [PubMed]
- Borrisser-Pairó, F.; Kallas, Z.; Panella-Riera, N.; Avena, M.; Ibáñez, M.; Olivares, A.; Gil, J.M.; Oliver, M.A. Towards Entire Male Pigs in Europe: A Perspective from the Spanish Supply Chain. Res. Vet. Sci. 2016, 107, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Chernukha, I.; Kotenkova, E.; Pchelkina, V.; Ilyin, N.; Utyanov, D.; Kasimova, T.; Surzhik, A.; Fedulova, L. Pork Fat and Meat: A Balance between Consumer Expectations and Nutrient Composition of Four Pig Breeds. Foods 2023, 12, 690. [Google Scholar] [CrossRef] [PubMed]
- Chouraqui, J.-P.; Turck, D.; Briend, A.; Darmaun, D.; Bocquet, A.; Feillet, F.; Frelut, M.-L.; Girardet, J.-P.; Guimber, D.; Hankard, R.; et al. Religious Dietary Rules and Their Potential Nutritional and Health Consequences. Int. J. Epidemiol. 2021, 50, 12–26. [Google Scholar] [CrossRef] [PubMed]
- Tejera-Pérez, C.; Sánchez-Bao, A.; Bellido-Guerrero, D.; Casanueva, F.F. The Southern European Atlantic Diet. Minerva Endocrinol. 2021, 46, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Perspective: The Place of Pork Meat in Sustainable Healthy Diets. Adv. Nutr. 2024, 15, 100213. [Google Scholar] [CrossRef]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.-J.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Amaral, M.A.; Mundstock, E.; Scarpatto, C.H.; Cañon-Montañez, W.; Mattiello, R. Reference Percentiles for Bioimpedance Body Composition Parameters of Healthy Individuals: A Cross-Sectional Study. Clinics 2022, 77, 100078. [Google Scholar] [CrossRef] [PubMed]
- Mote, B.E.; Rothschild, M.F. Modern Genetic and Genomic Improvement of the Pig. In Animal Agriculture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 249–262. ISBN 978-0-12-817052-6. [Google Scholar]
- FAO. Food Balance Sheets 2010–2021; FAO: Rome, Italy, 2023. [Google Scholar]
- Guenther, P.M.; Jensen, H.H.; Batres-Marquez, S.P.; Chen, C.-F. Sociodemographic, Knowledge, and Attitudinal Factors Related to Meat Consumption in the United States. J. Am. Diet. Assoc. 2005, 105, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.E.; Lee, K.J. Ethnic Differences in Attitudes, Beliefs, and Patterns of Meat Consumption among American Young Women Meat Eaters. Nutr. Res. Pract. 2023, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhong, T. Did Household Income Loss Have an Immediate Impact on Animal-Source Foods Consumption during the Early Stage of the COVID-19 Pandemic? Foods 2023, 12, 1424. [Google Scholar] [CrossRef]
- Milford, A.B.; Le Mouël, C.; Bodirsky, B.L.; Rolinski, S. Drivers of Meat Consumption. Appetite 2019, 141, 104313. [Google Scholar] [CrossRef] [PubMed]
- Clonan, A.; Roberts, K.E.; Holdsworth, M. Socioeconomic and Demographic Drivers of Red and Processed Meat Consumption: Implications for Health and Environmental Sustainability. Proc. Nutr. Soc. 2016, 75, 367–373. [Google Scholar] [CrossRef]
- Font-i-Furnols, M. Meat Consumption, Sustainability and Alternatives: An Overview of Motives and Barriers. Foods 2023, 12, 2144. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Spanish Perspective on Meat Consumption and Consumer Attitudes. Meat Sci. 2022, 191, 108874. [Google Scholar] [CrossRef]
- Rocillo-Aquino, Z.; Cervantes-Escoto, F.; Leos-Rodríguez, J.A.; Cruz-Delgado, D.; Espinoza-Ortega, A. What Is a Traditional Food? Conceptual Evolution from Four Dimensions. J. Ethn. Food 2021, 8, 38. [Google Scholar] [CrossRef]
- Kallas, Z.; Varela, E.; Čandek-Potokar, M.; Pugliese, C.; Cerjak, M.; Tomažin, U.; Karolyi, D.; Aquilani, C.; Vitale, M.; Gil, J.M. Can Innovations in Traditional Pork Products Help Thriving EU Untapped Pig Breeds? A Non-Hypothetical Discrete Choice Experiment with Hedonic Evaluation. Meat Sci. 2019, 154, 75–85. [Google Scholar] [CrossRef]
- Ortiz, A.; Carrillo, N.; Elghannam, A.; Escribano, M.; Gaspar, P. Views of Farmers and Industrial Entrepreneurs on the Iberian Pig Quality Standard: An In-Depth Interview Research Study. Animals 2020, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Chernukha, I.; Kotenkova, E.; Derbeneva, S.; Khvostov, D. Bioactive Compounds of Porcine Hearts and Aortas May Improve Cardiovascular Disorders in Humans. Int. J. Environ. Res. Public Health 2021, 18, 7330. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.M.; Castanheira, I.P.; Dantas, M.A.; Porto, A.A.; Calhau, M.A. Portuguese Food Composition Database Quality Management System. Eur. J. Clin. Nutr. 2010, 64, S53–S57. [Google Scholar] [CrossRef] [PubMed]
- PORTFIR. Portuguese Food Composition Table; INSA: Lisbon, Portugal, 2021. [Google Scholar]
- Damigou, E.; Kosti, R.I.; Panagiotakos, D.B. White Meat Consumption and Cardiometabolic Risk Factors: A Review of Recent Prospective Cohort Studies. Nutrients 2022, 14, 5213. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; De Jesus, J.M.; Miller, N.H.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129, S76–S99. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Gang, G.; Go, G. Ambivalence towards Pork Belly: Exploring Its Significance and Contradictions from the Perspectives of the Food Industry and Nutritional Science. Food Sci. Biotechnol. 2024, 33, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, P.O.; Shand, P.J.; Aalhus, J.L.; Gariépy, C.; Juárez, M. Review: Pork Belly Quality, Bacon Properties and Recent Consumer Trends. Can. J. Anim. Sci. 2015, 95, 325–340. [Google Scholar] [CrossRef]
- Dinh, T.T.N.; To, K.V.; Schilling, M.W. Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat Muscle Biol. 2021, 5, 1–16. [Google Scholar] [CrossRef]
- Hoa, V.B.; Cho, S.-H.; Seong, P.-N.; Kang, S.-M.; Kim, Y.-S.; Moon, S.-S.; Choi, Y.-M.; Kim, J.-H.; Seol, K.-H. Quality Characteristics, Fatty Acid Profiles, Flavor Compounds and Eating Quality of Cull Sow Meat in Comparison with Commercial Pork. Asian-Australas. J. Anim. Sci. 2020, 33, 640–650. [Google Scholar] [CrossRef]
- Pleadin, J.; Lešić, T.; Vujačić, V.; Milićević, D.; Buneta, A.; Šušnić, S.; Lukanić, I.; Krešić, G. Comparison of Chemical Composition and Fatty Acid Profile of Traditional Meat Products from Croatia and Montenegro. J. Food Qual. 2021, 2021, 5586436. [Google Scholar] [CrossRef]
- Pereira, P.M.D.C.C.; Vicente, A.F.D.R.B. Meat Nutritional Composition and Nutritive Role in the Human Diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Fulgoni, V.L. Association of Pork (All Pork, Fresh Pork and Processed Pork) Consumption with Nutrient Intakes and Adequacy in US Children (Age 2–18 Years) and Adults (Age 19+ Years): NHANES 2011–2018 Analysis. Nutrients 2023, 15, 2293. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.; Spungen, J.; Bi, X.; Barraj, L. Fresh and Fresh Lean Pork Are Substantial Sources of Key Nutrients When These Products Are Consumed by Adults in the United States. Nutr. Res. 2011, 31, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.A.S.; Lichtenstein, A.H.; Anderson, C.A.M.; Appel, L.J.; Kris-Etherton, P.M.; Meyer, K.A.; Petersen, K.; Polonsky, T.; Van Horn, L.; On behalf of the American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; et al. Dietary Cholesterol and Cardiovascular Risk: A Science Advisory From the American Heart Association. Circulation 2020, 141, e39–e53. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Gan, L.; Graubard, B.I.; Männistö, S.; Albanes, D.; Huang, J. Associations of Dietary Cholesterol, Serum Cholesterol, and Egg Consumption with Overall and Cause-Specific Mortality: Systematic Review and Updated Meta-Analysis. Circulation 2022, 145, 1506–1520. [Google Scholar] [CrossRef] [PubMed]
- Davidson, M.H.; Hunninghake, D.; Maki, K.C.; Kwiterovich, P.O.; Kafonek, S. Comparison of the Effects of Lean Red Meat vs Lean White Meat on Serum Lipid Levels Among Free-Living Persons with Hypercholesterolemia: A Long-Term, Randomized Clinical Trial. Arch. Intern. Med. 1999, 159, 1331. [Google Scholar] [CrossRef] [PubMed]
- Rubio, J.A.; Rubio, M.A.; Cabrerizo, L.; Burdaspal, P.; Carretero, R.; Gómez-Gerique, J.A.; Montoya, M.T.; Maestro, M.L.; Sanz, M.T.; Fernández, C. Effects of Pork vs Veal Consumption on Serum Lipids in Healthy Subjects. Nutr. Hosp. 2006, 21, 75–83. [Google Scholar]
- Yang, Z.; Yang, K.; Zhang, X.; Yang, Q.; Zhang, Y.; Gao, J.; Qu, H.; Shi, J. Dietary Saturated, Monounsaturated, or Polyunsaturated Fatty Acids and Estimated 10-Year Risk of a First Hard Cardiovascular Event. Am. J. Med. 2023, 136, 796–803.e2. [Google Scholar] [CrossRef]
- Hunninghake, D.B.; Maki, K.C.; Kwiterovich, P.O.; Davidson, M.H.; Dicklin, M.R.; Kafonek, S.D. Incorporation of Lean Red Meat into a National Cholesterol Education Program Step I Diet: A Long-Term, Randomized Clinical Trial in Free-Living Persons with Hypercholesterolemia. J. Am. Coll. Nutr. 2000, 19, 351–360. [Google Scholar] [CrossRef]
- Stewart, J.W.; Kaplan, M.L.; Beitz, D.C. Pork with a High Content of Polyunsaturated Fatty Acids Lowers LDL Cholesterol in Women. Am. J. Clin. Nutr. 2001, 74, 179–187. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Paddon-Jones, D.; Wright, A.J.; Campbell, W.W. A Mediterranean-Style Eating Pattern with Lean, Unprocessed Red Meat Has Cardiometabolic Benefits for Adults Who Are Overweight or Obese in a Randomized, Crossover, Controlled Feeding Trial. Am. J. Clin. Nutr. 2018, 108, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Murphy, K.J. Effects of Mediterranean Diet Supplemented with Lean Pork on Blood Pressure and Markers of Cardiovascular Risk: Findings from the MedPork Trial. Br. J. Nutr. 2019, 122, 873–883. [Google Scholar] [CrossRef]
- Montoro-García, S.; Velasco-Soria, Á.; Mora, L.; Carazo-Díaz, C.; Prieto-Merino, D.; Avellaneda, A.; Miranzo, D.; Casas-Pina, T.; Toldrá, F.; Abellán-Alemán, J. Beneficial Impact of Pork Dry-Cured Ham Consumption on Blood Pressure and Cardiometabolic Markers in Individuals with Cardiovascular Risk. Nutrients 2022, 14, 298. [Google Scholar] [CrossRef]
- Martínez-López, E.; Pérez-Guerrero, E.E.; Torres-Carrillo, N.M.; López-Quintero, A.; Betancourt-Núñez, A.; Gutiérrez-Hurtado, I.A. Methodological Aspects in Randomized Clinical Trials of Nutritional Interventions. Nutrients 2022, 14, 2365. [Google Scholar] [CrossRef]
- Vitolins, M.Z.; Case, T.L. What Makes Nutrition Research So Difficult to Conduct and Interpret? Diabetes Spectr. 2020, 33, 113–117. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Liu, J.; Liu, R. Pork Consumption in Relation to Body Weight and Composition: A Systematic Review and Meta-Analysis. Am. J. Health Behav. 2020, 44, 513–525. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Parker, B.; Dyer, K.; Davis, C.; Coates, A.; Buckley, J.; Howe, P. A Comparison of Regular Consumption of Fresh Lean Pork, Beef and Chicken on Body Composition: A Randomized Cross-Over Trial. Nutrients 2014, 6, 682–696. [Google Scholar] [CrossRef]
- Campbell, W.W.; Tang, M. Protein Intake, Weight Loss, and Bone Mineral Density in Postmenopausal Women. J. Gerontol. Ser. A 2010, 65A, 1115–1122. [Google Scholar] [CrossRef]
- Hansen, T.T.; Astrup, A.; Sjödin, A. Are Dietary Proteins the Key to Successful Body Weight Management? A Systematic Review and Meta-Analysis of Studies Assessing Body Weight Outcomes after Interventions with Increased Dietary Protein. Nutrients 2021, 13, 3193. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary Protein—Its Role in Satiety, Energetics, Weight Loss and Health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef]
- Kim, J.Y. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J. Obes. Metab. Syndr. 2021, 30, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, P.B.; Toubro, S.; Astrup, A. Effect of Fat-Reduced Diets on 24-h Energy Expenditure: Comparisons between Animal Protein, Vegetable Protein, and Carbohydrate. Am. J. Clin. Nutr. 2000, 72, 1135–1141. [Google Scholar] [CrossRef]
- Carr, P.R.; Walter, V.; Brenner, H.; Hoffmeister, M. Meat Subtypes and Their Association with Colorectal Cancer: Systematic Review and Meta-analysis. Int. J. Cancer 2016, 138, 293–302. [Google Scholar] [CrossRef]
- Gamage, S.M.K.; Lee, K.T.W.; Dissabandara, D.L.O.; Lam, A.K.-Y.; Gopalan, V. Dual Role of Heme Iron in Cancer; Promotor of Carcinogenesis and an Inducer of Tumour Suppression. Exp. Mol. Pathol. 2021, 120, 104642. [Google Scholar] [CrossRef]
- Zhu, P.; Zhang, Y.; Chen, Q.; Qiu, W.; Chen, M.; Xue, L.; Lin, M.; Yang, H. The Interaction of Diet, Alcohol, Genetic Predisposition, and the Risk of Breast Cancer: A Cohort Study from the UK Biobank. Eur. J. Nutr. 2024, 63, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Huang, Q.; Wang, Y.; Shan, T. Lipo-Nutritional Quality of Pork: The Lipid Composition, Regulation, and Molecular Mechanisms of Fatty Acid Deposition. Anim. Nutr. 2023, 13, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Bojková, B.; Winklewski, P.J.; Wszedybyl-Winklewska, M. Dietary Fat and Cancer—Which Is Good, Which Is Bad, and the Body of Evidence. Int. J. Mol. Sci. 2020, 21, 4114. [Google Scholar] [CrossRef]
- Qiu, W.; Lu, H.; Qi, Y.; Wang, X. Dietary Fat Intake and Ovarian Cancer Risk: A Meta-Analysis of Epidemiological Studies. Oncotarget 2016, 7, 37390–37406. [Google Scholar] [CrossRef]
- Uhomoibhi, T.O.; Okobi, T.J.; Okobi, O.E.; Koko, J.O.; Uhomoibhi, O.; Igbinosun, O.E.; Ehibor, U.D.; Boms, M.G.; Abdulgaffar, R.A.; Hammed, B.L.; et al. High-Fat Diet as a Risk Factor for Breast Cancer: A Meta-Analysis. Cureus 2022, 14, e32309. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, K. Dietary Fat Intake and Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis of Prospective Studies. Nutrients 2018, 10, 1963. [Google Scholar] [CrossRef] [PubMed]
- Datlow, L.Y.; Leventhal, M.; King, J.; Wallace, T.C. Consumption Patterns and the Nutritional Contribution of Total, Processed, Fresh, and Fresh-Lean Pork to the U.S. Diet. Nutrients 2023, 15, 2595. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.M.; Wilcox, M.L.; Maki, K.C. Red Meat Consumption and Risk Factors for Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr. 2023, 77, 156–165. [Google Scholar] [CrossRef]
- Morze, J.; Danielewicz, A.; Przybyłowicz, K.; Zeng, H.; Hoffmann, G.; Schwingshackl, L. An Updated Systematic Review and Meta-Analysis on Adherence to Mediterranean Diet and Risk of Cancer. Eur. J. Nutr. 2021, 60, 1561–1586. [Google Scholar] [CrossRef] [PubMed]
- Leis Trabazo, R.; De Lamas Pérez, C.; Castro Pérez, X.; Solla, P. Dieta Atlántica. Nutrición y Gastronomía En Galicia. Nutr. Hosp. 2019, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Casla, A.; Stefler, D.; Ortolá, R.; Chen, Y.; Knuppel, A.; Kubinova, R.; Pajak, A.; Rodríguez-Artalejo, F.; Brunner, E.J.; Bobak, M. The Southern European Atlantic Diet and All-Cause and Cause-Specific Mortality: A European Multicohort Study. Eur. J. Prev. Cardiol. 2024, 31, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Casla, A.; Ortolá, R.; García-Esquinas, E.; Oliveira, A.; Sotos-Prieto, M.; Lopes, C.; Lopez-Garcia, E.; Rodríguez-Artalejo, F. The Southern European Atlantic Diet and All-Cause Mortality in Older Adults. BMC Med. 2021, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Carballo-Casla, A.; Stefler, D.; Ortolá, R.; Chen, Y.; Knuppel, A.; Ruiz, M.; Kozela, M.; Kubinova, R.; Pajak, A.; Rodríguez-Artalejo, F.; et al. The Southern European Atlantic Diet and Depression Risk: A European Multicohort Study. Mol. Psychiatry 2023, 28, 3475–3483. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Hernández-Matamoros, A.; González, E. Free-Range and Low-Protein Concentrated Diets in Iberian Pigs: Effect on Plasma Insulin and Leptin Concentration, Lipogenic Enzyme Activity, and Fatty Acid Composition of Adipose Tissue. Animals 2020, 10, 1917. [Google Scholar] [CrossRef]
- Lebret, B.; Čandek-Potokar, M. Review: Pork Quality Attributes from Farm to Fork. Part I. Carcass and Fresh Meat. Animal 2022, 16, 100402. [Google Scholar] [CrossRef] [PubMed]
- Sans, P.; Combris, P. World Meat Consumption Patterns: An Overview of the Last Fifty Years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.M.; Fialho, R.; Albuquerque, A.; Neves, J.; Freitas, A.; Tirapicos Nunes, J.; Charneca, R. Portuguese Local Pig Breeds: Genotype Effects on Meat and Fat Quality Traits. Animals 2020, 10, 905. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Ameer, K.; Kim, H.; Lee, E.-J.; Ramachandraiah, K.; Hong, G.-P. Strategies for Sustainable Substitution of Livestock Meat. Foods 2020, 9, 1227. [Google Scholar] [CrossRef] [PubMed]
- Six, L.; De Wilde, B.; Vermeiren, F.; Van Hemelryck, S.; Vercaeren, M.; Zamagni, A.; Masoni, P.; Dewulf, J.; De Meester, S. Using the Product Environmental Footprint for Supply Chain Management: Lessons Learned from a Case Study on Pork. Int. J. Life Cycle Assess. 2017, 22, 1354–1372. [Google Scholar] [CrossRef]
- Tuomisto, H.L. The Complexity of Sustainable Diets. Nat. Ecol. Evol. 2019, 3, 720–721. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Đokić, M.; Varenina, I.; Solomun Kolanović, B.; Božić Luburić, Đ.; Varga, I.; Roncarati, A. Evaluation of Element Concentrations in Beef and Pork Meat Cuts Available to the Population in the Croatian Capital. Foods 2020, 9, 1861. [Google Scholar] [CrossRef] [PubMed]
- Saengsuk, N.; Sangsawad, P.; Paengkoum, P.; Pongsetkul, J. Lipid and Volatile Profiles of Various Goat Primal Cuts: Aspects of Nutritional Value and Flavor/Taste Attributes. Foods 2024, 13, 492. [Google Scholar] [CrossRef]
- Lotfi, K.; Salari-Moghaddam, A.; Yousefinia, M.; Larijani, B.; Esmaillzadeh, A. Dietary Intakes of Monounsaturated Fatty Acids and Risk of Mortality from All Causes, Cardiovascular Disease and Cancer: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Ageing Res. Rev. 2021, 72, 101467. [Google Scholar] [CrossRef]
- Qian, F.; Korat, A.A.; Malik, V.; Hu, F.B. Metabolic Effects of Monounsaturated Fatty Acid–Enriched Diets Compared with Carbohydrate or Polyunsaturated Fatty Acid–Enriched Diets in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Care 2016, 39, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.J.; Thomson, R.L.; Coates, A.M.; Buckley, J.D.; Howe, P.R.C. Effects of Eating Fresh Lean Pork on Cardiometabolic Health Parameters. Nutrients 2012, 4, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Charlton, K.E.; Tapsell, L.C.; Batterham, M.J.; Thorne, R.; O’Shea, J.; Zhang, Q.; Beck, E.J. Pork, Beef and Chicken Have Similar Effects on Acute Satiety and Hormonal Markers of Appetite. Appetite 2011, 56, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Abar, L.; Chan, D.S.M.; Vingeliene, S.; Polemiti, E.; Stevens, C.; Greenwood, D.; Norat, T. Foods and Beverages and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis of Cohort Studies, an Update of the Evidence of the WCRF-AICR Continuous Update Project. Ann. Oncol. 2017, 28, 1788–1802. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Stern, M.C.; Norat, T.; Sasazuki, S.; Vineis, P.; Weijenberg, M.P.; Wolk, A.; Wu, K.; Stewart, B.W.; Cho, E. Consumption of Red and Processed Meat and Breast Cancer Incidence: A Systematic Review and Meta-analysis of Prospective Studies. Int. J. Cancer 2018, 143, 2787–2799. [Google Scholar] [CrossRef] [PubMed]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and Human Health—Current Knowledge and Research Gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef] [PubMed]
- Ruxton, C. Interpretation of Observational Studies: The Good, the Bad and the Sensational. Proc. Nutr. Soc. 2022, 81, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Velho, M.; Pinheiro, R.; Rodrigues, A. The Atlantic Diet–Origin and Features. Int. J. Food Stud. 2016, 5, 106–119. [Google Scholar]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Jensen, J.D. Sustainability Implications of Rising Global Pork Demand. Anim. Front. 2022, 12, 56–60. [Google Scholar] [CrossRef]
Country | Kg/Capita/Year |
---|---|
China–Hong Kong | 55.9 |
Poland | 54.9 |
Spain | 52.6 |
China–Macao | 52 |
Lithuania | 50.7 |
Germany | 44.0 |
Belarus | 39.2 |
Portugal | 38.0 |
China–Mainland | 35.3 |
France | 31.0 |
United States | 30.6 |
United Kingdom | 24.0 |
Brazil | 17.7 |
Pork Meat Cut | Energy Value (kcal) | Protein (g) | Fat (g) | SFA (g) | MUFA (g) | PUFA (g) | LA (g) |
---|---|---|---|---|---|---|---|
Pork loin | 131 | 22.2 | 4.7 | 1.6 | 1.6 | 0.8 | 0.7 |
Pork chops | 288 | 18.6 | 23.8 | 8.2 | 7.9 | 3.4 | 0.1 |
Pork ribs | 190 | 19.6 | 12.4 | 4.2 | 4.1 | 1.7 | 0.1 |
Pork leg | 190 | 12.1 | 12.3 | 6.3 | 6.2 | 2.6 | 0.1 |
Pork belly | 518 | 9.3 | 53 | 19.3 | 24.7 | 5.6 | 0.0 |
Meat Cut | Energy (kcal) | Fat (g) | SFA (g) | MUFA (g) | PUFA (g) | LA (g) |
---|---|---|---|---|---|---|
Beef, loin | 174.5 | 10.3 | 3.9 | 4.6 | 0.4 | 0.3 |
Chicken, no skin | 110 | 2 | 0.5 | 0.7 | 0.4 | 0.4 |
Chicken, skin | 201 | 13.6 | 13.6 | 3.2 | 4.5 | 2.8 |
Pork loin | 131 | 4.7 | 1.6 | 1.6 | 0.8 | 0.7 |
Pork ribs | 190 | 12.4 | 4.2 | 4.1 | 2.1 | 1.7 |
Pork chops | 288 | 23.8 | 8.2 | 7.9 | 3.9 | 3.4 |
Pork leg | 189 | 12.3 | 6.3 | 6.2 | 2.6 | 0.1 |
B1 (mg) | B2 (mg) | B3 (mg) | B6 (mg) | B9 (mg) | B12 (mg) | |
---|---|---|---|---|---|---|
DRV 1 | 1.1 | 1.4 | 16 | 1.4 | 200 | 2.4 |
Pork loin | 0.7 | 0.2 | 5.3 | 0.4 | 5.0 | 1.0 |
Pork chops | 0.7 | 0.2 | 6 | 0.4 | 4.5 | 1.0 |
Pork ribs | 0.7 | 0.3 | 7.2 | 0.4 | 1.0 | 1.0 |
Potassium [mg] | Calcium [mg] | Phosphorus [mg] | Magnesium [mg] | Iron [mg] | Zinc [mg] | |
---|---|---|---|---|---|---|
DRV 1 | 2000 | 800 | 700 | 375 | 14 | 10 |
Pork loin | 400 | 7 | 220 | 23 | 0.6 | 1.6 |
Pork chops | 330 | 15 | 190 | 19.5 | 1.05 | 1.9 |
Pork ribs | 350 | 11 | 190 | 21 | 0.8 | 2.2 |
Pork leg | 395 | 16 | 245 | 18 | 1.4 | 1.9 |
Energy [kcal] | Fat [g] | SFA [g] | MUFA [g] | PUFA [g] | LA [g] | Protein [g] | |
---|---|---|---|---|---|---|---|
Ear | 128 | 2.5 | 0.8 | 0.9 | 0.8 | 0.8 | 26 |
Liver steak | 129 | 5 | 1.7 | 1.7 | 0.8 | 0.7 | 20.9 |
Pork belly | 682 | 72 | 24.1 | 27.9 | 11 | 9.4 | 8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vicente, F.; Pereira, P.C. Pork Meat Composition and Health: A Review of the Evidence. Foods 2024, 13, 1905. https://doi.org/10.3390/foods13121905
Vicente F, Pereira PC. Pork Meat Composition and Health: A Review of the Evidence. Foods. 2024; 13(12):1905. https://doi.org/10.3390/foods13121905
Chicago/Turabian StyleVicente, Filipa, and Paula C. Pereira. 2024. "Pork Meat Composition and Health: A Review of the Evidence" Foods 13, no. 12: 1905. https://doi.org/10.3390/foods13121905