Use of GC-IMS and Stoichiometry to Characterize Flavor Volatiles in Different Parts of Lueyang Black Chicken during Slaughtering and Cutting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Six Different Cutting Parts of Lueyang Black Chicken
2.3. GC-IMS Assay of VOCs in Six Different Cut Parts of Lueyang Black Chicken
2.4. Statistical Analysis
3. Results and Discussion
3.1. GC-IMS 3D and 2D Spectrum of VOCs in Six Cut Parts of Lueyang Black Chicken
3.2. Fingerprint of VOCs in Six Different Cut Parts of Lueyang Black Chicken
3.3. Qualitative Analysis of VOCs in Six Different Cut Parts of Lueyang Black Chicken
3.4. OPLS-DA and Model Validation
3.5. Screening of Characteristic VOCs in Six Different Cut Parts of Lueyang Black Chicken
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhou, H.; Liu, Y.B.; Wang, J.F.; Li, H.; Ung, C.Y.; Han, L.Y.; Cao, Z.W.; Chen, Y.Z. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br. J. Pharmacol. 2006, 149, 1092–1103. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.S.; Li, H.Z.; Wu, X.K.; Dang, J.M.; Tong, H.; Zhao, C.Y.; Liu, Y.; Cai, Y.Q. Effect of Wujijing Oral Liquid on menstrual disturbance of women. J Ethnopharmacol. 2009, 128, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.W.; Liu, X.L.; Huang, S.; Huang, Z.G. Comparative clinical study on effect of Wuji Baifeng pills and aripiprazole in the treatment of risperidone induced amenorrhea. Zhongguo Fuyou Baojian 2013, 28, 3515–3516. [Google Scholar]
- Zhang, Z.Y.; Lv, X.Y.; Zhao, J.Y.; Wang, Z.P. Estimation of genetic parameters and association analysis of FSHR gene sequence variation with age at the onset of egg laying of Lueyang black boned chicken. J. China Agric. Univ. 2022, 27, 145–153. [Google Scholar]
- Wang, Z.P.; Chen, Q.; Wang, Y.W.; Wang, Y.L.; Liu, R.F. Refine localizations of functional variants affecting eggshell color of Lueyang black boned chicken in the SLCO1B3. Poult. Sci. 2023, 103, 103212. [Google Scholar] [CrossRef]
- Wang, Z.P.; Zhou, W.X. Research Note: Fine mapping of sequence variants associated with body weight of lueyang black boned chicken in the CCKAR gene. Poult. Sci. 2021, 100, 101448. [Google Scholar] [CrossRef]
- Zhen, X.; Wang, L.; Tian, Y.M.; Yang, Y.F.; Li, P.; Yang, G.; Lu, H.Z.; Wang, S.S.; Zeng, W.X.; Zhang, T. A genome-wide scan to identify signatures of selection in lueyang black-bone chicken. Poult. Sci. 2023, 102, 102721. [Google Scholar]
- Zhang, T.; Liu, H.; Yang, L.K.; Yin, Y.J.; Lu, H.Z.; Wang, L. The complete mitochondrial genome and molecular phylogeny of lueyang black-bone chicken. Br. Poult. Sci. 2018, 59, 618–623. [Google Scholar] [CrossRef]
- Zhuang, J.N.; Lu, H.Z.; Yang, G.; Wang, L.; Wang, S.S.; Zhang, T. Microsatellite genetic polymorphism of black and white feather populations in lueyang black bone chicken. China Poult. 2021, 43, 107–112. [Google Scholar]
- Zhang, S.Y.; Zhang, J.Q.; Cao, C.; Cai, Y.J.; Li, Y.X.; Song, Y.P.; Bao, X.Y.; Zhang, J.Q. Effects of different rearing systems on lueyang black bone chickens: Meat quality, amino acid composition, and breast muscle transcriptome. Genes 2022, 13, 1898. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, L.; Wang, S.S.; Chen, R.; Zhang, T.; Ma, H.D.; Lu, H.Z.; Yuan, G.Q. Transcriptomic analysis of thigh muscle of lueyang black bone chicken in free-range and caged feeding. Anim. Biotechnol. 2023, 34, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.P.; Zhou, W.X.; Liu, R.F.; Bai, Y.; Wang, Z.P. Estimation of genetic parameters of body weight and egg number traits of lueyang black boned chicken. Sci. Agric. Sin. 2020, 53, 3620–3628. [Google Scholar]
- Chen, Y.B.; Liu, Y.; Chen, R.; Cao, Y.; Han, H. Determination of inosinic acid in muscle of lueyang black bone chicken by HPLC. Food Ferment. Ind. 2021, 47, 228–233. [Google Scholar]
- Ma, J.; Chen, Q.W.; Zhao, M.Y.; Tong, P.Y.; Yang, X.J.; Yang, X.; Long, F.Y. Effects of different marination on texture and volatile flavor of lueyang black bone chicken jerky. China Food Addit. 2023, 34, 216–223. [Google Scholar]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Duan, S.N.; Tang, X.Y.; Li, W.S.; Huang, X.Y. Analysis of the differences in volatile organic compounds in different muscles of pork by GC-IMS. Molecules 2023, 28, 1726. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.L.; Zhao, L.H.; Wang, B.H.; Liu, C.; Zhang, Y.K.; Yang, F.; Yue, J.P.; Jin, Y. Analysis of volatile components and fatty acid composition in muscles from different anatomical locations of Sunite sheep. Food Sci. 2017, 38, 165–169. [Google Scholar]
- Wang, F.; Yang, X.L.; Xi, B.; Wang, H.B.; Li, W.H.; Chen, P.; He, X.N.; Gao, Y.Q. Analysis of fatty acid composition and characteristic flavor fingerprinting of muscles from different anatomical locations of Tan sheep. Food Sci. 2021, 42, 191–198. [Google Scholar]
- Xun, W.; Wang, G.Y.; Zhao, W.H.; Yu, Y.R.; Liao, G.Z.; Ge, C.R. HS-SPME-GC-MS-based volatile flavor in breast and leg muscle of piao chicken and yanjin silky fowl. J. Nucl. Agric. Sci. 2021, 35, 923–932. [Google Scholar]
- Chen, J.L.; Rui, H.M.; Chen, H.C. Comparison of volatile flavor characteristic of different kinds of chicken muscles. Mod. Food Sci. Technol. 2009, 25, 1129–1134. [Google Scholar]
- Phetsang, H.; Panpipat, W.; Panya, A.; Phonsatta, N.; Cheong, L.Z.; Chaijan, M. Chemical characteristics and volatile compounds profiles in different muscle part of the farmed hybrid catfish (Clarias macrocephalus × Clarias gariepinus). Int. J. Food Sci. Technol. 2022, 57, 310–322. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, M.Y.; Cao, R.; Liu, Q.; Meng, F.Y. Comparison of nutritional components and flavor substances of different muscle parts of three kinds of tuna species. Sci. Technol. Food Ind. 2022, 43, 319–326. [Google Scholar]
- Zhao, L.; Hu, M.Y.; Cao, R.; Liu, Q.; Meng, F.Y. Analysis of nutrition and major flavor of different muscle parts of thunnus thynnus. Prog. Fish. Sci. 2023, 44, 219–227. [Google Scholar]
- Jin, W.G.; Zhao, P.; Jin, J.; Yang, M.; Liu, J.X.; Geng, J.Z.; Chen, X.H.; Pei, J.J.; Chen, D.J. Differences in volatile fingerprints of different edible parts of giant salamander (Andrias davidiauns) analyzed by gas chromatography-ion mobility spectrometry. Food Sci. 2022, 43, 303–309. [Google Scholar]
- Wang, S.Q.; Chen, H.T.; Sun, B.G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef] [PubMed]
- Parastar, H.; Weller, P. Towards greener volatilomics: Is GC-IMS the new Swiss army knife of gas phase analysis? Trends Anal. Chem. 2024, 170, 117438. [Google Scholar] [CrossRef]
- Chen, R. Study on processing technology of Lueyang black-bone chicken sausage. Food Ferment. Ind. 2015, 41, 226–230. [Google Scholar]
- Liu, X.; Zhao, H.M.; Wang, L.; Wang, S.S.; Lu, H.Z.; Yuan, G.Q.; Zhang, T. Protective effect of Lüeyang black-bone chicken soup on different tissues of D-galactose-induced aging mice. Sci. Technol. Food Ind. 2022, 43, 402–409. [Google Scholar]
- Jin, W.G.; Pei, J.J.; Chen, X.H.; Geng, J.Z.; Chen, D.J.; Gao, R.C. Influence of frying methods on quality characteristics and volatile flavor compounds of giant salamander Meatballs. J. Food Qual. 2021, 2021, 8450072. [Google Scholar] [CrossRef]
- Jin, W.G.; Zhao, S.B.; Sun, H.Y.; Pei, J.J.; Gao, R.C.; Jiang, P.F. Characterization and discrimination of flavor volatiles of different colored wheat grains after cooking based on GC-IMS and chemometrics. Curr. Res. Food Sci. 2023, 7, 100583. [Google Scholar] [CrossRef]
- Jin, W.G.; Zhang, Z.H.; Zhao, S.B.; Liu, J.X.; Gao, R.C.; Jiang, P.F. Characterization of volatile organic compounds of different pigmented rice after puffing based on gas chromatography-ion migration spectrometry and chemometrics. Food Res. Int. 2023, 169, 112879. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.C.; Lin, Z.Y.; Li, Y.; Chen, F.S.; Liu, S.X.; Li, C.F. Effects of different cooking methods on volatile flavor compounds of chicken breast. J. Food Biochem. 2021, 45, e13770. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Zhou, S.Q.; Guo, J.H.; Yan, W.J. HS-GC-IMS analysis of volatile organic compounds in different varieties and harvesting times of rhizoma gastrodiae (tian ma) in yunnan province. Molecules 2023, 28, 6705. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.G.; Zhao, P.G.; Jiang, P.F.; Liu, J.X. Analysis of differential volatile organic compounds in different colored millet porridges by gas chromatography-ion mobility spectrometry combined with multivariate statistical analysis. Food Sci. 2023, 44, 277–284. [Google Scholar]
- Yao, W.; Cai, Y.; Liu, D.; Chen, Y.; Li, J.; Zhang, M.; Chen, N.; Zhang, H. Analysis of flavor formation during production of Dezhou braised chicken using headspace-gas chromatography-ion mobility spec-trometry (HS-GC-IMS). Food Chem. 2022, 370, 130989. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Lai, Y.H.; Shao, X.F.; Zeng, X.M.; Wang, P.; Han, M.Y.; Xu, X.L. Different analysis of flavors among soft-boiled chicken: Based on GC-IMS and PLS-DA. Food Biosci. 2023, 56, 103243. [Google Scholar] [CrossRef]
- Jin, Y.; Cui, H.; Yuan, X.; Liu, L.; Liu, X.; Wang, Y.; Ding, J.; Xiang, H.; Zhang, X.; Liu, J.; et al. Identification of the main aroma compounds in Chinese local chicken high-quality meat. Food Chem. 2021, 359, 129930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Wu, Y.C.; Liu, Q.W.; Zhao, G.P.; Wei, L.L.; Zhang, C.H.; Huang, F. Comparative flavor precursors and volatile compounds of Wenchang chickens fed with copra meal based on GC–O–MS. Food Res. Int. 2023, 174, 113646. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Li, N.Z.; Zhong, H.; Xu, H.Y.; Zhu, Q.; Liu, Y.P. Comparative analysis of the gut microbial composition and meat flavor of two chicken breeds in different rearing patterns. Biomed. Res. Int. 2018, 2018, 4343196. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, X.; Zhao, W.; Li, H.; Zhao, G.; Liu, J. The SLC27A1 gene and its enriched PPAR pathway are involved in the regulation of flavor compound hexanal content in chinese native chickens. Genes 2022, 13, 192. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Cui, H.X.; Jin, Y.X.; Zhao, W.J.; Liu, X.J.; Wang, Y.L.; Ding, J.Q.; Liu, L.; Wen, J.; Zhao, G.P. Fatty acid metabolism-related genes are associated with flavor-presenting aldehydes in Chinese local chicken. Front. Genet. 2022, 13, 902180. [Google Scholar] [CrossRef] [PubMed]
- Dou, X.; Zhang, L.; Yang, R.; Wang, X.; Yu, L.; Yue, X.; Ma, F.; Mao, J.; Wang, X.; Li, P. Adulteration detection of essence in sesame oil based on headspace gas chromatography-ion mobility spectrometry. Food Chem. 2022, 370, 131373. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.G.; Fan, X.R.; Jiang, C.Y.; Liu, Y.; Zhu, K.Y.; Miao, X.Q.; Jiang, P.F. Characterization of non-volatile and volatile flavor profiles of coregonus peled meat cooked by different methods. Food Chem. X 2023, 17, 100584. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.P.; Lu, W.P.; Tian, T.P.; Shu, N.; Yang, Y.M.; Fan, S.T.; Han, X.Y. Analysis of volatile components in dried fruits and branch exudates of schisandra chinensis with different fruit colors using GC-IMS Technology. Molecules 2023, 28, 6865. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.N.; Zhang, P.; Liu, W.; Zhang, Q.; Li, G.Y.; Shan, Y.; Zhu, X.R. Understanding the volatile organic compounds of 1-methylcyclopropylene fumigation and packaging on yellow fleshed peach via headspace-gas chromatography-ion mobility spectrometry and chemometric analyses. J. Food Sci. 2022, 87, 4009–4026. [Google Scholar] [CrossRef]
- Barido, F.H.; Kim, H.J.; Shin, D.J.; Kwon, J.S.; Kim, H.J.; Kim, D.; Choo, H.J.; Nam, K.C.; Jo, C.; Lee, J.H.; et al. Physicochemical characteristics and flavor-related compounds of fresh and frozen-thawed thigh meats from chickens. Foods 2022, 11, 3006. [Google Scholar] [CrossRef]
NO | Chemicals | CAS | MW | RI | DT | Compound Peak Volume | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Breast | Back | Leg | Heart | Liver | Gizzard | ||||||
Aldehydes | 2-Heptenal (E)-D | 18829-55-5 | 112.2 | 949.2 | 1.66725 | 2101.08 ± 22.17 a | 1684.53 ± 26.00 b | 1642.28 ± 21.71 b | 1354.58 ± 46.98 c | 877.55 ± 86.66 d | 1350.21 ± 30.44 c |
2-Heptenal (E)-M | 18829-55-5 | 112.2 | 949.2 | 1.25632 | 14.13 ± 0.92 b | 14.49 ± 0.44 b | 15.37 ± 4.39 b | 15.17 ± 2.64 b | 20.85 ± 7.66 b | 45.31 ± 15.51 a | |
2-Hexenal-D | 505-57-7 | 98.1 | 840.8 | 1.51179 | 93.59 ± 21.99 c | 183.91 ± 61.75 bc | 113.47 ± 10.70 bc | 129.74 ± 11.60 bc | 214.40 ± 21.82 b | 700.60 ± 129.69 a | |
2-Hexenal-M | 505-57-7 | 98.1 | 846.8 | 1.18058 | 42.82 ± 42.78 a | 13.25 ± 1.33 a | 15.75 ± 4.79 a | 14.03 ± 2.98 a | 15.52 ± 3.12 a | 27.73 ± 2.98 a | |
2-Methylbutanal-D | 96-17-3 | 86.1 | 651.9 | 1.40071 | 184.42 ± 116.42 a | 61.64 ± 1.80 bc | 57.72 ± 2.09 bc | 51.07 ± 1.00 bc | 38.15 ± 1.13 c | 138.90 ± 19.68 ab | |
2-Methylbutanal-M | 96-17-3 | 86.1 | 658.1 | 1.16897 | 121.66 ± 11.91 d | 133.08 ± 7.26 d | 191.25 ± 24.08 c | 433.86 ± 17.65 b | 515.12 ± 28.65 a | 416.27 ± 52.15 b | |
2-Octenal (E) | 2548-87-0 | 126.2 | 1053.9 | 1.33121 | 123.60 ± 19.64 ab | 107.28 ± 18.62 b | 103.10 ± 1.75 b | 106.33 ± 2.22 b | 117.25 ± 15.90 b | 232.69 ± 69.26 a | |
3-Methylbutanal-D | 590-86-3 | 86.1 | 642.4 | 1.40677 | 10.26 ± 1.54 c | 9.83 ± 1.64 c | 12.54 ± 2.35 c | 131.85 ± 21.37 b | 143.68 ± 21.63 b | 206.53 ± 73.94 a | |
3-Methylbutanal-M | 590-86-3 | 86.1 | 641.8 | 1.18336 | 279.74 ± 49.75 e | 278.84 ± 24.42 e | 418.41 ± 64.73 d | 708.97 ± 15.27 b | 578.42 ± 23.92 c | 867.60 ± 39.29 a | |
Benzaldehyde-D | 100-52-7 | 106.1 | 953.6 | 1.47255 | 25.92 ± 5.04 b | 27.88 ± 1.19 b | 26.66 ± 3.69 b | 31.25 ± 2.71 b | 168.92 ± 107.95 a | 33.64 ± 6.52 b | |
Benzaldehyde-M | 100-52-7 | 106.1 | 953.7 | 1.14842 | 119.07 ± 37.24 b | 101.53 ± 37.28 b | 77.28 ± 8.63 b | 98.16 ± 3.59 b | 765.29 ± 252.30 a | 242.21 ± 122.42 b | |
Butanal | 123-72-8 | 72.1 | 590.3 | 1.29064 | 558.53 ± 12.90 d | 655.50 ± 2.88 c | 658.49 ± 22.70 c | 766.35 ± 7.97 b | 517.43 ± 36.31 e | 926.23 ± 23.78 a | |
Heptanal-D | 111-71-7 | 114.2 | 894.5 | 1.69931 | 29.5 ± 7.58 b | 24.45 ± 4.15 b | 25.04 ± 3.93 b | 20.40 ± 0.35 b | 19.01 ± 2.54 b | 139.96 ± 67.37 a | |
Heptanal-M | 111-71-7 | 114.2 | 895.0 | 1.33916 | 559.89 ± 219.41 b | 345.31 ± 50.07 c | 289.05 ± 40.16 c | 337.73 ± 15.96 c | 251.79 ± 30.67 c | 903.13 ± 163.29 a | |
Hexanal-D | 66-25-1 | 100.2 | 792.6 | 1.56223 | 2370.05 ± 621.36 b | 2149.47 ± 569.14 bc | 1364.67 ± 424.77 cd | 804.37 ± 61.08 de | 358.08 ± 18.12 e | 5011.03 ± 700.60 a | |
Hexanal-M | 66-25-1 | 100.2 | 797.2 | 1.26376 | 1908.28 ± 146.79 bc | 2358.59 ± 553.62 b | 1647.73 ± 211.59 cd | 1264.20 ± 38.83 d | 1479.86 ± 59.65 cd | 3141.39 ± 299.53 a | |
n-Nonanal-D | 124-19-6 | 142.2 | 1104.5 | 1.94640 | 84.08 ± 6.42 a | 79.23 ± 18.35 a | 76.32 ± 12.59 a | 74.06 ± 11.98 a | 66.67 ± 8.02 a | 87.99 ± 14.76 a | |
n-Nonanal-M | 124-19-6 | 142.2 | 1104.1 | 1.47787 | 1005.99 ± 39.10 a | 930.52 ± 134.98 ab | 833.57 ± 113.48 ab | 701.62 ± 84.54 b | 341.10 ± 91.85 c | 978.79 ± 260.68 a | |
Octanal-D | 124-13-0 | 128.2 | 1000.1 | 1.82369 | 32.24 ± 4.59 b | 26.24 ± 3.83 b | 25.74 ± 3.76 b | 22.86 ± 2.40 b | 23.62 ± 4.25 b | 55.41 ± 22.61 a | |
Octanal-M | 124-13-0 | 128.2 | 1000.4 | 1.40732 | 368.11 ± 50.40 b | 326.61 ± 47.88 b | 277.18 ± 9.09 b | 235.26 ± 21.77 bc | 123.60 ± 20.32 c | 640.55 ± 178.66 a | |
Pentanal-D | 110-62-3 | 86.1 | 694.0 | 1.42362 | 71.44 ± 32.18 b | 63.79 ± 17.68 b | 53.72 ± 17.65 b | 69.03 ± 9.86 b | 27.94 ± 2.31 b | 942.41 ± 300.10 a | |
Pentanal-M | 110-62-3 | 86.1 | 687.6 | 1.19251 | 484.50 ± 111.72 b | 544.99 ± 54.24 b | 532.34 ± 73.77 b | 505.19 ± 16.14 b | 244.05 ± 17.20 c | 1253.77 ± 85.32 a | |
Ketones | 2-Butanone-D | 78-93-3 | 72.1 | 575.7 | 1.24613 | 20.72 ± 3.28 d | 22.84 ± 3.95 d | 35.46 ± 8.62 d | 229.45 ± 28.71 b | 142.87 ± 20.91 c | 348.04 ± 93.01 a |
2-Butanone-M | 78-93-3 | 72.1 | 568.7 | 1.06064 | 2286.45 ± 139.52 a | 1506.66 ± 70.91 b | 1520.11 ± 75.23 b | 1043.18 ± 36.02 c | 1411.16 ± 259.43 b | 1495.13 ± 11.54 b | |
2-Pentanone | 107-87-9 | 86.1 | 678.1 | 1.12126 | 594.20 ± 44.87 a | 357.83 ± 20.01 c | 252.64 ± 3.48 d | 324.93 ± 2.86 c | 415.66 ± 46.30 b | 221.10 ± 18.54 d | |
3-Hydroxy-2-butanone-D | 513-86-0 | 88.1 | 711.7 | 1.33104 | 409.61 ± 57.72 d | 1537.15 ± 385.08 c | 2933.70 ± 527.46 b | 10,178.36 ± 766.26 a | 975.80 ± 481.85 cd | 1709.35 ± 587.25 c | |
3-Hydroxy-2-butanone-M | 513-86-0 | 88.1 | 710.0 | 1.06522 | 667.43 ± 156.26 d | 2268.30 ± 277.17 c | 3390.50 ± 321.86 b | 4117.34 ± 87.29 a | 913.74 ± 524.11 d | 1972.62 ± 520.37 c | |
3-Octanone | 106-68-3 | 128.2 | 980.0 | 1.30484 | 146.76 ± 38.88 a | 61.35 ± 8.14 b | 53.41 ± 3.85 b | 44.51 ± 1.53 b | 54.07 ± 6.62 b | 46.97 ± 5.34 b | |
6-Methyl-5-hepten-2-one | 110-93-0 | 126.2 | 983.5 | 1.17573 | 75.22 ± 18.94 a | 31.84 ± 5.57 b | 40.59 ± 2.47 b | 34.37 ± 4.22 b | 25.89 ± 7.07 b | 33.61 ± 6.01 b | |
Acetone | 67-64-1 | 58.1 | 484.9 | 1.11614 | 2064.86 ± 143.50 e | 2387.14 ± 213.40 de | 3641.07 ± 100.37 b | 3243.05 ± 51.70 bc | 13,343.97 ± 607.55 a | 2907.22 ± 329.76 cd | |
Alcohols | 1-Octen-3-ol | 3391-86-4 | 128.2 | 974.3 | 1.15835 | 130.42 ± 19.71 b | 230.37 ± 148.17 ab | 116.70 ± 15.49 b | 157.23 ± 19.48 b | 177.56 ± 13.26 b | 328.79 ± 71.90 a |
1-Pentanol-D | 71-41-0 | 88.1 | 761.3 | 1.51238 | 34.48 ± 9.77 b | 33.67 ± 15.33 b | 24.33 ± 4.33 b | 22.06 ± 1.51 b | 72.08 ± 13.85 b | 434.61 ± 138.53 a | |
1-Pentanol-M | 71-41-0 | 88.1 | 761.1 | 1.25622 | 327.62 ± 68.58 cd | 353.35 ± 146.82 c | 175.13 ± 34.18 cd | 156.72 ± 6.83 d | 841.35 ± 40.33 b | 1246.36 ± 174.73 a | |
1-Penten-3-ol | 616-25-1 | 86.1 | 669.7 | 0.94040 | 106.34 ± 37.62 b | 63.34 ± 4.77 c | 68.70 ± 5.32 c | 64.64 ± 3.80 c | 78.04 ± 6.02 bc | 147.41 ± 11.06 a | |
1-Propanethiol | 107-03-9 | 76.2 | 616.7 | 1.36762 | 23.31 ± 2.52 b | 23.44 ± 3.58 b | 24.55 ± 4.50 b | 28.72 ± 3.71 b | 491.52 ± 60.55 a | 32.32 ± 1.34 b | |
Isopentyl alcohol-D | 123-51-3 | 88.1 | 727.7 | 1.49232 | 40.75 ± 13.95 b | 40.00 ± 1.48 b | 33.99 ± 1.82 b | 45.65 ± 1.82 b | 843.70 ± 92.10 a | 59.11 ± 7.37 b | |
Isopentyl alcohol-M | 123-51-3 | 88.1 | 727.5 | 1.24756 | 500.44 ± 182.18 d | 428.78 ± 154.43 d | 387.14 ± 31.15 d | 852.17 ± 41.41 c | 2057.37 ± 125.11 a | 1483.22 ± 184.54 b | |
n-Hexanol-D | 111-27-3 | 102.2 | 859.2 | 1.64002 | 43.20 ± 45.09 a | 11.30 ± 1.55 a | 12.22 ± 2.56 a | 10.63 ± 0.59 a | 19.39 ± 3.38 a | 39.70 ± 1.60 a | |
n-Hexanol-M | 111-27-3 | 102.2 | 861.8 | 1.32879 | 481.55 ± 362.20 ab | 135.64 ± 26.31 c | 120.08 ± 6.50 c | 245.13 ± 19.16 bc | 333.80 ± 46.80 abc | 547.46 ± 18.58 a | |
Ethers | 1-Propene-3-methylthio | 10152-76-8 | 88.2 | 691.0 | 1.04401 | 489.94 ± 58.67 a | 146.30 ± 11.11 cd | 251.30 ± 66.91 b | 81.51 ± 2.30 de | 181.55 ± 6.39 c | 62.66 ± 15.29 e |
Esters | 2-Methylpropyl butanoate | 539-90-2 | 144.2 | 948.4 | 1.32934 | 98.11 ± 58.69 b | 55.81 ± 0.83 b | 44.89 ± 3.05 b | 62.58 ± 9.13 b | 469.63 ± 74.85 a | 112.11 ± 4.46 b |
Ethyl acetate | 141-78-6 | 88.1 | 603.1 | 1.09543 | 74.29 ± 5.78 b | 71.69 ± 11.92 b | 54.83 ± 3.38 c | 120.71 ± 6.88 a | 44.09 ± 2.71 c | 45.39 ± 3.88 c | |
Furans | 2-Pentylfuran | 3777-69-3 | 138.2 | 987.1 | 1.25468 | 40.29 ± 1.43 b | 66.30 ± 18.45 b | 45.42 ± 6.82 b | 38.96 ± 3.21 b | 53.69 ± 5.39 b | 177.37 ± 42.15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Yang, H.; Lan, F.; Chen, R.; Jiang, P.; Jin, W. Use of GC-IMS and Stoichiometry to Characterize Flavor Volatiles in Different Parts of Lueyang Black Chicken during Slaughtering and Cutting. Foods 2024, 13, 1885. https://doi.org/10.3390/foods13121885
He L, Yang H, Lan F, Chen R, Jiang P, Jin W. Use of GC-IMS and Stoichiometry to Characterize Flavor Volatiles in Different Parts of Lueyang Black Chicken during Slaughtering and Cutting. Foods. 2024; 13(12):1885. https://doi.org/10.3390/foods13121885
Chicago/Turabian StyleHe, Linlin, Hui Yang, Fei Lan, Rui Chen, Pengfei Jiang, and Wengang Jin. 2024. "Use of GC-IMS and Stoichiometry to Characterize Flavor Volatiles in Different Parts of Lueyang Black Chicken during Slaughtering and Cutting" Foods 13, no. 12: 1885. https://doi.org/10.3390/foods13121885
APA StyleHe, L., Yang, H., Lan, F., Chen, R., Jiang, P., & Jin, W. (2024). Use of GC-IMS and Stoichiometry to Characterize Flavor Volatiles in Different Parts of Lueyang Black Chicken during Slaughtering and Cutting. Foods, 13(12), 1885. https://doi.org/10.3390/foods13121885