Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Sample
2.2. Winemaking and US Treatment
2.3. Wine Untargeted Metabolomics Analysis by UPLC-QTOF
2.4. Data Treatment. Multivariate Model Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morata, A.; Escott, C.; Loira, I.; López, C.; Palomero, F.; González, C. Emerging non-thermal technologies for the extraction of grape anthocyanins. Antioxidants 2021, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- OIV. International Code of Oenological Practices; OIV: Paris, France, 2022; ISBN 978-2-85038-059-4. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing–Food quality assurance and food safety. Trends Food Sci. Technol. 2012, 26, 88–98. [Google Scholar] [CrossRef]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Loira, I.; Guamis, B.; Raso, J.; del Fresno, J.M.; Escott, C.; Bañuelos, M.A.; Álvarez, I.; Tesfaye, W.; Gomzález, C.; et al. Emerging technologies to increase extraction, control microorganisms, and reduce SO2. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Using high-power ultrasounds in red winemaking: Effect of operating conditions on wine physico-chemical and chromatic characteristics. LWT 2021, 138, 110645. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Gómez Plaza, E.; Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z.; Jurado, R.; Bautista-Ortín, A.B. High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety? Foods 2023, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. LWT 2022, 156, 113032. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Gómez-Plaza, E.; Osete-Alcaraz, A.; Martínez-Pérez, P.; Jurado, R.; Bautista-Ortín, A.B. The effect of ultrasound on Syrah wine composition as affected by the ripening or sanitary status of the grapes. Eur. Food Res. Technol. 2023, 249, 641–651. [Google Scholar] [CrossRef]
- Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Pérez-Coello, M.S. Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines. Molecules 2021, 26, 1193. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Ultrasound treatment of crushed grapes: Effect on the must and red wine polysaccharide composition. Food Chem. 2021, 356, 129669. [Google Scholar] [CrossRef]
- Labrador Fernández, L.; Díaz-Maroto, M.C.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Alañón, M.E.; Gómez-Plaza, E.; Pérez-Coello, M.S. Power ultrasound treatment of Viognier grapes as a tool to increase the aromatic potential of wines. J. Sci. Food Agric. 2022, 103, 3613–3620. [Google Scholar] [CrossRef] [PubMed]
- Labrador Fernández, L.; Pérez-Porras, P.; Díaz-Maroto, M.C.; Gómez-Plaza, E.; Pérez-Coello, M.S.; Bautista-Ortín, A.B. The technology of high-power ultrasound and its effect on the color and aroma of rosé wines. J. Sci. Food Agric. 2023, 103, 6616–6624. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Higueras, M.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effect of Pre-fermentative Treatments on Polysaccharide Composition of White and Rosé Musts and Wines. J. Agric. Food Chem. 2023, 72, 1928–1937. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effects of combining high power ultrasound and enological enzymes on the composition of polysaccharides in red wine. LWT 2022, 170, 114060. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Zheng, H.; Lin, J.; Nie, G.; Fan, X.; García-Martín, J.F. The state-of-the-art research of the application of ultrasound to winemaking: A critical review. Ultrason. Sonochem. 2023, 95, 106384. [Google Scholar] [CrossRef]
- Cozzolino, D. Metabolomics in grape and wine: Definition, current status and future prospects. Food Anal. Methods 2016, 9, 2986–2997. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Reyes-De-Corcuera, J.I.; Etxeberria, E.; Danyluk, M.D.; Rodrick, G.E. Metabolomic analysis in food science: A review. Trends Food Sci. Technol. 2009, 20, 557–566. [Google Scholar] [CrossRef]
- Alañón, M.E.; Pérez-Coello, M.S.; Marina, M.L. Wine science in the metabolomics era. TrAC Trends Anal. Chem. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Ramautar, R.; Demirci, A.; Jong, G.J.d. Capillary electrophoresis in metabolomics. TrAC Trends Anal. Chem. 2006, 25, 12. [Google Scholar] [CrossRef]
- Monton, M.R.N.; Soga, T. Metabolome analysis by capillary electrophoresisemass spectrometry. J. Chromatogr. A. 2007, 1168, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R. Grape and wine metabolomics to develop new insights using untargeted and targeted approaches. Fermentation 2018, 4, 92. [Google Scholar] [CrossRef]
- Lloyd, N.; Johnson, D.L.; Herderich, M.J. Metabolomics approaches for resolving and harnessing chemical diversity in grapes, yeast and wine. Aust. J. Grape Wine Res. 2015, 21, 723–740. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Garcia, C.J.; Parra, A.; Vallejo, F.; Ortuño, M.F. Influence of drought stress on increasing bioactive compounds of pomegranate (Punica granatum L.) juice. Exploratory study using LC–MS-based untargeted metabolomics approach. Eur. Food Res. Technol. 2023, 249, 2947–2956. [Google Scholar] [CrossRef]
- Barber, C.; Sabater, C.; Frutos, M.D.; Vallejo, F.; Guyonnet, D.; Daniel, N.; Guarner, F.; Espín, J.C.; Margolles, A.; Azpiroz, F. Effects of a (poly)phenol-rich aronia and cranberry extracts mix on gas production in healthy individuals: An integrated clinical, metagenomic, and metabolomic proof-of-concept study. J. Funct. Food 2024, 113, 106032. [Google Scholar] [CrossRef]
- Gambacorta, G.; Trani, A.; Punzi, R.; Fasciano, C.; Leo, R.; Fracchiolla, G.; Faccia, M. Impact of ultrasounds on the extraction of polyphenols during winemaking of red grapes cultivars from southern Italy. Innov. Food Sci. Emerg. Technol. 2017, 43, 54–59. [Google Scholar] [CrossRef]
- Martínez-Pérez, M.P.; Bautista-Ortín, A.B.; Pérez-Porras, P.; Jurado, R.; Gómez-Plaza, E. A new approach to the reduction of alcohol content in red wines: The use of high-power ultrasounds. Foods 2020, 9, 726. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Clarke, S.; Bosman, G.; du Toit, W.; Aleixandre-Tudo, J.L. White wine phenolics: Current methods of analysis. J. Sci. Food Agric. 2023, 103, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Sova, M.; Saso, L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Gawel, R.; Smith, P.A.; Cicerale, S.; Keast, R. The mouthfeel of white wine. Crit. Rev. Food Sci. Nutr. 2017, 58, 2939–2956. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Jedrejčić, N.; Ganić, K.K.; Staver, M.; Peršurić, Đ. Phenolic and aroma composition of white wines produced by prolonged maceration and maturation in wooden barrels. Food Technol. Biotechnol. 2015, 53, 407. [Google Scholar] [CrossRef] [PubMed]
- Kallithraka, S.; Salacha, M.I.; Tzourou, I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Hornedo-Ortega, R.; Garcia, F.; El Khawand, T.; Saucier, C.; Richard, T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci. Technol. 2021, 112, 362–381. [Google Scholar] [CrossRef]
- Bavaresco, L.; Cantu, E.; Fregoni, M.; Trevisan, M. Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. VITIS J. Grapevine Res. 2015, 36, 115. [Google Scholar] [CrossRef]
- Sun, B.; Ribes, A.M.; Leandro, M.C.; Belchior, A.P.; Spranger, M.I. Stilbenes: Quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chim. Acta 2006, 563, 382–390. [Google Scholar] [CrossRef]
- Roggero, J.P. Changes in resveratrol and piceid contents in wines during fermentation or ageing. Comparison of grenache and mourvedre varieties. Sci. Aliment. 1996, 16, 631–642. [Google Scholar]
- Piñeiro, Z.; Cantos-Villar, E.; Palma, M.; Puertas, B. Direct Liquid Chromatography Method for the Simultaneous Quantification of Hydroxytyrosol and Tyrosol in Red Wines. J. Agric. Food Chem. 2011, 59, 11683–11689. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mar, M.I.; Mateos, R.; Garcia-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Di Tommaso, D.; Calabrese, R.; Rotilio, D. Identification and quantitation of hydroxytyrosol in Italian wines. J. High Resolut. Chromatogr. 1998, 21, 549–553. [Google Scholar] [CrossRef]
- EFSA. Use of the EFSA comprehensive European food consumption database in exposure assessment. EFSA J. 2011, 9, 2097. [Google Scholar]
- Dickinson, J.R.; Salgado, L.E.J.; Hewlins, M.J.E. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 8028–8034. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT 2008, 41, 501–510. [Google Scholar] [CrossRef]
- Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of amino acids from grapes. Ultrason. Sonochem. 2015, 22, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Hornedo-Ortega, R.; Reyes González-Centeno, M.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic compounds of grapes and wines: Key compounds and implications in sensory perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Celotti, E.; Ferraretto, P. Studies for the ultrasound application in winemaking for a low impact enology. In Proceedings of the 39th World Congress of Vine and Wine, Bento Goncalves, Brazil, 24–28 October 2016; OIV: Paris, France, 2016; p. 132. [Google Scholar]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- OIV. Treatment of Crushed Grapes with Ultrasounds to Promote the Extraction of Their Compounds. In Resolution OIV-OENO 616-2019; OIV: Paris, France, 2019. [Google Scholar]
- Muñoz García, R.; Oliver-Simancas, R.; Arévalo Villena, M.; Martínez-Lapuente, L.; Ayestarán, B.; Marchante-Cuevas, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Use of microwave maceration in red winemaking: Effect on fermentation and chemical composition of red wines. Molecules 2022, 27, 3018. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Martín-Luis, B.; Carrillo-López, M.; Lamuela-Raventós, R.; Díaz-Romero, C.; Boulton, R. Effect of caffeic acid on the color of red wine. J. Agric. Food Chem. 2002, 50, 2062–2067. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of copigmentation and phenolic composition on wine color. J. Food Sci. Technol. 2016, 53, 2540–2547. [Google Scholar] [CrossRef]
Rt (Min) | m/z Experimental | m/z Theoretical | Ion Annotation | Fragments b | Elemental Formula a | Tentative Metabolite Identification | Variety | References | Structure |
---|---|---|---|---|---|---|---|---|---|
White wine | |||||||||
5.70 | 163.0395 | 163.0401 | [M–H]- | 145.0287; 119.0490 | C9H8O3 | Coumaric acid | A | YMDB00498 | |
5.87 | 295.0455 | 295.0459 | [M–H]- | C13H12O8 | p-coutaric acid * | A | METLIN86490 | ||
5.18 | 311.0402 | 311.0409 | [M–H]- | 179.0345; 161.0244 | C13H12O9 | Caftaric acid | A | YMDB01646 | |
5.70 | 163.0395 | 163.0401 | [M–H]- | 145.0287; 119.0490 | C9H8O3 | Coumaric acid | Mac | YMDB00498 | |
5.87 | 295.0455 | 295.0459 | [M–H]- | C13H12O8 | p-coutaric acid * | Mac | METLIN86490 | ||
10.62 | 227.0708 | 227.0714 | [M–H]- | C14H12O3 | Resveratrol | Mac | Standard | ||
7.37 | 389.1235 | 389.1242 | [M–H]- | 227.0705 | C20H22O8 | Resveratrol 4’-glucoside | Mac | HMDB0030565 | |
6.38 | 315.1078 | 315.1085 | [M–H]- | 153.0552 | C14H20O8 | Hydroxytyrosol 1-O-glucoside | Mac | HMDB0041024 |
Rt (min) | m/z Experimental | m/z Theoretical | Ion Annotation | Fragments b | Elemental Formula a | Tentative Metabolite Identification | Variety | References | Structure |
---|---|---|---|---|---|---|---|---|---|
Red wine | |||||||||
7.37 | 389.1235 | 389.1242 | [M–H]- | 227.0705 | C20H22O8 | Resveratrol 4’-glucoside | CS | HMDB0030565 | |
10.62 | 227.0708 | 227.0714 | [M–H]- | C14H12O3 | Resveratrol | CS | Standard | ||
9.12 | 463.0875 | 463.0882 | [M–H]- | 301.0341 | C21H20O12 | Quercetin 3-galactoside | CS | YMDB01778 | |
9.83 | 589.1205 | 589.1199 | [M–H]- | 301.0341 | C27H26O15 | Quercetin 3-(2″,3″,4″-triacetylgalactoside) | CS | METLIN50491 | |
8.15 | 477.0670 | 477.0675 | [M–H]- | 301.0341 | C21H20O13 | Quercetin-3′-glucuronide | CS | YMDB01779 | |
14.05 | 661.1555 | 661.1563 | [M–H]- | 285.0405 | C34H30O14 | Kaempferol 3-(2″,3″-diacetyl-4″-p-coumaroylrhamnoside) | CS | HMDB40537 | |
9.01 | 639.1560 | 639.1567 | [M–H]- | 315.0510 | C28H32O17 | Isorhamnetin 3-sophoroside | CS | LMPK12112373 | |
8.88 | 471.0925 | 471.0933 | [M–H]- | 333.0616; 289.0718; 183.0299 | C23H20O11 | (-)-Epigallocatechin 3-(4-methyl-gallate) | CS | HMDB0040293 | |
8.50 | 441.0820 | 441.0827 | [M–H]- | 289.0710; 169.0142 | C22H18O10 | (-)-Epicatechin 3-O-gallate | CS | HMDB0037944 | |
6.57 | 451.1250 | 451.1246 | [M–H]- | 289,0712; 151.0395 | C21H24O11 | Epicatechin 8-C-galactoside | CS | HMDB0039823 | |
6.57 | 451.1250 | 451.1246 | [M–H]- | 289,0712; 151.0395 | C21H24O11 | Epicatechin 8-C-galactoside | S | HMDB0039823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Moreno, A.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Vallejo, F. Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes. Foods 2024, 13, 1761. https://doi.org/10.3390/foods13111761
Martínez-Moreno A, Pérez-Porras P, Bautista-Ortín AB, Gómez-Plaza E, Vallejo F. Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes. Foods. 2024; 13(11):1761. https://doi.org/10.3390/foods13111761
Chicago/Turabian StyleMartínez-Moreno, Alejandro, Paula Pérez-Porras, Ana Belén Bautista-Ortín, Encarna Gómez-Plaza, and Fernando Vallejo. 2024. "Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes" Foods 13, no. 11: 1761. https://doi.org/10.3390/foods13111761
APA StyleMartínez-Moreno, A., Pérez-Porras, P., Bautista-Ortín, A. B., Gómez-Plaza, E., & Vallejo, F. (2024). Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes. Foods, 13(11), 1761. https://doi.org/10.3390/foods13111761