Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes
Abstract
1. Introduction
2. Materials and Methods
2.1. Wine Sample
2.2. Winemaking and US Treatment
2.3. Wine Untargeted Metabolomics Analysis by UPLC-QTOF
2.4. Data Treatment. Multivariate Model Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morata, A.; Escott, C.; Loira, I.; López, C.; Palomero, F.; González, C. Emerging non-thermal technologies for the extraction of grape anthocyanins. Antioxidants 2021, 10, 1863. [Google Scholar] [CrossRef] [PubMed]
- OIV. International Code of Oenological Practices; OIV: Paris, France, 2022; ISBN 978-2-85038-059-4. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Chandrapala, J.; Oliver, C.; Kentish, S.; Ashokkumar, M. Ultrasonics in food processing–Food quality assurance and food safety. Trends Food Sci. Technol. 2012, 26, 88–98. [Google Scholar] [CrossRef]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Loira, I.; Guamis, B.; Raso, J.; del Fresno, J.M.; Escott, C.; Bañuelos, M.A.; Álvarez, I.; Tesfaye, W.; Gomzález, C.; et al. Emerging technologies to increase extraction, control microorganisms, and reduce SO2. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021; pp. 1–20. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Using high-power ultrasounds in red winemaking: Effect of operating conditions on wine physico-chemical and chromatic characteristics. LWT 2021, 138, 110645. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Gómez Plaza, E.; Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z.; Jurado, R.; Bautista-Ortín, A.B. High-Power Ultrasound in Enology: Is the Outcome of This Technique Dependent on Grape Variety? Foods 2023, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Porras, P.; Bautista-Ortín, A.B.; Jurado, R.; Gómez-Plaza, E. Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. LWT 2022, 156, 113032. [Google Scholar] [CrossRef]
- Pérez-Porras, P.; Gómez-Plaza, E.; Osete-Alcaraz, A.; Martínez-Pérez, P.; Jurado, R.; Bautista-Ortín, A.B. The effect of ultrasound on Syrah wine composition as affected by the ripening or sanitary status of the grapes. Eur. Food Res. Technol. 2023, 249, 641–651. [Google Scholar] [CrossRef]
- Oliver Simancas, R.; Díaz-Maroto, M.C.; Alañón Pardo, M.E.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Pérez-Coello, M.S. Effect of power ultrasound treatment on free and glycosidically-bound volatile compounds and the sensorial profile of red wines. Molecules 2021, 26, 1193. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Ultrasound treatment of crushed grapes: Effect on the must and red wine polysaccharide composition. Food Chem. 2021, 356, 129669. [Google Scholar] [CrossRef]
- Labrador Fernández, L.; Díaz-Maroto, M.C.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Alañón, M.E.; Gómez-Plaza, E.; Pérez-Coello, M.S. Power ultrasound treatment of Viognier grapes as a tool to increase the aromatic potential of wines. J. Sci. Food Agric. 2022, 103, 3613–3620. [Google Scholar] [CrossRef] [PubMed]
- Labrador Fernández, L.; Pérez-Porras, P.; Díaz-Maroto, M.C.; Gómez-Plaza, E.; Pérez-Coello, M.S.; Bautista-Ortín, A.B. The technology of high-power ultrasound and its effect on the color and aroma of rosé wines. J. Sci. Food Agric. 2023, 103, 6616–6624. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Higueras, M.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effect of Pre-fermentative Treatments on Polysaccharide Composition of White and Rosé Musts and Wines. J. Agric. Food Chem. 2023, 72, 1928–1937. [Google Scholar] [CrossRef]
- Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effects of combining high power ultrasound and enological enzymes on the composition of polysaccharides in red wine. LWT 2022, 170, 114060. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Zheng, H.; Lin, J.; Nie, G.; Fan, X.; García-Martín, J.F. The state-of-the-art research of the application of ultrasound to winemaking: A critical review. Ultrason. Sonochem. 2023, 95, 106384. [Google Scholar] [CrossRef]
- Cozzolino, D. Metabolomics in grape and wine: Definition, current status and future prospects. Food Anal. Methods 2016, 9, 2986–2997. [Google Scholar] [CrossRef]
- Cevallos-Cevallos, J.M.; Reyes-De-Corcuera, J.I.; Etxeberria, E.; Danyluk, M.D.; Rodrick, G.E. Metabolomic analysis in food science: A review. Trends Food Sci. Technol. 2009, 20, 557–566. [Google Scholar] [CrossRef]
- Alañón, M.E.; Pérez-Coello, M.S.; Marina, M.L. Wine science in the metabolomics era. TrAC Trends Anal. Chem. 2015, 74, 1–20. [Google Scholar] [CrossRef]
- Ramautar, R.; Demirci, A.; Jong, G.J.d. Capillary electrophoresis in metabolomics. TrAC Trends Anal. Chem. 2006, 25, 12. [Google Scholar] [CrossRef]
- Monton, M.R.N.; Soga, T. Metabolome analysis by capillary electrophoresisemass spectrometry. J. Chromatogr. A. 2007, 1168, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Pinu, F.R. Grape and wine metabolomics to develop new insights using untargeted and targeted approaches. Fermentation 2018, 4, 92. [Google Scholar] [CrossRef]
- Lloyd, N.; Johnson, D.L.; Herderich, M.J. Metabolomics approaches for resolving and harnessing chemical diversity in grapes, yeast and wine. Aust. J. Grape Wine Res. 2015, 21, 723–740. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Garcia, C.J.; Parra, A.; Vallejo, F.; Ortuño, M.F. Influence of drought stress on increasing bioactive compounds of pomegranate (Punica granatum L.) juice. Exploratory study using LC–MS-based untargeted metabolomics approach. Eur. Food Res. Technol. 2023, 249, 2947–2956. [Google Scholar] [CrossRef]
- Barber, C.; Sabater, C.; Frutos, M.D.; Vallejo, F.; Guyonnet, D.; Daniel, N.; Guarner, F.; Espín, J.C.; Margolles, A.; Azpiroz, F. Effects of a (poly)phenol-rich aronia and cranberry extracts mix on gas production in healthy individuals: An integrated clinical, metagenomic, and metabolomic proof-of-concept study. J. Funct. Food 2024, 113, 106032. [Google Scholar] [CrossRef]
- Gambacorta, G.; Trani, A.; Punzi, R.; Fasciano, C.; Leo, R.; Fracchiolla, G.; Faccia, M. Impact of ultrasounds on the extraction of polyphenols during winemaking of red grapes cultivars from southern Italy. Innov. Food Sci. Emerg. Technol. 2017, 43, 54–59. [Google Scholar] [CrossRef]
- Martínez-Pérez, M.P.; Bautista-Ortín, A.B.; Pérez-Porras, P.; Jurado, R.; Gómez-Plaza, E. A new approach to the reduction of alcohol content in red wines: The use of high-power ultrasounds. Foods 2020, 9, 726. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Clarke, S.; Bosman, G.; du Toit, W.; Aleixandre-Tudo, J.L. White wine phenolics: Current methods of analysis. J. Sci. Food Agric. 2023, 103, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Sova, M.; Saso, L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients 2020, 12, 2190. [Google Scholar] [CrossRef] [PubMed]
- Gawel, R.; Smith, P.A.; Cicerale, S.; Keast, R. The mouthfeel of white wine. Crit. Rev. Food Sci. Nutr. 2017, 58, 2939–2956. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Jedrejčić, N.; Ganić, K.K.; Staver, M.; Peršurić, Đ. Phenolic and aroma composition of white wines produced by prolonged maceration and maturation in wooden barrels. Food Technol. Biotechnol. 2015, 53, 407. [Google Scholar] [CrossRef] [PubMed]
- Kallithraka, S.; Salacha, M.I.; Tzourou, I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009, 113, 500–505. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Benbouguerra, N.; Hornedo-Ortega, R.; Garcia, F.; El Khawand, T.; Saucier, C.; Richard, T. Stilbenes in grape berries and wine and their potential role as anti-obesity agents: A review. Trends Food Sci. Technol. 2021, 112, 362–381. [Google Scholar] [CrossRef]
- Bavaresco, L.; Cantu, E.; Fregoni, M.; Trevisan, M. Constitutive stilbene contents of grapevine cluster stems as potential source of resveratrol in wine. VITIS J. Grapevine Res. 2015, 36, 115. [Google Scholar] [CrossRef]
- Sun, B.; Ribes, A.M.; Leandro, M.C.; Belchior, A.P.; Spranger, M.I. Stilbenes: Quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal. Chim. Acta 2006, 563, 382–390. [Google Scholar] [CrossRef]
- Roggero, J.P. Changes in resveratrol and piceid contents in wines during fermentation or ageing. Comparison of grenache and mourvedre varieties. Sci. Aliment. 1996, 16, 631–642. [Google Scholar]
- Piñeiro, Z.; Cantos-Villar, E.; Palma, M.; Puertas, B. Direct Liquid Chromatography Method for the Simultaneous Quantification of Hydroxytyrosol and Tyrosol in Red Wines. J. Agric. Food Chem. 2011, 59, 11683–11689. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Mar, M.I.; Mateos, R.; Garcia-Parrilla, M.C.; Puertas, B.; Cantos-Villar, E. Bioactive compounds in wine: Resveratrol, hydroxytyrosol and melatonin: A review. Food Chem. 2012, 130, 797–813. [Google Scholar] [CrossRef]
- Di Tommaso, D.; Calabrese, R.; Rotilio, D. Identification and quantitation of hydroxytyrosol in Italian wines. J. High Resolut. Chromatogr. 1998, 21, 549–553. [Google Scholar] [CrossRef]
- EFSA. Use of the EFSA comprehensive European food consumption database in exposure assessment. EFSA J. 2011, 9, 2097. [Google Scholar]
- Dickinson, J.R.; Salgado, L.E.J.; Hewlins, M.J.E. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 2003, 278, 8028–8034. [Google Scholar] [CrossRef] [PubMed]
- Garde-Cerdán, T.; Ancín-Azpilicueta, C. Effect of the addition of different quantities of amino acids to nitrogen-deficient must on the formation of esters, alcohols, and acids during wine alcoholic fermentation. LWT 2008, 41, 501–510. [Google Scholar] [CrossRef]
- Carrera, C.; Ruiz-Rodríguez, A.; Palma, M.; Barroso, C.G. Ultrasound-assisted extraction of amino acids from grapes. Ultrason. Sonochem. 2015, 22, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine polyphenol content and its influence on wine quality and properties: A review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Hornedo-Ortega, R.; Reyes González-Centeno, M.; Chira, K.; Jourdes, M.; Teissedre, P.-L. Phenolic compounds of grapes and wines: Key compounds and implications in sensory perception. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Celotti, E.; Ferraretto, P. Studies for the ultrasound application in winemaking for a low impact enology. In Proceedings of the 39th World Congress of Vine and Wine, Bento Goncalves, Brazil, 24–28 October 2016; OIV: Paris, France, 2016; p. 132. [Google Scholar]
- Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem. 2007, 55, 992–1002. [Google Scholar] [CrossRef]
- OIV. Treatment of Crushed Grapes with Ultrasounds to Promote the Extraction of Their Compounds. In Resolution OIV-OENO 616-2019; OIV: Paris, France, 2019. [Google Scholar]
- Muñoz García, R.; Oliver-Simancas, R.; Arévalo Villena, M.; Martínez-Lapuente, L.; Ayestarán, B.; Marchante-Cuevas, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Use of microwave maceration in red winemaking: Effect on fermentation and chemical composition of red wines. Molecules 2022, 27, 3018. [Google Scholar] [CrossRef]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef]
- Darias-Martín, J.; Martín-Luis, B.; Carrillo-López, M.; Lamuela-Raventós, R.; Díaz-Romero, C.; Boulton, R. Effect of caffeic acid on the color of red wine. J. Agric. Food Chem. 2002, 50, 2062–2067. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of copigmentation and phenolic composition on wine color. J. Food Sci. Technol. 2016, 53, 2540–2547. [Google Scholar] [CrossRef]
Rt (Min) | m/z Experimental | m/z Theoretical | Ion Annotation | Fragments b | Elemental Formula a | Tentative Metabolite Identification | Variety | References | Structure |
---|---|---|---|---|---|---|---|---|---|
White wine | |||||||||
5.70 | 163.0395 | 163.0401 | [M–H]- | 145.0287; 119.0490 | C9H8O3 | Coumaric acid | A | YMDB00498 | |
5.87 | 295.0455 | 295.0459 | [M–H]- | C13H12O8 | p-coutaric acid * | A | METLIN86490 | ||
5.18 | 311.0402 | 311.0409 | [M–H]- | 179.0345; 161.0244 | C13H12O9 | Caftaric acid | A | YMDB01646 | |
5.70 | 163.0395 | 163.0401 | [M–H]- | 145.0287; 119.0490 | C9H8O3 | Coumaric acid | Mac | YMDB00498 | |
5.87 | 295.0455 | 295.0459 | [M–H]- | C13H12O8 | p-coutaric acid * | Mac | METLIN86490 | ||
10.62 | 227.0708 | 227.0714 | [M–H]- | C14H12O3 | Resveratrol | Mac | Standard | ||
7.37 | 389.1235 | 389.1242 | [M–H]- | 227.0705 | C20H22O8 | Resveratrol 4’-glucoside | Mac | HMDB0030565 | |
6.38 | 315.1078 | 315.1085 | [M–H]- | 153.0552 | C14H20O8 | Hydroxytyrosol 1-O-glucoside | Mac | HMDB0041024 |
Rt (min) | m/z Experimental | m/z Theoretical | Ion Annotation | Fragments b | Elemental Formula a | Tentative Metabolite Identification | Variety | References | Structure |
---|---|---|---|---|---|---|---|---|---|
Red wine | |||||||||
7.37 | 389.1235 | 389.1242 | [M–H]- | 227.0705 | C20H22O8 | Resveratrol 4’-glucoside | CS | HMDB0030565 | |
10.62 | 227.0708 | 227.0714 | [M–H]- | C14H12O3 | Resveratrol | CS | Standard | ||
9.12 | 463.0875 | 463.0882 | [M–H]- | 301.0341 | C21H20O12 | Quercetin 3-galactoside | CS | YMDB01778 | |
9.83 | 589.1205 | 589.1199 | [M–H]- | 301.0341 | C27H26O15 | Quercetin 3-(2″,3″,4″-triacetylgalactoside) | CS | METLIN50491 | |
8.15 | 477.0670 | 477.0675 | [M–H]- | 301.0341 | C21H20O13 | Quercetin-3′-glucuronide | CS | YMDB01779 | |
14.05 | 661.1555 | 661.1563 | [M–H]- | 285.0405 | C34H30O14 | Kaempferol 3-(2″,3″-diacetyl-4″-p-coumaroylrhamnoside) | CS | HMDB40537 | |
9.01 | 639.1560 | 639.1567 | [M–H]- | 315.0510 | C28H32O17 | Isorhamnetin 3-sophoroside | CS | LMPK12112373 | |
8.88 | 471.0925 | 471.0933 | [M–H]- | 333.0616; 289.0718; 183.0299 | C23H20O11 | (-)-Epigallocatechin 3-(4-methyl-gallate) | CS | HMDB0040293 | |
8.50 | 441.0820 | 441.0827 | [M–H]- | 289.0710; 169.0142 | C22H18O10 | (-)-Epicatechin 3-O-gallate | CS | HMDB0037944 | |
6.57 | 451.1250 | 451.1246 | [M–H]- | 289,0712; 151.0395 | C21H24O11 | Epicatechin 8-C-galactoside | CS | HMDB0039823 | |
6.57 | 451.1250 | 451.1246 | [M–H]- | 289,0712; 151.0395 | C21H24O11 | Epicatechin 8-C-galactoside | S | HMDB0039823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Moreno, A.; Pérez-Porras, P.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Vallejo, F. Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes. Foods 2024, 13, 1761. https://doi.org/10.3390/foods13111761
Martínez-Moreno A, Pérez-Porras P, Bautista-Ortín AB, Gómez-Plaza E, Vallejo F. Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes. Foods. 2024; 13(11):1761. https://doi.org/10.3390/foods13111761
Chicago/Turabian StyleMartínez-Moreno, Alejandro, Paula Pérez-Porras, Ana Belén Bautista-Ortín, Encarna Gómez-Plaza, and Fernando Vallejo. 2024. "Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes" Foods 13, no. 11: 1761. https://doi.org/10.3390/foods13111761
APA StyleMartínez-Moreno, A., Pérez-Porras, P., Bautista-Ortín, A. B., Gómez-Plaza, E., & Vallejo, F. (2024). Untargeted Metabolomics Analysis Based on LC-QTOF-MS to Investigate the Phenolic Composition of Red and White Wines Elaborated from Sonicated Grapes. Foods, 13(11), 1761. https://doi.org/10.3390/foods13111761