Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review
Abstract
:1. Introduction
2. Significance of Post-Harvest Preservation of Edible Fungi
3. Emerging Preservation Technologies
3.1. Packaging
3.2. Cold Plasma Treatment
3.3. Edible Coating
Mushroom Species | Packaging Materials | Best Rations | Result | Ref. |
---|---|---|---|---|
A. bisporus | Cellulose nanocrystals (CNCs)/gellan gum | ____ | The input and output of gases are controlled; the respiration rate is suppressed | 2021 [29] |
A. bisporus | Cinnamaldehyde (CIN)/ alginate/Tween 80 | Oil: emulsifier (1:1); 0.05 mL/100 mL CIN | Decreased respiration rate and Pseudomonas counts; increased antioxidant and firmness retention. | 2021 [15] |
A. bisporus | Protocatechuic acid (PA)/CaCl2/NaCl/pullulan (Pul) | 118 mg/L PA; 0.83% CaCl2; 0.55% NaCl; 0.30% Pul | Suppressed respiration rate, browning, and flavor loss; increased antioxidant activity; prolonged shelf-life to 16 days | 2022 [99] |
A. bisporus | Salvia macrosiphon seed (SSG)/liquid smoke (LS) | 3% LS | Delayed weight loss, softening, and browning; enhanced total phenolic content | 2023 [100] |
A. bisporus | Aloe vera gel/orange peel essential oil (EOs) | 1500 µL/L Eos; 50% aloe vera gel | Suppressed respiration rate; prolonged shelf-life to 16 days; enhanced antioxidant activity | 2023 [98] |
A. bisporus | Glycerol/citric acid/polysaccharides aqueous extracts from P. eryngii | ____ | Inhibited dehydration and degradation; delayed browning | 2023 [101] |
A. bisporus | Chia seed mucilage/Ferula gummosa (FG) and Ziziphora clinopodioides (ZC) essential oils | 500 ppm ZC | Reduced weight loss, browning; enhanced firmness feature; extended the shelf-life up to 16 days | 2024 [102] |
A. bisporus | Guar gum/leek powder (LP) /sunflower oil (SO) | 1.5% LP; 0% SO | Preserved the moisture, shape, and color quality | 2023 [103] |
L. edodes | γ-polyglutamic acid hydrogel | 1% | Inhibited water and weight loss, decay, and Vitamin C degradation; reduced polyphenol oxidase activity | 2021 [104] |
L. edodes | Polysaccharide from Oudemansiella radicata | ____ | Improved retention of nutritional and flavor compounds; delayed softening; reduced MDA production | 2021 [105] |
F. velutipes | Pullulan (Pul)/cinnamaldehyde (CA)/soybean phospholipids (SP) | 6% Pul | Delayed color change; increased antioxidant activity | 2023 [106] |
3.4. Antimicrobial Photodynamic Therapy
3.5. Electrostatic Field Treatment
3.6. Electrolyzed Water
3.7. Novel Preservatives
3.8. Other Emerging Methods
4. Conclusions and Future Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castellanos-Reyes, K.; Villalobos-Carvajal, R.; Beldarrain-Iznaga, T. Fresh mushroom preservation techniques. Foods 2021, 10, 2126. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Rheological and microstructural properties of polysaccharide obtained from the gelatinous Tremella fuciformis fungus. Int. J. Biol. Macromol. 2023, 228, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Wang, M.; Chen, N.; Wang, X.; Fu, C.; Li, Y.; Gan, X.; Lv, P.; Zhang, Y. Isolation, structures, bioactivities, application and future prospective for polysaccharides from Tremella aurantialba: A review. Front. Immunol. 2022, 13, 1091210. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wei, Z.; Zhang, F.; Linhardt, R.; Sun, P.; Zhang, A. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: A review. Int. J. Biol. Macromol. 2019, 121, 1005–1010. [Google Scholar] [CrossRef]
- Valverde, M.; Hernández Pérez, T.; Paredes López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Reis, F.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol. 2017, 66, 48–62. [Google Scholar] [CrossRef]
- Cardwell, G.; Bornman, J.; James, A.; Black, L. A review of mushrooms as a potential source of dietary Vitamin D. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Chen, Y.; Liu, T.; Zhang, S.; Fan, H.; Liu, H.; Li, Y. Healthy function and high valued utilization of edible fungi. Food Sci. Hum. Wellness 2021, 10, 408–420. [Google Scholar] [CrossRef]
- Leong, Y.; Varjani, S.; Lee, D.; Chang, J. Valorization of spent mushroom substrate for low-carbon biofuel production: Recent advances and developments. Bioresour. Technol. 2022, 363, 128012. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J.; Liu, H.; Wang, Y. Review of postharvest processing of edible wild-grown mushrooms. Food Res. Int. 2023, 173, 113223. [Google Scholar] [CrossRef]
- Zhong, Y.; Dong, S.; Cui, Y.; Dong, X.; Xu, H.; Li, M. Recent advances in postharvest irradiation preservation technology of edible fungi: A review. Foods 2022, 12, 103. [Google Scholar] [CrossRef]
- Subrahmanyam, K.; Gul, K.; Sehrawat, R.; Allai, F. Impact of in-package cold plasma treatment on the physicochemical properties and shelf life of button mushrooms (Agaricus bisporus). Food Biosci. 2023, 52, 102425. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Zeng, M.; Zhang, Y.; Pan, L.; Wang, J.; Huang, S. A novel physical hurdle technology by combining low voltage electrostatic field and modified atmosphere packaging for long-term stored button mushrooms (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2023, 90, 103514. [Google Scholar] [CrossRef]
- Ai, F.; Al Sharify, Z.; Nor Khaizura, M.; Jamilah, B.; Nur Hanani, Z. Application of modified atmosphere and active packaging for oyster mushroom (Pleurotus ostreatus). Food Packag. Shelf Life 2020, 23, 100451. [Google Scholar] [CrossRef]
- Louis, E.; Villalobos Carvajal, R.; Reyes Parra, J.; Jara Quijada, E.; Ruiz, C.; Andrades, P.; Gacitúa, J.; Beldarraín Iznaga, T. Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packag. Shelf Life 2021, 28, 100662. [Google Scholar] [CrossRef]
- Lin, Y.; Lai, D.; Wang, D.; Zhou, F.; Tan, B.K.; Zhang, Z.; Hu, J.; Lin, S. Application of curcumin-mediated antibacterial photodynamic technology for preservation of fresh Tremella fuciformis. LWT-Food Sci. Technol. 2021, 147, 111657. [Google Scholar] [CrossRef]
- Peter, A.; Mihaly Cozmuta, L.; Nicula, C.; Mihaly Cozmuta, A.; Talasman, C.; Drazic, G.; Peñas, A.; Calahorro, A.; Sagratini, G.; Silvi, S. Chemical and organoleptic changes of curd cheese stored in new and reused active packaging systems made of Ag-graphene-TiO2-PLA. Food Chem. 2021, 363, 130341. [Google Scholar] [CrossRef]
- Xia, R.; Hou, Z.; Xu, H.; Li, Y.; Sun, Y.; Wang, Y.; Zhu, J.; Wang, Z.; Pan, S.; Xin, G. Emerging technologies for preservation and quality evaluation of postharvest edible mushrooms: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 1–19. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, D.; Zhang, Y.; Gao, X.; Liu, D.; Gao, Y.; Li, Y.; Qi, Y.; Qiu, L. Two hybrid histidine kinases involved in the ethylene regulation of the mycelial growth and postharvest fruiting body maturation and senescence of Agaricus bisporus. Microbiol. Spectr. 2022, 10, e02411-22. [Google Scholar] [CrossRef]
- Liu, D.; Gu, W.; Wang, L.; Sun, J. Photodynamic inactivation and its application in food preservation. Crit. Rev. Food Sci. Nutr. 2023, 63, 2042–2056. [Google Scholar] [CrossRef]
- Ribeiro, I.; Maciel, G.; Bortolini, D.; Fernandes, I.A.; Maroldi, W.; Pedro, A.; Rubio, F.; Haminiuk, C. Sustainable innovations in edible films and coatings: An overview. Trends Food Sci. Technol. 2024, 143, 104272. [Google Scholar] [CrossRef]
- Aday, M. Application of electrolyzed water for improving postharvest quality of mushroom. LWT-Food Sci. Technol. 2016, 68, 44–51. [Google Scholar] [CrossRef]
- Dalvi Isfahan, M.; Hamdami, N.; Le Bail, A.; Xanthakis, E. The principles of high voltage electric field and its application in food processing: A review. Food Res. Int. 2016, 89, 48–62. [Google Scholar] [CrossRef]
- Peng, Q.; Bao, F.; Tang, M.; Zhong, F.; Li, W.; Deng, J.; Lin, Q.; Yan, M.; Zuberi, Z. Advances in dual-functional packaging: Visual monitoring of food freshness using plant essential oils and pH-sensitive natural pigments. Food Control 2024, 160, 110307. [Google Scholar] [CrossRef]
- Muthuvelu, K.S.; Ethiraj, B.; Pramnik, S.; Raj, N.K.; Venkataraman, S.; Rajendran, D.S.; Bharathi, P.; Palanisamy, E.; Narayanan, A.S.; Vaidyanathan, V.K.; et al. Biopreservative technologies of food: An alternative to chemical preservation and recent developments. Food Sci. Biotechnol. 2023, 32, 1337–1350. [Google Scholar] [CrossRef]
- Choi, Y.; Eom, H.; Yang, S.; Nandre, R.; Kim, S.; Kim, M.; Oh, Y.; Nakazawa, T.; Honda, Y.; Ro, H. Heterokaryosis, the main obstacle in the generation of PPO1-edited Agaricus bisporus by CRISPR/Cas9 system. Sci. Hortic. 2023, 318, 112095. [Google Scholar] [CrossRef]
- Jiang, T. Effect of alginate coating on physicochemical and sensory qualities of button mushrooms (Agaricus bisporus) under a high oxygen modified atmosphere. Postharvest Biol. Technol. 2013, 76, 91–97. [Google Scholar] [CrossRef]
- Zhang, K. Recent advances in quality preservation of postharvest mushrooms (Agaricus bisporus): A review. Trends Food Sci. Technol. 2018, 78, 72–82. [Google Scholar] [CrossRef]
- Criado, P.; Fraschini, C.; Shankar, S.; Salmieri, S.; Lacroix, M. Influence of cellulose nanocrystals gellan gum-based coating on color and respiration rate of Agaricus bisporus mushrooms. J. Food Sci. 2021, 86, 420–425. [Google Scholar] [CrossRef]
- Li, D. Toughening and its association with the postharvest quality of king oyster mushroom (Pleurotus eryngii) stored at low temperature. Food Chem. 2016, 196, 1092–1100. [Google Scholar] [CrossRef]
- Gantner, M.; Guzek, D.; Pogorzelska, E.; Brodowska, M.; Wojtasik Kalinowska, I.; Godziszewska, J. The effect of film type and modified atmosphere packaging with different initial GAS composition on the shelf life of white mushrooms (Agaricus bisporus L.). J. Food Process. Preserv. 2017, 41, e13083. [Google Scholar] [CrossRef]
- Zivanovic, S.; Busher, R.; Kim, K. Textural changes in mushrooms (Agaricus bisporus) associated with tissue ultrastructure and composition. J. Food Sci. 2000, 65, 1404–1408. [Google Scholar] [CrossRef]
- Wang, B.; Yun, J.; Ye, C.; Xu, S.; Guo, W.; Zhao, F.; Qu, Y.; Bi, Y. A novel polyethylene nanopackaging combined with ozone fumigation delayed the browning and softening of Agaricus bisporus during postharvest storage. Postharvest Biol. Technol. 2024, 210, 112771. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, X.; Yan, B. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage. Eur. Food Res. Technol. 2008, 226, 635–640. [Google Scholar] [CrossRef]
- Lin, X.; Sun, D. Research advances in browning of button mushroom (Agaricus bisporus): Affecting factors and controlling methods. Trends Food Sci. Technol. 2019, 90, 63–75. [Google Scholar] [CrossRef]
- Osdaghi, E.; Martins, S.; Ramos-Sepulveda, L.; Vieira, F.; Pecchia, J.; Beyer, D.M.; Bell, T.; Yang, Y.; Hockett, K.; Bull, C. 100 years since Tolaas: Bacterial blotch of mushrooms in the 21st century. Plant Dis. 2019, 103, 2714–2732. [Google Scholar] [CrossRef]
- Shao, P.; Wu, W.; Chen, H.; Sun, P.; Gao, H. Bilayer edible films with tunable humidity regulating property for inhibiting browning of Agaricus bisporus. Food Res. Int. 2020, 138, 109795. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, M.; Lu, Y.; Guo, Z.; Zeng, Z.; Liao, J.; Zeng, H. Metabolomics and transcriptomics unravel the mechanism of browning resistance in Agaricus bisporus. PLoS ONE 2022, 17, e0255765. [Google Scholar] [CrossRef]
- Hou, X.; Luo, C.; Chen, S.; Zhang, X.; Jiang, J.; Yang, Z.; Wang, F.; Xie, X. Progress in research on diseases of edible fungi and their detection methods: A review. Crop Prot. 2023, 174, 106420. [Google Scholar] [CrossRef]
- Fang, D.; Wang, C.; Deng, Z.; Ma, N.; Hu, Q.; Zhao, L. Microflora and umami alterations of different packaging material preserved mushroom (Flammulina filiformis) during cold storage. Food Res. Int. 2021, 147, 110481. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Han, A.; Deng, Z.; Qi, Z.; Long, H.; Wang, J.; Yao, W.; et al. Advances in the role and mechanisms of essential oils and plant extracts as natural preservatives to extend the postharvest shelf life of edible mushrooms. Foods 2023, 12, 801. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, L.; Guo, L.; Wang, L.; Hao, J.; Liu, Y. Changes of bacterial communities and volatile compounds developed from the spoilage of white Hypsizygus marmoreus under different storage conditions. LWT-Food Sci. Technol. 2022, 168, 113906. [Google Scholar] [CrossRef]
- Jiang, K.; Li, L.; Yang, Z.; Chen, H.; Qin, Y.; Brennan, C. Variable characteristics of microbial communities and volatile organic compounds during post-harvest storage of wild morel mushrooms. Postharvest Biol. Technol. 2023, 203, 112401. [Google Scholar] [CrossRef]
- Hou, F.; Yi, F.; Song, L.; Zhan, S.; Zhang, R.; Han, X.; Sun, X.; Liu, Z. Bacterial community dynamics and metabolic functions prediction in white button mushroom (Agaricus bisporus) during storage. Food Res. Int. 2023, 171, 113077. [Google Scholar] [CrossRef]
- Ban, G.; Kim, B.; Kim, S.; Rhee, M.; Kim, S. Bacterial microbiota profiling of oyster mushrooms (Pleurotus ostreatus) based on cultivation methods and distribution channels using high-throughput sequencing. Int. J. Food Microbiol. 2022, 382, 109917. [Google Scholar] [CrossRef]
- Yun, Y.; Cho, K.; Kim, Y. Inhibition of tolaasin cytotoxicity causing brown blotch disease in cultivated mushrooms using tolaasin inhibitory factors. Toxins 2023, 15, 66. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, C.; Jiang, Q.; Wu, Z.; Cao, S.; Wu, P.; Gao, Y.; Cheng, X. Microbiome analysis and growth behaviors prediction of potential spoilage bacteria inhabiting harvested edible mushrooms. J. Plant Dis. Prot. 2024, 131, 77–90. [Google Scholar] [CrossRef]
- Reetha, S.; Selvakumar, G.; Thamizhiniyan, P.; Ravimycin, T.; Bhuvaneswari, G. Screening of cellulase and pectinase by using Pseudomonas fluorescence and Bacillus subtilis. Int. Lett. Nat. Sci. 2014, 13, 75–80. [Google Scholar] [CrossRef]
- Taparia, T.; Krijger, M.; Hodgetts, J.; Hendriks, M.; Elphinstone, J.; Van Der Wolf, J. Six multiplex TaqManTM-qPCR assays for quantitative diagnostics of pseudomonas species causative of bacterial blotch diseases of mushrooms. Front. Microbiol. 2020, 11, 989. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, R.; Guo, M.; Shen, N.; Chuaoen, P.; Qiu, K.; Bian, Y.; Xiao, Y. Serial transcriptional changes of Flammulina filiformis (winter mushroom) mycelia infected by Pseudomonas migulae. Sci. Hortic. 2022, 297, 110965. [Google Scholar] [CrossRef]
- Chowdhury, P.; Heinemann, J. The general secretory pathway of urkholderia gladioli pv. agaricicola BG164R is necessary for cavity disease in white button mushrooms. Appl. Environ. Microbiol. 2006, 72, 3558–3565. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, D.; Baek, S.; Lim, S.; Chung, I.; Han, J.; Kim, S. An unattended HS-SPME-GC–MS/MS combined with a novel sample preparation strategy for the reliable quantitation of C8 volatiles in mushrooms: A sample preparation strategy to fully control the volatile emission. Food Chem. 2021, 347, 128998. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Venkitasamy, C.; Pan, Z.; Wang, W. Recent developments on umami ingredients of edible mushrooms—A review. Trends Food Sci. Technol. 2013, 33, 78–92. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Z.; Xin, G.; Sun, B.; Bao, X.; Wei, Y.; Zhao, X.; Xu, H. Advances in umami taste and aroma of edible mushrooms. Trends Food Sci. Technol. 2020, 96, 176–187. [Google Scholar] [CrossRef]
- Xia, R.; Wang, Y.; Hou, Z.; Li, Y.; Wang, Z.; Zhu, J.; Ren, H.; Guo, Y.; Xin, G. Umami loss mechanism upon shiitake mushrooms under cold storage: Revisiting the role of energy metabolism via integrated physiological and transcriptomic analysis. Postharvest Biol. Technol. 2024, 208, 112670. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, X.; Gong, P.; Wang, R.; Qi, Z.; Deng, Z.; Han, A.; Long, H.; Wang, J.; Yao, W.; et al. Advances in postharvest storage and preservation strategies for Pleurotus eryngii. Foods 2023, 12, 1046. [Google Scholar] [CrossRef] [PubMed]
- Muszyńska, B.; Zając, M.; Kała, K.; Rojowski, J.; Opoka, W. Thermal processing can affect zinc availability in some edible mushrooms. LWT-Food Sci. Technol. 2016, 69, 424–429. [Google Scholar] [CrossRef]
- Tolera, K.; Abera, S. Nutritional quality of Oyster Mushroom (Pleurotus Ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci. Nutr. 2017, 57, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Pogorzelska Nowicka, E.; Hanula, M.; Wojtasik Kalinowska, I.; Stelmasiak, A.; Zalewska, M.; Półtorak, A.; Wierzbicka, A. Packaging in a high O2 or air atmospheres and in microperforated films effects on quality of button mushrooms stored at room temperature. Agriculture 2020, 10, 479. [Google Scholar] [CrossRef]
- Cheng, Y.; Wei, Y.; Zhang, M.; Wang, H. Effect of micro-perforated film packing on physicochemical quality and volatile profile of button mushroom (Agaricus bisporus) during postharvest shelf-life. J. Food Process. Preserv. 2022, 46, e16648. [Google Scholar] [CrossRef]
- Zheng, B.; Kou, X.; Liu, C.; Wang, Y.; Yu, Y.; Ma, J.; Liu, Y.; Xue, Z. Effect of nanopackaging on the quality of edible mushrooms and its action mechanism: A review. Food Chem. 2023, 407, 135099. [Google Scholar] [CrossRef]
- Ma, N.; Wang, C.; Pei, F.; Han, P.; Su, A.; Ma, G.; Kimatu, B.M.; Hu, Q.; Fang, D. Polyethylene-based packaging material loaded with nano-Ag/TiO2 delays quality deterioration of Agaricus bisporus via membrane lipid metabolism regulation. Postharvest Biol. Technol. 2022, 183, 111747. [Google Scholar] [CrossRef]
- Zhang, P.; Fang, D.; Pei, F.; Wang, C.; Jiang, W.; Hu, Q.; Ma, N. Nanocomposite packaging materials delay the browning of Agaricus bisporus by modulating the melanin pathway. Postharvest Biol. Technol. 2022, 192, 112014. [Google Scholar] [CrossRef]
- Almasi, H.; Jahanbakhsh Oskouie, M.; Saleh, A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 2021, 61, 2601–2621. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, T.; Zhao, Y.; Cheng, C.; Yin, H.; Yue, J. The developments and trends of electrospinning active food packaging: A review and bibliometrics analysis. Food Control 2024, 160, 110291. [Google Scholar] [CrossRef]
- Ni, X.; Yu, J.; Shao, P.; Yu, J.; Chen, H.; Gao, H. Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper. Food Chem. 2021, 345, 128757. [Google Scholar] [CrossRef]
- Kumari, S.; Pakshirajan, K.; Pugazhenthi, G. Development and characterization of active poly (3-hydroxybutyrate) based composites with grapeseed oil and MgO nanoparticles for shelf-life extension of white button mushrooms (Agaricus bisporus). Int. J. Biol. Macromol. 2024, 260, 129521. [Google Scholar] [CrossRef]
- Vilas, C.; Mauricio Iglesias, M.; García, M. Model-based design of smart active packaging systems with antimicrobial activity. Food Packag. Shelf Life 2020, 24, 100446. [Google Scholar] [CrossRef]
- Yao, Q.; Huang, F.; Lu, Y.; Huang, J.; Ali, M.; Jia, X.; Zeng, X.; Huang, Y. Polysaccharide-based food packaging and intelligent packaging applications: A comprehensive review. Trends Food Sci. Technol. 2024, 147, 104390. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Yildiz, Z.; Yildiz, P.; Strachowski, P.; Forough, M.; Esmaeili, Y.; Naebe, M.; Abdollahi, M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int. J. Biol. Macromol. 2024, 261, 129647. [Google Scholar] [CrossRef]
- Hou, T.; Ma, S.; Wang, F.; Wang, L. A comprehensive review of intelligent controlled release antimicrobial packaging in food preservation. Food Sci. Biotechnol. 2023, 32, 1459–1478. [Google Scholar] [CrossRef]
- Wu, W.; Ni, X.; Shao, P.; Gao, H. Novel packaging film for humidity-controlled manipulating of ethylene for shelf-life extension of Agaricus bisporus. LWT-Food Sci. Technol. 2021, 145, 111331. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Y.; Lin, Y.; Shao, P. Facile fabrication of multifunctional citrus pectin aerogel fortified with cellulose nanofiber as controlled packaging of edible fungi. Food Chem. 2022, 374, 131763. [Google Scholar] [CrossRef]
- Lei, M.; Guo, L.; Zhang, Y.; Yan, X.; Jiang, F.; Sun, B. Effectiveness of anaerobic treatment combined with microperforated film packaging in reducing Agaricus bisporus postharvest browning. Postharvest Biol. Technol. 2024, 211, 112833. [Google Scholar] [CrossRef]
- Fang, D.; Wang, H.; Deng, Z.; Kimatu, B.; Pei, F.; Hu, Q.; Ma, N. Nanocomposite packaging regulates energy metabolism of mushrooms (Flammulina filiformis) during cold storage: A study on mitochondrial proteomics. Postharvest Biol. Technol. 2022, 193, 112046. [Google Scholar] [CrossRef]
- Zuo, C.; Hu, Q.; Su, A.; Xu, H.; Li, X.; Mariga, A.; Yang, W. Nanocomposite packaging delays lignification of Flammulina velutipes by regulating phenylpropanoid pathway and mitochondrial reactive oxygen species metabolisms. Postharvest Biol. Technol. 2021, 171, 111360. [Google Scholar] [CrossRef]
- Hanula, M.; Pogorzelska Nowicka, E.; Pogorzelski, G.; Szpicer, A.; Wojtasik Kalinowska, I.; Wierzbicka, A.; Półtorak, A. Active packaging of button mushrooms with zeolite and açai extract as an innovative method of extending its shelf life. Agriculture 2021, 11, 653. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.; Sun, D. Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: Mechanisms and application advances. Crit. Rev. Food Sci. Nutr. 2020, 60, 2676–2690. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, S.; Xi, F.; Yang, W.; Zhou, L.; Zhang, G.; Zhu, H.; Zhang, Q. Preservation effect of plasma-activated water (PAW) treatment on fresh walnut kernels. Innov. Food Sci. Emerg. Technol. 2023, 85, 103304. [Google Scholar] [CrossRef]
- Asl, P.; Rajulapati, V.; Gavahian, M.; Kapusta, I.; Putnik, P.; Mousavi Khaneghah, A.; Marszałek, K. Non-thermal plasma technique for preservation of fresh foods: A review. Food Control 2022, 134, 108560. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, Q.; Shi, W.; Yu, X.; Wang, S. Food preservation by cold plasma from dielectric barrier discharges in agri-food industries. Front. Nutr. 2022, 9, 1015980. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.; Yepez, X.; Xu, L.; Keener, K. In-package cold plasma technologies. J. Food Eng. 2019, 244, 21–31. [Google Scholar] [CrossRef]
- Pourbagher, R.; Abbaspour Fard, M.; Sohbatzadeh, F.; Rohani, A. Inhibition of enzymes and Pseudomonas tolaasii growth on Agaricus bisporus following treatment with surface dielectric barrier discharge plasma. Innov. Food Sci. Emerg. Technol. 2021, 74, 102833. [Google Scholar] [CrossRef]
- Ding, Y.; Mo, W.; Deng, Z.; Kimatu, B.; Gao, J.; Fang, D. Storage quality variation of mushrooms (Flammulina velutipes) after cold plasma treatment. Life 2022, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Hasan, S.; Islam, R.; Rana, R.; Sayem, A.; Sad, A.A.; Matin, A.; Raposo, A.; Zandonadi, R.P.; Han, H.; et al. Plasma-activated water for food safety and quality: A review of recent developments. Int. J. Environ. Res. Public Health 2022, 19, 6630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, X.; Ma, T. Properties of plasma-activated water with different activation time and its effects on the quality of button mushrooms (Agaricus bisporus). LWT-Food Sci. Technol. 2021, 147, 111633. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Y.; Zheng, Y.; Hu, J.; Chen, J.; Deng, S. The effect of dielectric barrier discharge plasma gas and plasma-activated water on the physicochemical changes in button mushrooms (Agaricus bisporus). Foods 2022, 11, 3504. [Google Scholar] [CrossRef] [PubMed]
- Shanker, M.A.; Khanashyam, A.C.; Pandiselvam, R.; Joshi, T.J.; Thomas, P.E.; Zhang, Y.; Rustagi, S.; Bharti, S.; Thirumdas, R.; Kumar, M.; et al. Implications of cold plasma and plasma activated water on food texture—A review. Food Control 2023, 151, 109793. [Google Scholar] [CrossRef]
- Zhu, D.; Guo, R.; Li, W.; Song, J.; Cheng, F. Improved postharvest preservation effects of pholiota nameko mushroom by sodium alginate–based edible composite coating. Food Bioprocess Technol. 2019, 12, 587–598. [Google Scholar] [CrossRef]
- Louis, A.; Venkatachalam, S. Post-harvest quality and shelf life assessment of Agaricus bisporus influenced by nanocellulose/nanohemicellulose loaded starch based packaging. Polym. Compos. 2022, 43, 7538–7550. [Google Scholar] [CrossRef]
- Díaz Montes, E.; Yáñez Fernández, J.; Castro Muñoz, R. Dextran/chitosan blend film fabrication for bio-packaging of mushrooms (Agaricus bisporus). J. Food Process. Preserv. 2021, 45, e15489. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J. Gelatin/cellulose nanofiber-based functional films added with mushroom-mediated sulfur nanoparticles for active packaging applications. J. Nanostructure Chem. 2022, 12, 979–990. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Wang, X.; Dong, S.; Sun, Y.; Zhao, Z. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 155, 47–56. [Google Scholar] [CrossRef]
- Cavusoglu, S.; Uzun, Y.; Yilmaz, N.; Ercisli, S.; Eren, E.; Ekiert, H.; Elansary, H.O.; Szopa, A. Maintaining the quality and storage life of button mushrooms (Agaricus bisporus) with gum, agar, sodium alginate, egg white protein, and lecithin coating. J. Fungi 2021, 7, 614. [Google Scholar] [CrossRef]
- Ribeiro Santos, R.; Andrade, M.; Sanches Silva, A. Application of encapsulated essential oils as antimicrobial agents in food packaging. Curr. Opin. Food Sci. 2017, 14, 78–84. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Perumal, A.; Huang, L.; Nambiar, R.; He, Y.; Li, X.; Sellamuthu, P. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem. 2022, 375, 131810. [Google Scholar] [CrossRef] [PubMed]
- Shenbagam, A.; Kumar, N.; Rahul, K.; Upadhyay, A.; Gniewosz, M.; Kieliszek, M. Characterization of aloe vera gel-based edible coating with orange peel essential oil and Its preservation effects on button mushroom (Agaricus bisporus). Food Bioprocess Technol. 2023, 16, 2877–2897. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, L.; Yi, Y.; Li, B.; Sun, R.; Deng, H. Preservation mechanism and flavor variation of postharvest button mushroom (Agaricus Bisporus) coated compounds of protocatechuic acid-CaCl2-NaCl-pullulan. LWT-Food Sci. Technol. 2022, 169, 114020. [Google Scholar] [CrossRef]
- Amininasab, S.; Hojjati, M.; Noshad, M.; Soltani, M. Combining active edible coating of Salvia macrosiphon seed enriched with liquid smoke with UV-B irradiation for button mushroom preservation. LWT-Food Sci. Technol. 2023, 189, 115557. [Google Scholar] [CrossRef]
- Borges, M.; Simões, A.; Miranda, C.; Sales, H.; Pontes, R.; Nunes, J. Microbiological assessment of white button mushrooms with an edible film coating. Foods 2023, 12, 3061. [Google Scholar] [CrossRef]
- Faraj, A.; Nouri, M. Development of a mucilage coating including nanoencapsulated essential oils for extending shelf life of button mushrooms (Agaricus bisporus). Food Packag. Shelf Life 2024, 41, 101232. [Google Scholar] [CrossRef]
- Yazıcıoğlu, N. Effects of leek powder and sunflower oil in guar gum edible coating on the preservation of mushrooms (Agaricus bisporus). Turk. J. Agric. Food Sci. Technol. 2023, 11, 2533–2539. [Google Scholar] [CrossRef]
- Tao, L.; Long, H.; Zhang, J.; Qi, L.; Zhang, S.; Li, T.; Li, S. Preparation and coating application of γ-polyglutamic acid hydrogel to improve storage life and quality of shiitake mushrooms. Food Control 2021, 130, 108404. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, X.; Song, Z.; Kong, W.; Kang, Y.; Kong, W.; Ng, T. Coating shiitake mushrooms (Lentinus edodes) with a polysaccharide from Oudemansiella radicata improves product quality and flavor during postharvest storage. Food Chem. 2021, 352, 129357. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Niu, B.; Fang, X.; Wu, W.; Liu, R.; Mu, H.; Gao, H.; Chen, H. Pullulan-stabilized soybean phospholipids/cinnamaldehyde emulsion for Flammulina velutipes preservation. Int. J. Biol. Macromol. 2023, 246, 125425. [Google Scholar] [CrossRef]
- Qiu, J.; Yang, H.; Zhang, Y.; Xiao, Y.; Wang, L.; Peng, Y.; Yu, X.; Huang, X.; Zhong, T. Emerging trends in the application of riboflavin-mediated photodynamic inactivation for food preservation. Trends Food Sci. Technol. 2024, 143, 104295. [Google Scholar] [CrossRef]
- Polat, E.; Kang, K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021, 9, 584. [Google Scholar] [CrossRef]
- Lv, Y.; Li, P.; Cen, L.; Wen, F.; Su, R.; Cai, J.; Chen, J.; Su, W. Gelatin/carboxymethylcellulose composite film combined with photodynamic antibacterial: New prospect for fruit preservation. Int. J. Biol. Macromol. 2024, 257, 128643. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, M.; Xie, Z. Chiral organic nanoparticles based photodynamic antibacterial films for food preservation. Chem. Eng. J. 2024, 486, 150361. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, Y.; Xu, M.; Wen, J.; Wang, H.; Yan, H.; Gao, X.; Niu, B.; Li, W. Antibacterial photodynamic properties of silver nanoparticles-loaded curcumin composite material in chitosan-based films. Int. J. Biol. Macromol. 2024, 256, 128014. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Su, W.; Cai, J.; Cen, L.; Huang, S.; Wang, Y.; Li, P. Photodynamic antibacterial application of TiO2/curcumin/hydroxypropyl-cyclodextrin and its konjac glucomannan composite films. Int. J. Biol. Macromol. 2024, 254, 127716. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Qian, S.; Huang, F.; Han, D.; Li, X.; Zhang, C. Combined impacts of low voltage electrostatic field and high humidity assisted-thawing on quality of pork steaks. LWT-Food Sci. Technol. 2021, 150, 111987. [Google Scholar] [CrossRef]
- Dalvi Isfahan, M.; Havet, M.; Hamdami, N.; Le Bail, A. Recent advances of high voltage electric field technology and its application in food processing: A review with a focus on corona discharge and static electric field. J. Food Eng. 2023, 353, 111551. [Google Scholar] [CrossRef]
- Fallah Joshaqani, S.; Hamdami, N.; Keramat, J. Qualitative attributes of button mushroom (Agaricus bisporus) frozen under high voltage electrostatic field. J. Food Eng. 2021, 293, 110384. [Google Scholar] [CrossRef]
- Fiorile, G.; Puleo, S.; Ferraioli, A.; Cantone, A.; Valentino, V.; De Filippis, F.; Torrieri, E.; Di Monaco, R. Effect of the electrostatic field on fish deterioration: The case of the European anchovy (Engraulis encrasicolus). Int. J. Food Sci. Technol. 2024, 59, 3308–3316. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Lu, Y.; Jiang, F.; Yu, J.; Sun, X.; Hao, Y. Use of DENBA+ to assist refrigeration and extend the shelf-life of strawberry fruit. Postharvest Biol. Technol. 2023, 195, 112152. [Google Scholar] [CrossRef]
- Zhang, W.; Cao, J.; Jiang, W. Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends Food Sci. Technol. 2021, 114, 599–607. [Google Scholar] [CrossRef]
- He, Y.; Yeo, I.; Guo, C.; Kai, Y.; Lu, Y.; Yang, H. Elucidating the inhibitory mechanism on polyphenol oxidase from mushroom and melanosis formation by slightly acid electrolysed water. Food Chem. 2023, 404, 134580. [Google Scholar] [CrossRef]
- Ding, T.; Rahman, S.; Oh, D. Inhibitory effects of low concentration electrolyzed water and other sanitizers against foodborne pathogens on oyster mushroom. Food Control 2011, 22, 318–322. [Google Scholar] [CrossRef]
- Zamuner, C.; Dilarri, G.; Bonci, L.; Saldanha, L.; Behlau, F.; Marin, T.; Sass, D.; Bacci, M.; Ferreira, H. A cinnamaldehyde-based formulation as an alternative to sodium hypochlorite for post-harvest decontamination of citrus fruit. Trop. Plant Pathol. 2020, 45, 701–709. [Google Scholar] [CrossRef]
- Qian, X.; Hou, Q.; Liu, J.; Huang, Q.; Jin, Z.; Zhou, Q.; Jiang, T.; Zheng, X. Inhibition of browning and shelf life extension of button mushroom (Agaricus bisporus) by ergothioneine treatment. Sci. Hortic. 2021, 288, 110385. [Google Scholar] [CrossRef]
- Shekari, A.; Naghshiband Hassani, R.; Soleimani Aghdam, M. Exogenous application of GABA retards cap browning in Agaricus bisporus and its possible mechanism. Postharvest Biol. Technol. 2021, 174, 111434. [Google Scholar] [CrossRef]
- Dias, C.; Ribeiro, T.; Rodrigues, A.; Ferrante, A.; Vasconcelos, M.; Pintado, M. Improving the ripening process after 1-MCP application: Implications and strategies. Trends Food Sci. Technol. 2021, 113, 382–396. [Google Scholar] [CrossRef]
- Sun, B.; Chen, X.; Xin, G.; Qin, S.; Chen, M.; Jiang, F. Effect of 1-methylcyclopropene (1-MCP) on quality of button mushrooms (Agaricus bisporus) packaged in different packaging materials. Postharvest Biol. Technol. 2020, 159, 111023. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, Z.; Xu, H.; Sun, L.; Hou, Z.; Wang, Y.; Li, Y.; Pan, S.; Wang, Z.; Xin, G. Dynamic changes in taste quality related to the energy status of Pleurotus geesteranus treated with 1-methylcyclopropene. J. Food Compos. Anal. 2023, 124, 105659. [Google Scholar] [CrossRef]
- Namiota, M.; Bonikowski, R. The current state of knowledge about essential oil fumigation for quality of crops during postharvest. Int. J. Mol. Sci. 2021, 22, 13351. [Google Scholar] [CrossRef] [PubMed]
- Qu, T.; Li, B.; Huang, X.; Li, X.; Ding, Y.; Chen, J.; Tang, X. Effect of peppermint oil on the storage quality of white button mushrooms (Agaricus bisporus). Food Bioprocess Technol. 2020, 13, 404–418. [Google Scholar] [CrossRef]
- Feng, L.; Jiang, X.; Han, J.; Li, L.; Kitazawa, H.; Wang, X.; Guo, Y.; Dong, X.; Liu, H. Properties of an active film based on glutenin/tamarind gum and loaded with binary microemulsion of melatonin/pummelo essential oil and its preservation for Agaricus bisporus. Food Chem. 2023, 429, 136901. [Google Scholar] [CrossRef]
- Wang, X.; Sun, Y.; Liu, Z.; Huang, X.; Yi, F.; Hou, F.; Zhang, F. Preparation and characterization of chitosan/zein film loaded with lemon essential oil: Effects on postharvest quality of mushroom (Agaricus bisporus). Int. J. Biol. Macromol. 2021, 192, 635–643. [Google Scholar] [CrossRef]
- Li, Y.; Yang, T.; Qiao, J.; Liang, J.; Li, Z.; Sa, W.; Shang, Q. Whole-genome sequencing and evolutionary analysis of the wild edible mushroom, Morchella eohespera. Front. Microbiol. 2024, 14, 1309703. [Google Scholar] [CrossRef]
- Liu, X.; Dong, J.; Liao, J.; Tian, L.; Qiu, H.; Wu, T.; Ge, F.; Zhu, J.; Shi, L.; Jiang, A.; et al. Establishment of CRISPR/Cas9 genome-editing system based on dual sgRNAs in Flammulina filiformis. J. Fungi 2022, 8, 693. [Google Scholar] [CrossRef]
- Zan, X.; Jia, W.; Zhuang, H.; Cui, F.J.; Li, N.; Zhang, J.; Sun, W.; Zhao, X. Energy Status and mitochondrial metabolism of Volvariella volvacea with controlled ultrasound treatment and relative humidity. Postharvest Biol. Technol. 2020, 167, 111250. [Google Scholar] [CrossRef]
- Shi, D.; Yin, C.; Fan, X.; Yao, F.; Qiao, Y.; Xue, S.; Lu, Q.; Feng, C.; Meng, J.; Gao, H. Effects of ultrasound and gamma irradiation on quality maintenance of fresh Lentinula edodes during cold storage. Food Chem. 2022, 373, 131478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fang, X.; Wu, W.; Tong, C.; Chen, H.; Yang, H.; Gao, H. Effects of negative air ions treatment on the quality of fresh shiitake mushroom (Lentinus edodes) during storage. Food Chem. 2022, 371, 131200. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ning, Z.; Chen, Y.; Xu, X.; Wang, H. Model prediction of inactivation of Aeromonas salmonicida grown on poultry in situ by intense pulsed light. Food Sci. Hum. Wellness 2024, 13, 1011–1017. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Xu, B.; Yagoub, A.E.A.; Mustapha, A.T.; Zhou, C. Effect of intensive pulsed light on the activity, structure, physico-chemical properties and surface topography of polyphenol oxidase from mushroom. Innov. Food Sci. Emerg. Technol. 2021, 72, 102741. [Google Scholar] [CrossRef]
Packaging Technology | Material Property | Mushroom Species | Result | Ref. |
---|---|---|---|---|
Microperforated films | PA/PE film; 76 μm thickness; 0.5 mm hole size | A.bisporus | Maintained higher levels of total phenols and flavonoids; decreased the levels of relative conductivity and MDA content; downregulated specific gene expressions; reduced the browning index | 2024 [74] |
Microperforated films combined with high oxygen atmosphere (80% O2) | Polysulfone film (PSF_7000); 25 µm thickness; 25 holes; 143 µm hole size | A. bisporus | Maintained the desirable color; decreased MDA content; inhibited water condensation | 2020 [59] |
Microperforated films | PE film; 25.1 μm thickness; 8 holes; 0.3 mm hole size | A. bisporus | Decreased the browning index; maintained a higher concentration of 13 mushroom characteristic flavor compounds | 2022 [60] |
Nanocomposite packaging | Polyethylene-based packaging material loaded with nano-Ag/TiO2; 40 μm thickness | A. bisporus | Delayed the degradation of cell membrane phospholipids of mushroom; delayed the membrane lipid peroxidation process | 2022 [62] |
Nanocomposite packaging | Nano-Ag, nano-TiO2, nano-SiO2, nano-attapulgite, low-density polyethylene and anti-fogging agent; 40 μm thickness | A. bisporus | Maintained high total phenolic content and low levels of flavonoids; reduced the accumulation of melanin; delayed the browning process | 2022 [63] |
Nanocomposite packaging | Nano-Ag, nano-TiO2, nano-SiO2, nano attapulgite and polyethylene; 40 μm thickness | F. filiformis | Protected the mitochondrial integrity and function; maintained the balance of energy supplement; obtained better postharvest quality | 2022 [75] |
Nanocomposite packaging | Nano-Ag, nano-TiO2, nanoattapulgite, nano-SiO2 and polyethylene; 40 μm thickness | F. filiformis | Regulated phenylpropanoid pathway and the mitochondrial ROS production; delayed lignin deposition | 2021 [76] |
Nanopackaging | Nano-Ag and polyethylene; 35 μm thickness; 2.711 mg/m3 ozone | A. bisporus | Maintained a high antioxidant capacity; delayed the browning and softening processes; prolonged shelf-life up to 6~9 days | 2024 [33] |
Active packaging | 1-MCP, molecular sieve, loaded with potassium permanganate, cinnamon essential oil microcapsule, packaging paper | A. bisporus | Adsorbed and removed the exogenous ethylene; delayed the softening, browning, and weight loss | 2021 [66] |
Active packaging | Zeolite (clinoptilolite), aҫai extract, gelatin, and glycerin | A. bisporus | Improved antioxidant activity; slowed down water loss and the browning process of mushroom | 2021 [77] |
Active packaging | Gelatin, pomegranate peel powder, and PE film | P. ostreatus | Inhibited the growth of bacteria; maintained firmness and color; prolonged the shelf-life up to 11 days | 2020 [14] |
Active packaging | MgO nanoparticles, grapeseed oil, and Poly (3-hydroxybutyrate) | A. bisporus | Improved antioxidant activity; inhibited the growth of bacteria; extended the shelf-life up to 6 days | 2024 [67] |
Intelligent packaging | Palladium on activated charcoal and 1-MCP | A. bisporus | Controlled 1-MCP release rate and ethylene removal rate; delayed the softening, browning, and weight loss of mushroom | 2021 [72] |
Intelligent packaging | Citrus pectin, cellulose nanofibers, and thymol | A. bisporus | Controlled adsorption/release of water and release rate of thymol; stabilized relative humidity; inhibited bacterial growth | 2022 [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Wu, L.; Xia, Q.; Yi, K.; Li, Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024, 13, 1554. https://doi.org/10.3390/foods13101554
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods. 2024; 13(10):1554. https://doi.org/10.3390/foods13101554
Chicago/Turabian StyleCao, Yuping, Li Wu, Qing Xia, Kexin Yi, and Yibin Li. 2024. "Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review" Foods 13, no. 10: 1554. https://doi.org/10.3390/foods13101554
APA StyleCao, Y., Wu, L., Xia, Q., Yi, K., & Li, Y. (2024). Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods, 13(10), 1554. https://doi.org/10.3390/foods13101554