Pasta Drying Defects as a Novel Ingredient for Hard Dough Biscuits: Effect of Drying Temperature and Granulation on Its Functionality
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Pasta Defects Preparation
2.3. Biscuit Preparation
2.4. Physicochemical Characteristics of Flour
2.5. Alveographic Assay
2.6. Consistography Assay
2.7. Physical Characteristics of Biscuit
2.7.1. Dimensions and Spread Ratio
2.7.2. Three-Point Bend Test
2.7.3. Crust Color
2.8. Fourier Transform Infrared Spectroscopy Analysis (FTIR)
2.9. Solvent Retention Capacity
2.10. Differential Scanning Calorimetry (DSC)
2.11. Scanning Electron Microscopy (SEM)
2.12. Statistical Analysis
3. Results and Discussion
3.1. Mixed Flour Characteristics
3.2. Alveographic Properties
3.3. Physical Properties
3.4. Color
3.5. FTIR
3.6. Solvent Retention Capacity
3.7. DSC
3.8. Microstructural Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oreopoulou, V.; Russ, W. Utilization of by-Products and Treatment of Waste in the Food Industry; Conference Proceedings; Springer: New York, NY, USA, 2007; Volume 3. [Google Scholar]
- Peña, E.; Manthey, F.A.; Patel, B.K.; Campanella, O.H. Rheological properties of pasta dough during pasta extrusion: Effect of moisture and dough formulation. Cereal Sci. 2014, 60, 346–351. [Google Scholar] [CrossRef]
- Donnelly, B.J. Pasta regrinds: Effect on Spaghetti quality. J. Agric. Food Chem. 1980, 28, 806–809. [Google Scholar] [CrossRef]
- Zweifel, C.; Handschin, S.; Escher, F.; Conde-Petit, B. Influence of High-Temperature Drying on Structural and Textural Properties of Durum Wheat Pasta. Cereal Chem. 2003, 80, 159–167. [Google Scholar] [CrossRef]
- Nobile, M.A.; Baiano, A.; Conte, A.; Mocci, G. Influence of protein content on spaghetti cooking quality. Cereal Sci. 2005, 41, 347–356. [Google Scholar] [CrossRef]
- Fang, K.; Khan, K. Pasta containing regrinds: Effect of high temperature drying on product quality. Cereal Chem. 1996, 73, 317–322. [Google Scholar]
- Martin, C.; Hélène Morel, M.; Reau, A.; Cuq, B. Kinetics of gluten protein-insolubilisation during pasta processing: Decoupling between time- and temperature-dependent effects. Cereal Sci. 2019, 88, 103–109. [Google Scholar] [CrossRef]
- Kouhsari, F.; Saberi, F.; Łukasz Kowalczewski, P.; Lorenzo, J.M.; Kieliszek, M. Effect of the various fats on the structural characteristics of the hard dough biscuit. LWT 2022, 159, 113227. [Google Scholar] [CrossRef]
- Dowell, F.E.; Maghirang, E.B.; Xie, F.; Lookhart, G.L.; Pierce, R.O.; Seabourn, B.W.; Bean, S.R.; Wilson, J.D.; Chung, O.K. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chem. 2006, 83, 529–536. [Google Scholar] [CrossRef]
- Bouazizi, S.; Montevecchi, G.; Antonelli, A.; Hamdi, M. Effects of prickly pear (Opuntia ficus-indica L.) peel flour as an innovative ingredient in biscuits formulation. LWT 2020, 124, 109155. [Google Scholar] [CrossRef]
- Cronin, K.; Preis, C. A statistical analysis of biscuit physical properties as affected by Baking. Food Eng. 2000, 46, 217–225. [Google Scholar] [CrossRef]
- Sadeghi Vasafi, P.; Hamdami, N.; Keramat, J. Quality and microbial stability of part-baked ‘Barbari bread’ during freezing storage. LWT 2019, 104, 173–179. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Obadina, A.O.; Mulaba-Bafubiandi, A.F.; Adebo, O.A.; Kayitesi, E. Effect of fermentation and malting on the microstructure and selected physicochemical properties of pearl millet (Pennisetum glaucum) flour and biscuit. Cereal Sci. 2016, 70, 132–139. [Google Scholar] [CrossRef]
- Mamat, H.; Hardan, M.A.; Hill, S.E. Physicochemical properties of commercial semi-sweet biscuit. Food Chem. 2010, 121, 1029–1038. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnamoorth, E.; Devi1, H.M.; Uchoi1, D.; Tejpal, C.S.; Ninan, G.; Zynudhee, A.A. Influence of sea grapes (Caulerpa racemosa) supplementation on physical, functional, and anti-oxidant properties of semi-sweet biscuits. Appl. Phycol. 2017, 30, 1393–1403. [Google Scholar] [CrossRef]
- Adedara, O.A.; Taylo, J.R. Roles of protein, starch and sugar in the texture of sorghum biscuits. LWT 2020, 136, 110323. [Google Scholar] [CrossRef]
- Rai, A.; Singh, A.; Ganjewala, D.; Kumar, R.R.; Ahlawat, A.K.; Singh, S.K.; Sharma, P.; Jain, N. Rheological evaluations and molecular marker analysis of cultivated bread wheat varieties of India. Food Sci. Technol. 2019, 56, 1696–1707. [Google Scholar] [CrossRef]
- Renzetti, S.; Dal Bello, F.; Arendt, E.K. Microstructure, fundamental rheology and baking characteristics of batters and breads from different gluten-free flours treated with a microbial transglutaminase. J. Cereal Sci. 2008, 48, 33–45. [Google Scholar] [CrossRef]
- Cappelli, A.; Bini, A.; Cini, E. The Effects of Storage Time and Environmental Storage Conditions on Flour Quality, Dough Rheology, and Biscuit Characteristics: The Case Study of a Traditional Italian Biscuit (Biscotto di Prato). Foods 2022, 11, 11020209. [Google Scholar] [CrossRef]
- Simons, C.W.; Hall, C. Consumer acceptability of gluten-free cookies containing raw cooked and germinated pinto bean flours. Food Sci. Nutr. 2017, 6, 77–84. [Google Scholar] [CrossRef]
- Monisha, C.; Loganathan, M. Impact of drying methods on the physicochemical properties and nutritional composition of defatted black soldier fly (Hermetia illucens) pre-pupae flour. Food Process. Preserv. 2021, 46, e16184. [Google Scholar] [CrossRef]
- Kamble, D.B.; Singh, S.; Rani, S.; Pratap, D. Physicochemical properties, in vitro digestibility and structural attributes of okara-enriched functional pasta. Food Process. Preserv. 2019, 43, e14232. [Google Scholar] [CrossRef]
- Yue, P.; Rayas-Duarte, P.; Elias, E. Effect of drying temperature on physicochemical properties of starch isolated from pasta. Cereal Chem. 1999, 76, 541–547. [Google Scholar] [CrossRef]
- Petitot, M.; Brossard, C.; Barron, C.; Larré, C.; Morel, M.H.; Micard, V. Modification of pasta structure induced by high drying temperatures. Effects on the in vitro digestibility of protein and starch fractions and the potential allergenicity of protein hydrolysates. Food Chem. 2009, 116, 401–412. [Google Scholar] [CrossRef]
- Stuknytė, M.; Cattaneo, S.; Pagani, M.A.; Marti, A.; Micard, V.; Hogenboom, J.; Noni, I.D. Spaghetti from durum wheat: Effect of drying conditions on heat damage, ultrastructure and in vitro digestibility. Food Chem. 2014, 149, 40–46. [Google Scholar] [CrossRef]
- Sissons, M.; Cutill, S.; Marcotuli, I.; Gadaleta, A. Impact of durum wheat protein content on spaghetti in vitro starch digestion and technological properties. Cereal Sci. 2021, 98, 103156. [Google Scholar] [CrossRef]
Sample | Ingredient (%) | Moisture | Ash | Protein | Wet Gluten | Water Absorption | ||||
---|---|---|---|---|---|---|---|---|---|---|
Biscuit Flour | Fine-Low Temperature Pasta Regrind | Coarse-Low Temperature Pasta Regrind | Fine-High Temperature Pasta Regrind | Coarse-High Temperature Pasta Regrind | ||||||
Control | 100 | - | - | - | - | 13.50 | 0.5 | 11.73 | 27.96 | 53.93 |
B7LF3 | 70 | 30 | - | - | - | 12.47 | 0.53 | 11.62 | 27.37 | 55.21 |
B4LF6 | 40 | 60 | - | - | - | 11.68 | 0.56 | 11.49 | 26.98 | 56.18 |
B5LC5 | 50 | - | 50 | - | - | 12.26 | 0.51 | 11.51 | 28.12 | 56.09 |
B7HF3 | 70 | - | - | 30 | - | 12.70 | 0.52 | 11.60 | 27.23 | 55.67 |
B4HF6 | 40 | - | - | 60 | - | 11.89 | 0.54 | 11.41 | 26.61 | 57.21 |
B5HC5 | 50 | - | - | - | 50 | 12.42 | 0.51 | 11.54 | 28.30 | 55.55 |
Parameters | Control | B7LF3 | B4LF6 | B5LC5 | B7HF3 | B4HF6 | B5HC5 |
---|---|---|---|---|---|---|---|
P | 58.66 ± 2.51 d | 114.33 ± 114.33 bc | 180 ± 37.04 a | 144.33 ± 5.51 bc | 171.66 ± 3.05 ab | 23.66 ± 19.35 e | 28 ± 16.09 e |
G | 27.2 ± 1.73 a | 16.33 ± 0.33 b | 12.63 ± 2.54 b | 11.03 ± 0.23 b | 11.06 ± 0.45 b | 25.53 ± 6.68 a | 25.53 ± 5.51 a |
W | 271 ± 12.49 a | 241.33 ± 241.3 ab | 226.33 ± 74.57 ab | 164 ± 3 b | 198.66 ± 16.56 ab | 66 ± 65 c | 72.33 ± 68.41 c |
P/L | 0.39 ± 0.058 d | 2.11 ± 2.11 c | 5.73 ± 1.33 b | 5.86 ± 0.46 b | 6.89 ± 0.48 a | 0.2 ± 0.05 d | 0.197 ± 0.05 d |
L | 151.33 ± 16.74 a | 54 ± 1.73 bc | 33.33 ± 12.42 c | 24.66 ± 1.15 c | 25 ± 2 c | 109 ± 65.39 ab | 136.33 ± 53.57 a |
Hydration | 54.8±0.099a | 52.2±0.099b | 48±0.099f | 49.2±0.099d | 50.9±0.099c | 48.6±0.099e | 48±0.099f |
Test | Parameters | Control | B7LF3 | B4LF6 | B5LC5 | B7HF3 | B4HF6 | B5HC5 |
---|---|---|---|---|---|---|---|---|
Physical properties | Diameter | 32.68 ± 1.17 c | 32.616 ± 0.076 c | 33.78 ± 0.58 abc | 33.183 ± 0.17 bc | 33.63 ± 0.63 abc | 34.316 ± 0.8 ab | 34.5 ± 0.390512 a |
Thickness | 5.28 ± 0.30 a | 3.733 ± 0.25 bc | 3.5 ± 0.1 bc | 3.066 ± 0.42 c | 3.5 ± 0.18 bc | 3.25 ± 0.13 bc | 3.416 ± 0.26 bc | |
Weight | 12.04 ± 0.09 a | 10.19 ± 0.08 d | 11.013 ± 0.08 b | 8.933 ± 0.057 e | 10.59 ± 0.056 c | 12.21 ± 0.02 a | 12.03 ± 0.1 a | |
Spread ratio | 0.69 ± 0.04 c | 0.91 ± 0.005774 b | 0.88 ± 0.01 b | 1.2 ± 0.025166 a | 1.026 ± 0.011547 a | 1.03 ± 0.005 a | 1.0 ± 0.01 a | |
Hardness (g) | 1251.83 ± 95.24 a | 1171.33 ± 192.87 a | 1195.166 ± 440.01 a | 413.16 ± 46.40 c | 898.33 ± 89.31 ab | 716.5 ± 54.43 bc | 548.5 ± 57.17 bc | |
Color | L | 71.06 ± 1.52 a | 66.54 ± 7.22 ab | 69.78 ± 4.22 a | 51.48 ± 2.46 c | 60.86 ± 5.87 b | 64.70 ± 4.71 ab | 47.92 ± 2.48 c |
a | 6.92 ± 0.64 b | 8.85 ± 4.84 ab | 1.27 ± 3.7 c | 13.03 ± 1.7 a | 9.42 ± 1.25 ab | 7.11 ± 2.42 b | 12.62 ± 2.38 a | |
b | 36.32 ± 0.21 a | 34.53 ± 3.75 ab | 30.4 ± 1.44 c | 26.57 ± 0.92 d | 30.22 ± 2.55 c | 31.44 ± 1.89 bc | 25 ± 1 d | |
SRC | Water | 3.14 ± 0.02 ab | 3.23 ± 0.34 a | 2.86 ± 0.037 cd | 3.019 ± 0.01 abc | 2.95 ± 0.01 bcd | 2.75 ± 0.04 d | 3.07 ± 0.02 abc |
Lactic acid 5% (w/w) | 2.51 ± 0.11 b | 2.34 ± 0.13 c | 2.06 ± 0.06 d | 2.83 ± 0.015 a | 2.45 ± 0.05 bc | 2.73 ± 0.011 a | 2.73 ± 0.011 a | |
Sodium carbonate 5% (w/w) | 2.96 ± 0.05 a | 2.60 ± 0.11 b | 2.53 ± 0.11 b | 2.31 ± 0.09 c | 2.82 ± 0.01 a | 2.56 ± 0.13 b | 2.95 ± 0.005 a | |
DSC | To (°C) | 71.6 | 60.1 | 64.4 | 65.7 | 66.3 | 77 | 71.5 |
Tp (°C) | 87.2 | 56.3 | 87 | 88.1 | 91.9 | 92.3 | 90.4 | |
Tc (°C) | 95.1 | 95.5 | 95.7 | 98.1 | 98.3 | 96.5 | 98.2 | |
Transition enthalpy rate | 65.32% | 74.95 | 76.43% | 69.92 | 69.60% | 0.09% | 21.82% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milani, J.M.; Moammaei, S.; Kharazi, S.H.; Berenjestanaki, M.M. Pasta Drying Defects as a Novel Ingredient for Hard Dough Biscuits: Effect of Drying Temperature and Granulation on Its Functionality. Foods 2024, 13, 1487. https://doi.org/10.3390/foods13101487
Milani JM, Moammaei S, Kharazi SH, Berenjestanaki MM. Pasta Drying Defects as a Novel Ingredient for Hard Dough Biscuits: Effect of Drying Temperature and Granulation on Its Functionality. Foods. 2024; 13(10):1487. https://doi.org/10.3390/foods13101487
Chicago/Turabian StyleMilani, Jafar Mohammadzadeh, Saeed Moammaei, Sepideh Haghighat Kharazi, and Maryam Mohammadi Berenjestanaki. 2024. "Pasta Drying Defects as a Novel Ingredient for Hard Dough Biscuits: Effect of Drying Temperature and Granulation on Its Functionality" Foods 13, no. 10: 1487. https://doi.org/10.3390/foods13101487
APA StyleMilani, J. M., Moammaei, S., Kharazi, S. H., & Berenjestanaki, M. M. (2024). Pasta Drying Defects as a Novel Ingredient for Hard Dough Biscuits: Effect of Drying Temperature and Granulation on Its Functionality. Foods, 13(10), 1487. https://doi.org/10.3390/foods13101487