Plant-Based Dairy Alternatives—A Future Direction to the Milky Way
Abstract
:1. Introduction
Experimental Method—Literature Research
2. Dietary Sources of PBDAs—Description and Nutritional Profile
2.1. Cereals and Pseudocereal Sources
2.2. Legume-Based, Nut-Based, and Seed-Based Sources
Dietary Sources (g/100 g) | Water | Energy | Protein | Total Lipid | Ash | Carbohydrate | Total Dietary Fiber | Total Saturated Fatty Acids | Total Monosaturated Fatty Acids | Total Polyunsaturated Fatty Acids |
---|---|---|---|---|---|---|---|---|---|---|
Oat [27] | 8.22 | 389 kcal | 16.90 | 6.90 | 1.72 | 66.30 | 10.60 | 1.22 | 2.18 | 2.54 |
Rice [30] | 12.90 | 360 kcal | 6.61 | 0.58 | 0.58 | 79.30 | - | 0.16 | 0.18 | 0.15 |
Corn [96] | 10.40 | 365 kcal | 9.42 | 4.74 | 1.20 | 74.30 | 7.30 | 0.67 | 1.25 | 2.16 |
Quinoa [97] | 13.30 | 368 kcal | 14.10 | 6.07 | 2.38 | 64.20 | 7.00 | 0.71 | 1.61 | 3.29 |
Teff [98] | 8.82 | 367 kcal | 13.30 | 2.38 | 2.37 | 73.10 | 8.00 | 0.45 | 0.59 | 1.07 |
Amaranth [36] | 11.30 | 371 kcal | 13.60 | 7.02 | 2.88 | 65.20 | 6.70 | 1.46 | 1.68 | 2.78 |
Buckwheat [99] | 9.75 | 343 kcal | 13.20 | 3.40 | 2.10 | 71.50 | 10.00 | 0.74 | 1.04 | 1.04 |
Soy [47] | 7.25 | 327 kcal | 51.46 | 1.22 | 1.30 | 33.92 | 17.50 | 0.14 | 0.21 | 0.53 |
Peanut [100] | 6.50 | 567 kcal | 25.80 | 49.20 | 2.30 | 16.10 | 8.50 | 6.30 | 24.40 | 15.60 |
Lupin [57] | 5.52 | 371 kcal | 92.60 | - | 5.30 | 11.00 | <0.10 | 0.48 | 0.25 | 0.20 |
Pea [101] | 78.90 | 81 kcal | 5.42 | 0.40 | 0.87 | 14.40 | 5.70 | 0.07 | 0.03 | 0.19 |
Chickpea [64] | 60.2 | 164 kcal | 6.04 | 2.59 | 0.92 | 62.95 | 7.60 | 0.60 | 1.38 | 2.73 |
Almond [67] | 4.70 | 575 kcal | 21.22 | 49.42 | 2.99 | 21.67 | 12.20 | 3.73 | 30.89 | 12.07 |
Hazelnut [70] | 5.31 | 628 kcal | 15.00 | 60.70 | 2.29 | 16.70 | 9.70 | 4.46 | 45.70 | 7.92 |
Walnut [102] | 3.62 | 630 kcal | 16.66 | 66.90 | 1.81 | 13.70 | 6.70 | 6.13 | 8.93 | 47.20 |
Pistachio [75] | 4.37 | 560 kcal | 26.16 | 45.40 | 2.99 | 29.00 | 10.60 | 5.60 | 24.50 | 13.30 |
Coconut [79] | 47 | 354 kcal | 3.33 | 33.50 | 0.97 | 15.20 | 9.00 | 29.70 | 1.42 | 0.37 |
Sesame [82] | 4.69 | 573 kcal | 17.60 | 49.70 | 4.48 | 9.85 | 14.90 | 7.09 | 18.80 | 21.80 |
Flaxseed [86] | - | 536 kcal | 20.00 | 42.90 | - | 29.00 | 28.00 | 3.57 | 7.02 | 24.30 |
Hempseed [103] | 4.96 | 553 kcal | 31.60 | 48.80 | 6.06 | 8.67 | 4.00 | 4.60 | 5.40 | 38.10 |
Sunflower [93] | 4.73 | 584 kcal | 20.80 | 51.50 | 3.02 | 20.00 | 8.60 | 4.46 | 18.50 | 23.10 |
Dietary Sources | Compound | Concentration | Beneficial and Antinutritional Effects | References | |
---|---|---|---|---|---|
Cereals | Oat (mg/100 g) | Phytate | 278.7 | Good source of valuable nutrients that can considerably contribute to human diet and nutrition; Antinutritional factors limit overall nutrient absorption, particularly minerals, proteins, and vitamins | [104] |
Tannin | 44.7 | ||||
Oxalate | 48.4 | ||||
Rice (g/kg) | Phytic acid | 21.03 | High phytic acid consumption has been associated with deficits in Zn and Fe | [105] | |
Corn (mg/100 g) | Polyphenols | 425.8 | Antinutritional compounds such as phytic acid, polyphenols, and tannins can limit protein and carbohydrate bioavailability and digestibility by forming complexes with minerals and by inhibiting enzymes | [106] | |
Tannins | 215.1 | ||||
Phytates | 278.7 g | ||||
Pseudocereals | Quinoa | Saponins | 1.63 mg/g | Bitter taste; Reduced mineral bioavailability | [107] |
Phytic acid | 375.27 mg/100 g | ||||
Tannins | 3.41 mg TaE/100 g | ||||
Buckwheat (g/100 g) | Phytic acid | 18.07 | Affect small intestine metabolism, disrupt starch and protein digestion, and reduce mineral absorption | [108] | |
Trypsin inhibitor | 5.94 | ||||
Tannin | 5.13 | ||||
Saponin | 3.23 | ||||
Amaranth (mg/100 g) | Tannin | 1.50–3.46 | Reduced nutrients bioavailability | [109] | |
Oxalate | 3.73–6.81 | ||||
Saponin | 2.94–4.962 | ||||
Legumes | Mung bean (mg/100 g) | Phenols | 238 | Developing functional diets; Use in the treatment of diseases including cancer and cardiovascular disease | [110] |
Soybean | Trypsin | 1952 U | Biochemical usefulness | [111] | |
Agglutinin | 6400 HU | ||||
Lupin (mg/g) | Phytic acid | 0.29–0.52 | Improved in vitro protein digestibility; | [112,113] | |
Saponins | 0.85–2.75 | ||||
Tannins | 0.61–1.34 | ||||
Amylase inhibitor | 85.63–182.9 | ||||
Pea (mg/100 g) | Saponins | 2.97 | Bitter or unacceptable taste; Causes flatulence; Decreased protein digestibility | [114] | |
Phytic acid | 5.76 | ||||
Oxalate | 3.44 | ||||
Alkaloids | 6.97 | ||||
Cyanide | 2.3 | ||||
Nuts | Hazelnut (mg/g) | Phenolics | 8.71–12.9 | Have a negative impact on feed intake, body weight increase, and feed conversion | [115] |
Phytate | 18.5–33 | ||||
Almond (mg/100 g) | Hydrogen cyanide | 21.6 | The absorption of minerals, such as calcium, iron, zinc, and magnesium can be affected | [116] | |
Oxalate | 26.4 | ||||
Tannin | 39.4 | ||||
Seeds | Sesame (mg/100 g) | Tannin | 5.62 | Enzyme binding; Binding of feed components such as proteins or minerals; Digestion processes limitations | [117] |
Phytin | 25.05 | ||||
Saponin | 4.97 | ||||
Oxalate | 15.66 | ||||
Hempseed (g/100 g) | Phytate | 4 | Formation of insoluble calcium oxalates; Reduced mineral element bioavailability | [118] |
3. Plant-Based Dairy Alternatives
3.1. Plant-Based Milk Alternatives (PBMAs)
3.2. Plant-Based Cheese Alternatives (PBCAs)
3.3. Plant-Based Cream Alternatives (PBCrAs)
3.4. Plant-Based Yogurt Alternatives (PBYAs)
3.5. Plant-Based Butter Alternatives (PBBAs)
3.6. Plant-Based Ice Cream Alternatives and Other Types of Sweets
Dairy Product/Alternative | Source | Water (g) | Protein (g) | Total Lipid (g) | Carbohydrate (g) | Calcium (mg) | Energy (kcal) |
---|---|---|---|---|---|---|---|
Milk/alternative | |||||||
Whole (3.25% fat) | Bovine | 88.1 | 3.27 | 3.2 | 4.63 | 123 | 61 |
Unsweetened, plain, refrigerated | Almond | 96.5 | 0.66 | 1.56 | 0.67 | 158 | 19 |
Unsweetened, plain, refrigerated | Oat | 90.6 | 0.8 | 2.75 | 5.1 | 148 | 48 |
Unsweetened, plain, refrigerated | Soybean | 91.5 | 2.78 | 1.96 | 3 | 155 | 41 |
Cheese/alternative | |||||||
Ricotta, whole milk | Bovine | 72.9 | 7.81 | 11 | 6.86 | 224 | 158 |
Feta, whole milk | Bovine | 51.9 | 19.7 | 19.1 | 5.58 | 371 | 273 |
Curd cheese | Soybean | 70.9 | 12.5 | 8.1 | 6.9 | 188 | 151 |
Tofu fried | Soybean | 50.5 | 18.8 | 20.2 | 8.86 | 372 | 270 |
Tofu salted and fermented (fuyu) | Soybean | 70 | 8.92 | 8 | 4.38 | 46 | 116 |
Yogurt/alternative | |||||||
Plain, whole milk | Bovine | 85.3 | 3.82 | 4.48 | 5.57 | 127 | 78 |
Tofu | Soybean | 77.5 | 3.5 | 1.8 | 16 | 118 | 94 |
Butter/alternative | |||||||
Stick, unsalted | Bovine | 17.4 | - | 81.5 | - | 14 | - |
Creamy | Almond | 1.75 | 20.8 | 53 | 21.2 | 264 | 645 |
Crunch style, without salt | Peanut | 1.14 | 24.1 | 49.9 | 21.6 | 45 | 589 |
Without salt | Cashew | 2.34 | 12.1 | 53 | 30.3 | 61 | 609 |
4. Health Benefits of PBDAs and Research Gaps
4.1. Metabolic Diseases
4.2. Dermatological Diseases
4.3. Degenerative Arthritis, Osteoarthritis, and Rheumatoid Arthritis
5. Special Dietary Needs for Plant-Based Dairy Alternative Consumers
5.1. Pregnancy and Infancy
5.2. Elderly
5.3. Allergies, Lactose Intolerance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ltd.; M.G. Milk and Non-Dairy Milk—US. Available online: https://reports.mintel.com/display/919346/ (accessed on 15 December 2022).
- Association, P.B.F.A. Plant-Based Food Sales Grow 20 Percent. Plant-Based Foods Sales Grow 20 Percent. New Nielsen Retail Data Commissioned by the Plant Based Foods Association. Available online: https://www.plantbasedfoods.org/wp-content/uploads/2018/07/PBFA-Release-on-Nielsen-Data-7.30.18.pdf (accessed on 15 December 2022).
- Schiano, A.N.; Harwood, W.S.; Gerard, P.D.; Drake, M.A. Consumer perception of the sustainability of dairy products and plant-based dairy alternatives. J. Dairy Sci. 2020, 103, 11228–11243. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Fuentes, M. Making a market for alternatives: Marketing devices and the qualification of a vegan milk substitute. J. Mark. Manag. 2017, 33, 529–555. [Google Scholar] [CrossRef]
- Ltd.; M.G. Cheese—US—October 2019. Available online: https://reports.mintel.com/display/919976/ (accessed on 15 December 2022).
- McCarthy, K.S.; Parker, M.; Ameerally, A.; Drake, S.L.; Drake, M.A. Drivers of choice for fluid milk versus plant-based alternatives: What are consumer perceptions of fluid milk? J. Dairy Sci. 2017, 100, 6125–6138. [Google Scholar] [CrossRef] [PubMed]
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef]
- Pelletier, J.E.; Laska, M.N.; Neumark-Sztainer, D.; Story, M. Positive attitudes toward organic, local, and sustainable foods are associated with higher dietary quality among young adults. J. Acad. Nutr. Diet. 2013, 113, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Verain, M.C.D.; Sijtsema, S.J.; Antonides, G. Consumer segmentation based on food-category attribute importance: The relation with healthiness and sustainability perceptions. Food Qual. Prefer. 2016, 48, 99–106. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J. Consumer perception and trends about health and sustainability: Trade-offs and synergies of two pivotal issues. Curr. Opin. Food Sci. 2015, 3, 6–10. [Google Scholar] [CrossRef]
- Ellis, K.A.; Billington, K.; McNeil, B.; McKeegan, D.E.F. Public opinion on UK milk marketing and dairy cow welfare. Anim. Welf. 2009, 18, 267–282. [Google Scholar] [CrossRef]
- Harwood, W.S.; Drake, M.A. Identification and characterization of fluid milk consumer groups. J. Dairy Sci. 2018, 101, 8860–8874. [Google Scholar] [CrossRef]
- Merlino, V.; Blanc, S. Does the organic certification influence the purchasing decisions of milk consumers? Quality 2019, 20, 382–387. [Google Scholar]
- Dyett, P.A.; Sabaté, J.; Haddad, E.; Rajaram, S.; Shavlik, D. Vegan lifestyle behaviors: An exploration of congruence with health-related beliefs and assessed health indices. Appetite 2013, 67, 119–124. [Google Scholar] [CrossRef]
- Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? Am. J. Clin. Nutr. 2003, 78, 626s–632s. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.; Busch, C.; Rödiger, M.; Hamm, U. Motives of consumers following a vegan diet and their attitudes towards animal agriculture. Appetite 2016, 105, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Allès, B.; Baudry, J.; Méjean, C.; Touvier, M.; Péneau, S.; Hercberg, S.; Kesse-Guyot, E. Comparison of Sociodemographic and Nutritional Characteristics between Self-Reported Vegetarians, Vegans, and Meat-Eaters from the NutriNet-Santé Study. Nutrients 2017, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, G.; Herranz Barbero, A.; Borras-Novell, C.; Alsina Casanova, M.; Aldecoa-Bilbao, V.; Andreu-Fernandez, V.; Pascual Tutusaus, M.; Ferrero Martinez, S.; Gomez Roig, M.D.; Garcia-Algar, O. The Effects of Vegetarian and Vegan Diet during Pregnancy on the Health of Mothers and Offspring. Nutrients 2019, 11, 557. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Panza, R.; Farella, I.; Posa, D.; Capozza, M.; Mauro, A.D.; Laforgia, N. Vegetarian and Vegan Weaning of the Infant: How Common and How Evidence-Based? A Population-Based Survey and Narrative Review. Int. J. Environ. Res. Public Health 2020, 17, 4835. [Google Scholar] [CrossRef]
- Mangels, A.R.; Messina, V. Considerations in planning vegan diets: Infants. J. Am. Diet. Assoc. 2001, 101, 670–677. [Google Scholar] [CrossRef]
- Hargreaves, S.M.; Raposo, A.; Saraiva, A.; Zandonadi, R.P. Vegetarian Diet: An Overview through the Perspective of Quality of Life Domains. Int. J. Environ. Res. Public Health 2021, 18, 4067. [Google Scholar] [CrossRef]
- Neacsu, M.; Fyfe, C.; Horgan, G.; Johnstone, A.M. Appetite control and biomarkers of satiety with vegetarian (soy) and meat-based high-protein diets for weight loss in obese men: A randomized crossover trial. Am. J. Clin. Nutr. 2014, 100, 548–558. [Google Scholar] [CrossRef]
- EU. REGULATION (EU) No 1308/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 December 2013, Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007; EU: Maastricht, The Netherlands, 2013. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Int. J. Surg. 2010, 8, 336–341. [Google Scholar] [CrossRef]
- Cardello, A.V.; Llobell, F.; Giacalone, D.; Roigard, C.M.; Jaeger, S.R. Plant-based alternatives vs dairy milk: Consumer segments and their sensory, emotional, cognitive and situational use responses to tasted products. Food Qual. Prefer. 2022, 100, 104599. [Google Scholar] [CrossRef]
- Ferranti, P.; Velotto, S. Oats for Sustainable Production of Foods. Ref. Modul. Food Sci. 2023. [Google Scholar] [CrossRef]
- Agriculture USDo. Oats. Available online: https://www.usda.gov/ (accessed on 18 November 2022).
- Bouchard, J.; Valookaran, A.; Aloud, B.; Raj, P.; Nkhata, L.; Joseph, S.; Netticadan, T. Impact of oats in the prevention/management of hypertension. Food Chem. 2022, 381, 132198. [Google Scholar] [CrossRef]
- Amagliani, L.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Composition and protein profile analysis of rice protein ingredients. J. Food Compos. Anal. 2017, 59, 18–26. [Google Scholar] [CrossRef]
- Agriculture USDo. White Rice, Raw. Available online: https://www.usda.gov/ (accessed on 18 November 2022).
- Guo, X.; McClements, D.J.; Chen, J.; He, X.; Liu, W.; Dai, T.; Liu, C. The nutritional and physicochemical properties of whole corn slurry prepared by a novel industry-scale microfluidizer system. Lwt 2021, 144, 111096. [Google Scholar] [CrossRef]
- Graziano, S.; Agrimonti, C.; Marmiroli, N.; Gullì, M. Utilisation and limitations of pseudocereals (quinoa, amaranth, and buckwheat) in food production: A review. Trends Food Sci. Technol. 2022, 125, 154–165. [Google Scholar] [CrossRef]
- Alrosan, M.; Tan, T.C.; Mat Easa, A.; Gammoh, S.; Alu’datt, M.H. Recent updates on lentil and quinoa protein-based dairy protein alternatives: Nutrition, technologies, and challenges. Food Chem. 2022, 383, 132386. [Google Scholar] [CrossRef] [PubMed]
- Ayub, M.; Castro-Alba, V.; Lazarte, C.E. Development of an instant-mix probiotic beverage based on fermented quinoa with reduced phytate content. J. Funct. Foods 2021, 87, 104831. [Google Scholar] [CrossRef]
- Huang, K.; Liu, Y.; Zhang, Y.; Cao, H.; Luo, D.-K.; Yi, C.; Guan, X. Formulation of plant-based yoghurt from soybean and quinoa and evaluation of physicochemical, rheological, sensory and functional properties. Food Biosci. 2022, 49, 101831. [Google Scholar] [CrossRef]
- Agriculture USDo. Amaranth Grain. Available online: https://www.usda.gov/ (accessed on 2 December 2022).
- Rocchetti, G.; Lucini, L.; Giuberti, G.; Bhumireddy, S.R.; Mandal, R.; Trevisan, M.; Wishart, D.S. Transformation of polyphenols found in pigmented gluten-free flours during in vitro large intestinal fermentation. Food Chem. 2019, 298, 125068. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Legume dreams: The contested futures of sustainable plant-based food systems in Europe. Glob. Environ. Chang. 2021, 69, 102321. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Pierrepont, C.; Duarte, C.M.; Filipe, A.; Medronho, B.; Sousa, I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods 2020, 9, 1458. [Google Scholar] [CrossRef] [PubMed]
- Teleky, B.-E.; Martău, G.A.; Ranga, F.; Pop, I.D.; Vodnar, D.C. Biofunctional soy-based sourdough for improved rheological properties during storage. Sci. Rep. 2022, 12, 17535. Available online: http://europepmc.org/abstract/MED/36266426 (accessed on 14 November 2022). [CrossRef]
- Teleky, B.E.; Martau, G.A.; Vodnar, D.C. Physicochemical Effects of Lactobacillus plantarum and Lactobacillus casei Cocultures on Soy-Wheat Flour Dough Fermentation. Foods 2020, 9, 1894. [Google Scholar] [CrossRef] [PubMed]
- Nations FaAOotU. FAOSTAT Database; FAO: Rome, Italy, 2017. [Google Scholar]
- Teleky, B.E.; Martau, A.G.; Ranga, F.; Chetan, F.; Vodnar, D.C. Exploitation of Lactic Acid Bacteria and Baker’s Yeast as Single or Multiple Starter Cultures of Wheat Flour Dough Enriched with Soy Flour. Biomolecules 2020, 10, 778. [Google Scholar] [CrossRef]
- De, B.; Shrivastav, A.; Das, T.; Goswami, T.K. Physicochemical and nutritional assessment of soy milk and soymilk products and comparative evaluation of their effects on blood gluco-lipid profile. Appl. Food Res. 2022, 2, 100146. [Google Scholar] [CrossRef]
- Dulf, E.-H.; Vodnar, D.C.; Danku, A.; Martău, A.G.; Teleky, B.-E.; Dulf, F.V.; Ramadan, M.F.; Crisan, O. Mathematical Modeling and Optimization of Lactobacillus Species Single and Co-Culture Fermentation Processes in Wheat and Soy Dough Mixtures. Front. Bioeng. Biotechnol. 2022, 10, 888827. [Google Scholar] [CrossRef]
- Qin, P.; Wang, T.; Luo, Y. A review on plant-based proteins from soybean: Health benefits and soy product development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Cai, J.-S.; Feng, J.-Y.; Ni, Z.-J.; Ma, R.-H.; Thakur, K.; Wang, S.; Hu, F.; Zhang, J.-G.; Wei, Z.-J. An update on the nutritional, functional, sensory characteristics of soy products, and applications of new processing strategies. Trends Food Sci. Technol. 2021, 112, 676–689. [Google Scholar] [CrossRef]
- Davis, J.P.; Dean, L.L. Chapter 11—Peanut Composition, Flavor and Nutrition. In Peanuts; Stalker, H.T., Wilson, R.F., Eds.; AOCS Press: Urbana, IL, USA, 2016; pp. 289–345. [Google Scholar] [CrossRef]
- Chang, A.; Sreedharan, A.; Schneider, K.R.J.F.C. Peanut and peanut products: A food safety perspective. Food Control. 2013, 32, 296–303. [Google Scholar] [CrossRef]
- Bodoira, R.; Cecilia Cittadini, M.; Velez, A.; Rossi, Y.; Montenegro, M.; Martínez, M.; Maestri, D. An overview on extraction, composition, bioactivity and food applications of peanut phenolics. Food Chem. 2022, 381, 132250. [Google Scholar] [CrossRef] [PubMed]
- Feeney, M.; Du Toit, G.; Roberts, G.; Sayre, P.H.; Lawson, K.; Bahnson, H.T.; Sever, M.L.; Radulovic, S.; Plaut, M.; Lack, G. Impact of peanut consumption in the LEAP Study: Feasibility, growth, and nutrition. J. Allergy Clin. Immunol. 2016, 138, 1108–1118. [Google Scholar] [CrossRef] [PubMed]
- Ghatak, S.K.; Sen, K. Peanut proteins: Applications, ailments and possible remediation. J. Ind. Eng. Chem. 2013, 19, 369–374. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Cao, Y.; Wang, C.; Xue, Y. Effect of roasting on the chemical components of peanut oil. Lwt 2020, 125, 109249. [Google Scholar] [CrossRef]
- Lo, B.; Kasapis, S.; Farahnaky, A. Lupin protein: Isolation and techno-functional properties, a review. Food Hydrocoll. 2021, 112, 106318. [Google Scholar] [CrossRef]
- Noort, M.V. Lupin: An Important Protein and Nutrient Source; Academic Press: San Diego, CA, USA, 2017. [Google Scholar]
- Johnson, S.K.; Clements, J.C.; Villarino, C.B.J.; Coorey, R. (Eds.) Lupins: Their Unique Nutritional and Health-Promoting Attributes. In Gluten-Free Ancient Grains; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Vogelsang-O’Dwyer, M.; Bez, J.; Petersen, I.L.; Joehnke, M.S.; Detzel, A.; Busch, M.; Krueger, M.; Ispiryan, L.; O’Mahony, J.A.; Arendt, E.K.; et al. Techno-Functional, Nutritional and Environmental Performance of Protein Isolates from Blue Lupin and White Lupin. Foods 2020, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Pueyo, M.E.; Tomé, D.; Mahé, S. The bioavailability and postprandial utilisation of sweet lupin (Lupinus albus)-flour protein is similar to that of purified soyabean protein in human subjects: A study using intrinsically 15N-labelled proteins. Br. J. Nutr. 2002, 87, 315–323. [Google Scholar] [CrossRef]
- Khan, M.K.; Karnpanit, W.; Nasar-Abbas, S.M.; Huma, Z.-E.; Jayasena, V. Phytochemical composition and bioactivities of lupin: A review. Int. J. Food Sci. Technol. 2015, 50, 2004–2012. [Google Scholar] [CrossRef]
- Robinson, G.H.J.; Domoney, C. Perspectives on the genetic improvement of health- and nutrition-related traits in pea. Plant Physiol. Biochem. 2021, 158, 353–362. [Google Scholar] [CrossRef]
- Burger, T.G.; Zhang, Y. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends Food Sci. Technol. 2019, 86, 25–33. [Google Scholar] [CrossRef]
- Wang, J.; Kadyan, S.; Ukhanov, V.; Cheng, J.; Nagpal, R.; Cui, L. Recent advances in the health benefits of pea protein (Pisum sativum): Bioactive peptides and the interaction with the gut microbiome. Curr. Opin. Food Sci. 2022, 48, 100944. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Castellari, M. Pea protein ingredients: A mainstream ingredient to (re)formulate innovative foods and beverages. Trends Food Sci. Technol. 2021, 110, 729–742. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Li, A.; Liu, R.H.; Gao, X.; Li, D.; Kou, X.; Xue, Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res. Int. 2021, 150 Pt A, 110790. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Prasad, K. Technological, processing and nutritional aspects of chickpea (Cicer arietinum)—A review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Wijeratne, S.S.; Abou-Zaid, M.M.; Shahidi, F. Antioxidant polyphenols in almond and its coproducts. J. Agric. Food Chem. 2006, 54, 312–318. [Google Scholar] [CrossRef]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Jamei, P. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chem. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Ramalhosa, E.; Delgado, T.; Estevinho, L.; Pereira, J. Hazelnut (Corylus avellana L.) Cultivars and Antimicrobial Activity; Academic Press: Cambridge, MA, USA, 2011; pp. 627–636. [Google Scholar]
- Contini, M.; Frangipane, M.T.; Massantini, R. Antioxidants in Hazelnuts (Corylus avellana L.). In Nuts and Seeds in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2011; pp. 611–625. [Google Scholar]
- Gorji, N.; Moeini, R.; Memariani, Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: A neuropharmacological review of their bioactive constituents. Pharmacol. Res. 2018, 129, 115–127. [Google Scholar] [CrossRef]
- An, J.M.; Kim, E.H.; Lee, H.; Lee, H.J.; Hahm, K.B. Dietary walnut as food factor to rescue from NSAID-induced gastrointestinal mucosal damages. Arch. Biochem. Biophys 2020, 689, 108466. [Google Scholar] [CrossRef]
- Yang, L.; Guo, Z.; Qi, S.; Fang, T.; Zhu, H.; Santos, H.O.; Khani, V.; Wong, C.H.; Qiu, Z. Walnut intake may increase circulating adiponectin and leptin levels but does not improve glycemic biomarkers: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2020, 52, 102505. [Google Scholar] [CrossRef]
- McArthur, B.M.; Mattes, R.D.; Considine, R.V. Mastication of Nuts under Realistic Eating Conditions: Implications for Energy Balance. Nutrients 2018, 10, 710. [Google Scholar] [CrossRef] [PubMed]
- Terzo, S.; Baldassano, S.; Caldara, G.F.; Ferrantelli, V.; Lo Dico, G.; Mulè, F.; Amato, A. Health benefits of pistachios consumption. Nat. Prod. Res. 2019, 33, 715–726. [Google Scholar] [CrossRef]
- Bailey, H.M.; Stein, H.H. Raw and roasted pistachio nuts (Pistacia vera L.) are ‘good’ sources of protein based on their digestible indispensable amino acid score as determined in pigs. J. Sci. Food Agric. 2020, 100, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Baer, D.J.; Gebauer, S.K.; Novotny, J.A. Measured energy value of pistachios in the human diet. Br. J. Nutr. 2012, 107, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022, 14, 3207. [Google Scholar] [CrossRef]
- Mat, K.; Abdul Kari, Z.; Rusli, N.D.; Che Harun, H.; Wei, L.S.; Rahman, M.M.; Mohd Khalid, H.N.; Mohd Ali Hanafiah, M.H.; Mohamad Sukri, S.A.; Raja Khalif, R.I.A.; et al. Coconut Palm: Food, Feed, and Nutraceutical Properties. Animals 2022, 12, 2107. [Google Scholar] [CrossRef]
- Ignacio, I.-F.; Miguel, T.-S. Research opportunities on the coconut (Cocos nucifera L.) using new technologies. South Afr. J. Bot. 2021, 141, 414–420. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Wei, P.; Zhao, F.; Wang, Z.; Wang, Q.; Chai, X.; Hou, G.; Meng, Q. Sesame (Sesamum indicum L.): A Comprehensive Review of Nutritional Value, Phytochemical Composition, Health Benefits, Development of Food, and Industrial Applications. Nutrients 2022, 14, 4079. [Google Scholar] [CrossRef]
- Park, S.-H.; Ryu, S.-N.; Bu, Y.; Kim, H.; Simon, J.E.; Kim, K.-S. Antioxidant Components as Potential Neuroprotective Agents in Sesame (Sesamum indicum L.). Food Rev. Int. 2010, 26, 103–121. [Google Scholar] [CrossRef]
- Senouwa Segla Koffi, D.; Dossou, K.; Fang-Tao, X.; Dossa, K.; Rong, Z.; Zhao, Y.-Z.; Wang, L. Antioxidant lignans sesamin and sesamolin in sesame (Sesamum indicum L.): A comprehensive review and future prospects. J. Integr. Agric. 2023, 22, 14–30. [Google Scholar] [CrossRef]
- Namiki, M. Nutraceutical functions of sesame: A review. Crit. Rev. Food Sci. Nutr. 2007, 47, 651–673. [Google Scholar] [CrossRef]
- Goyal, A.; Sharma, V.; Upadhyay, N.; Gill, S.; Sihag, M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014, 51, 1633–1653. [Google Scholar] [CrossRef]
- Saleem, M.H.; Ali, S.; Hussain, S.; Kamran, M.; Chattha, M.S.; Ahmad, S.; Aqeel, M.; Rizwan, M.; Aljarba, N.H.; Alkahtani, S.; et al. Flax (Linum usitatissimum L.): A Potential Candidate for Phytoremediation? Biological and Economical Points of View. Plants 2020, 9, 496. [Google Scholar] [CrossRef]
- Rabail, R.; Shabbir, M.A.; Sahar, A.; Miecznikowski, A.; Kieliszek, M.; Aadil, R.M. An Intricate Review on Nutritional and Analytical Profiling of Coconut, Flaxseed, Olive, and Sunflower Oil Blends. Molecules 2021, 26, 7187. [Google Scholar] [CrossRef] [PubMed]
- Burton, R.A.; Andres, M.; Cole, M.; Cowley, J.M.; Augustin, M.A. Industrial hemp seed: From the field to value-added food ingredients. J. Cannabis Res. 2022, 4, 45. [Google Scholar] [CrossRef]
- Strzelczyk, M.; Gimbut, M.; Łochyńska, M. Nuts of Fibrous Hemp Cannabis sativa L.—Concentrated Power of Nutrients. J. Nat. Fibers 2022, 20, 2128967. [Google Scholar] [CrossRef]
- Zhang, J.; Griffin, J.; Li, Y.; Wang, D.; Wang, W. Antioxidant Properties of Hemp Proteins: From Functional Food to Phytotherapy and Beyond. Molecules 2022, 27, 7924. [Google Scholar] [CrossRef]
- Wildermuth, S.R.; Young, E.E.; Were, L.M. Chlorogenic Acid Oxidation and Its Reaction with Sunflower Proteins to Form Green-Colored Complexes. Compr. Rev. Food Sci. Food Saf. 2016, 15, 829–843. [Google Scholar] [CrossRef]
- Adeleke, B.S.; Babalola, O.O. Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits. Food Sci. Nutr. 2020, 8, 4666–4684. [Google Scholar] [CrossRef]
- Muhammad Anjum, F.; Nadeem, M.; Issa Khan, M.; Hussain, S. Nutritional and therapeutic potential of sunflower seeds: A review. Br. Food J. 2012, 114, 544–552. [Google Scholar] [CrossRef]
- Agriculture USDo. Corn grain, Yellow. Available online: https://www.usda.gov/ (accessed on 21 November 2022).
- Agriculture USDo. Quinoa. Available online: https://www.usda.gov/ (accessed on 21 November 2022).
- Agriculture USDo. Teff. Available online: https://www.usda.gov/ (accessed on 21 November 2022).
- Agriculture USDo. Buckwheat. Available online: https://www.usda.gov/ (accessed on 24 November 2022).
- Sandefur, H.N.; McCarty, J.A.; Boles, E.C.; Matlock, M.D. Chapter 13—Peanut Products as a Protein Source: Production, Nutrition, and Environmental Impact. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 209–221. [Google Scholar]
- USDA. FoodData Central Search Results. Available online: https://fdc.nal.usda.gov/fdc-app.html#/ (accessed on 24 November 2022).
- Sze-Tao, K.W.C.; Sathe, S.K. Walnuts (Juglans regia L): Proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J. Sci. Food Agric. 2000, 80, 1393–1401. [Google Scholar] [CrossRef]
- Xu, J.; Bai, M.; Song, H.; Yang, L.; Zhu, D.; Liu, H. Hemp (Cannabis sativa subsp. sativa) Chemical Composition and the Application of Hempseeds in Food Formulations. Plant Foods Hum. Nutr. 2022, 77, 504–513. [Google Scholar] [CrossRef]
- Alemayehu, G.F.; Forsido, S.F.; Tola, Y.B.; Teshager, M.A.; Assegie, A.A.; Amare, E. Proximate, mineral and anti-nutrient compositions of oat grains (Avena sativa) cultivated in Ethiopia: Implications for nutrition and mineral bioavailability. Heliyon 2021, 7, e07722. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Lal, M.K.; Sahoo, S.K.; Dash, G.K.; Sahoo, U.; Behera, B.; Nayak, L.; Bagchi, T.B. The diversity of phytic acid content and grain processing play decisive role on minerals bioavailability in rice. J. Food Compos. Anal. 2023, 115, 105032. [Google Scholar] [CrossRef]
- Roger, T.; Ngoune Leopold, T.; Carl Moses Funtong, M. Nutritional Properties and Antinutritional Factors of Corn Paste (Kutukutu) Fermented by Different Strains of Lactic Acid Bacteria. Int. J. Food Sci. 2015, 2015, 502910. [Google Scholar] [CrossRef]
- Bhinder, S.; Kumari, S.; Singh, B.; Kaur, A.; Singh, N. Impact of germination on phenolic composition, antioxidant properties, antinutritional factors, mineral content and Maillard reaction products of malted quinoa flour. Food Chem. 2021, 346, 128915. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Padilla-Zakour, O.; Zhao, Y.; Tao, S. Influences of High Hydrostatic Pressure, Microwave Heating, and Boiling on Chemical Compositions, Antinutritional Factors, Fatty Acids, In Vitro Protein Digestibility, and Microstructure of Buckwheat. Food Bioprocess Technol. 2015, 8, 2235–2245. [Google Scholar] [CrossRef]
- Olawoye, B.T.; Gbadamosi, S.O. Effect of different treatments on in vitro protein digestibility, antinutrients, antioxidant properties and mineral composition of Amaranthus viridis seed. Cogent Food Agric. 2017, 3, 1296402. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, Y.; Zhu, Y.; Ren, G. Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop J. 2016, 4, 398–406. [Google Scholar] [CrossRef]
- Bajpai, S.; Sharma, A.; Nath Gupta, M. Removal and recovery of antinutritional factors from soybean flour. Food Chem. 2005, 89, 497–501. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, S. Comparison of cell wall constituents, nutrients and anti-nutrients of lupin genotypes. Legume Res. -Int. J. 2017, 40, 478–484. [Google Scholar]
- Embaby, H.E.-S. Effect of soaking, dehulling, and cooking methods on certain antinutrients and in vitro protein digestibility of bitter and sweet lupin seeds. Food Sci. Biotechnol. 2010, 19, 1055–1062. [Google Scholar] [CrossRef]
- Nwanekezi, E.; Ehirim, F.; Arukwe, D. Combined effects of different processing methods on vitamins and antinutrients contents of pigeon pea (Cajanus cajan) flour. J. Environ. Sci. Toxicol. Food Technol. 2017, 11, 73–81. [Google Scholar]
- Xu, Y.; Hanna, M.A. Nutritional and anti-nutritional compositions of defatted Nebraska hybrid hazelnut meal. Int. J. Food Sci. Technol. 2011, 46, 2022–2029. [Google Scholar] [CrossRef]
- Akpakpan, A.; Akpabio, U. Evaluation of proximate composition, mineral element and anti-nutrient in almond (Terminalia catappa) seeds. Res. J. Appl. Sci. 2012, 7, 489–493. [Google Scholar]
- Jimoh, W.; Fagbenro, O.; Adeparusi, E. Effect of processing on some minerals, anti-nutrients and nutritional composition of sesame (Sesamum indicum) seed meals. Electron. J. Environ. Agric. Food Chem. 2011, 10, 1858–1864. [Google Scholar]
- Alonso-Esteban, J.I.; Torija-Isasa, M.E.; Sánchez-Mata, M.d.C. Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. J. Food Compos. Anal. 2022, 109, 104516. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; Faccia, M. Legumes as basic ingredients in the production of dairy-free cheese alternatives: A review. J. Sci. Food Agric. 2022, 102, 8–18. [Google Scholar] [CrossRef]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. Adv. Food Nutr. Res. 2020, 91, 157–225. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Petraru, A.; Ursachi, F.; Amariei, S. Nutritional Characteristics Assessment of Sunflower Seeds, Oil and Cake. Perspective of Using Sunflower Oilcakes as a Functional Ingredient. Plants 2021, 10, 2487. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health issues and technological aspects of plant-based alternative milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; Barker, S.; Falkeisen, A.; Gorman, M.; Knowles, S.; McSweeney, M.B. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. Food Res. Int. 2022, 159, 111648. [Google Scholar] [CrossRef] [PubMed]
- Bocker, R.; Silva, E.K. Innovative technologies for manufacturing plant-based non-dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods 2022, 5, 100098. [Google Scholar] [CrossRef]
- Short, E.C.; Kinchla, A.J.; Nolden, A.A. Plant-Based Cheeses: A Systematic Review of Sensory Evaluation Studies and Strategies to Increase Consumer Acceptance. Foods 2021, 10, 725. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. The science of plant-based foods: Approaches to create nutritious and sustainable plant-based cheese analogs. Trends Food Sci. Technol. 2021, 118, 207–229. [Google Scholar] [CrossRef]
- Falkeisen, A.; Gorman, M.; Knowles, S.; Barker, S.; Moss, R.; McSweeney, M.B. Consumer perception and emotional responses to plant-based cheeses. Food Res. Int. 2022, 158, 111513. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Prakash, S. Modulating the fat globules of plant-based cream emulsion: Influence of the source of plant proteins. Innov. Food Sci. Emerg. Technol. 2021, 74, 102852. [Google Scholar] [CrossRef]
- Nedeljkovic, A.; Tomasevic, I.; Miocinovic, J.; Pudja, P. Feasibility of discrimination of dairy creams and cream-like analogues using Raman spectroscopy and chemometric analysis. Food Chem. 2017, 232, 487–492. [Google Scholar] [CrossRef]
- Kim, M.; Hwang, H.-S.; Jeong, S.; Lee, S. Utilization of oleogels with binary oleogelator blends for filling creams low in saturated fat. LWT 2022, 155, 112972. [Google Scholar] [CrossRef]
- Cui, H.; Tang, C.; Wu, S.; Julian McClements, D.; Liu, S.; Li, B.; Li, Y. Fabrication of chitosan-cinnamaldehyde-glycerol monolaurate bigels with dual gelling effects and application as cream analogs. Food Chem. 2022, 384, 132589. [Google Scholar] [CrossRef] [PubMed]
- Pascuta, M.S.; Varvara, R.-A.; Teleky, B.-E.; Szabo, K.; Plamada, D.; Nemeş, S.-A.; Mitrea, L.; Martău, G.A.; Ciont, C.; Călinoiu, L.F.; et al. Polysaccharide-Based Edible Gels as Functional Ingredients: Characterization, Applicability, and Human Health Benefits. Gels 2022, 8, 524. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Shekarforoush, E.; Muhammed, M.K.; Whitehead, K.A.; Arneborg, N.; Risbo, J. Lactic acid bacteria as structural building blocks in non-fat whipping cream analogues. Food Hydrocoll. 2023, 135, 108137. [Google Scholar] [CrossRef]
- Pachekrepapol, U.; Kokhuenkhan, Y.; Ongsawat, J. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. Int. J. Gastron. Food Sci. 2021, 25, 100393. [Google Scholar] [CrossRef]
- Rahmatuzzaman Rana, M.; Babor, M.; Sabuz, A.A. Traceability of sweeteners in soy yogurt using linear discriminant analysis of physicochemical and sensory parameters. J. Agric. Food Res. 2021, 5, 100155. [Google Scholar] [CrossRef]
- Rinaldoni, A.N.; Campderrós, M.E.; Pérez Padilla, A. Physico-chemical and sensory properties of yogurt from ultrafiltreted soy milk concentrate added with inulin. LWT—Food Sci. Technol. 2012, 45, 142–147. [Google Scholar] [CrossRef]
- Salehi, F. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Sci. Nutr. 2021, 9, 4666–4686. [Google Scholar] [CrossRef]
- Joel, N.; James, S.; Blessing, O.-O. Development and Comparative Evaluation of Storage Changes in Probiotic Soy-Yoghurt. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 298–301. [Google Scholar] [CrossRef]
- Sarkar, S.; Chandra, S. Honey as a functional additive in yoghurt—A review. Nutr. Food Sci. 2019, 50, 168–178. [Google Scholar] [CrossRef]
- Gutiérrez-luna, K.; Ansorena, D.; Astiasarán, I. Use of hydrocolloids and vegetable oils for the formulation of a butter replacer: Optimization and oxidative stability. Lwt 2022, 153, 112538. [Google Scholar] [CrossRef]
- Md Asif, A.H.; Sarker, M.A.H.; Deb, G.K.; Habib, M.R.; Arefin, S.; Bari, M.S.; Islam, M.Z.; Harun-Ur-Rashid, M.; Siddiki, M.S.R.; Shahjadee, U.F.; et al. Fatty acid and amino acid profiles of cheese, butter, and ghee made from buffalo milk. J. Adv. Vet. Anim. Res. 2022, 9, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H. Dietary trans fatty acids and cardiovascular disease risk: Past and present. Curr. Atheroscler. Rep. 2014, 16, 433. [Google Scholar] [CrossRef]
- Lu, W.; Chen, H.; Niu, Y.; Wu, H.; Xia, D.; Wu, Y. Dairy products intake and cancer mortality risk: A meta-analysis of 11 population-based cohort studies. Nutr. J. 2016, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties. Food Control 2017, 81, 113–125. [Google Scholar] [CrossRef]
- Gorrepati, K.; Balasubramanian, S.; Chandra, P. Plant based butters. J. Food Sci. Technol. 2015, 52, 3965–3976. [Google Scholar] [CrossRef]
- Department, S.R. Consumption of Peanut Butter from 2012 to 2024. 2022. Available online: https://www.statista.com/statistics/283137/us-households-consumption-of-peanut-butter-trend/ (accessed on 15 December 2022).
- Mandalari, G.; Parker, M.L.; Grundy, M.M.; Grassby, T.; Smeriglio, A.; Bisignano, C.; Raciti, R.; Trombetta, D.; Baer, D.J.; Wilde, P.J. Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection. Nutrients 2018, 10, 213. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Dwivedi, S.; Dixit-Bajpai, P.; Kumar, M. Effect of natural fortification with calcium and protein rich ingredients on texture, nutritional quality and sensory acceptance of cookies. Nutr. Food Sci. 2018, 48, 807–818. [Google Scholar] [CrossRef]
- Abd-Elsattar, H.H.; Abdel-Haleem, A.M.H. Production of soybean butter using different technological treatments. Lwt-Food Sci. Technol. 2016, 69, 40–46. [Google Scholar] [CrossRef]
- Sanders, C.T.; DeMasie, C.L.; Kerr, W.L.; Hargrove, J.L.; Pegg, R.B.; Swanson, R.B. Peanut skins-fortified peanut butters: Effects on consumer acceptability and quality characteristics. LWT—Food Sci. Technol. 2014, 59, 222–228. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, T.; Yang, R. Effect of Roasting and Grinding on the Processing Characteristics and Organoleptic Properties of Sesame Butter. Eur. J. Lipid Sci. Technol. 2019, 121, 1800401. [Google Scholar] [CrossRef]
- Ghosh, N.; Singha, S.; Ghosh, M. Formulation and Characterization of Chia (Salvia hispanica) Seed Spread with Incorporation of Sesame (Sesamum indicum) Seed, Watermelon (Citrullus lanatus) Seed, and Pumpkin (Cucurbita pepo) Seed. Appl. Biochem. Biotechnol. 2021, 193, 1898–1908. [Google Scholar] [CrossRef] [PubMed]
- Aboulfazli, F.; Baba, A.S. Effect of Vegetable Milk on Survival of Probiotics in Fermented Ice Cream under Gastrointestinal Conditions. Food Sci. Technol. Res. 2015, 21, 391–397. [Google Scholar] [CrossRef]
- Aboulfazli, F.; Baba, A.S.; Misran, M. Effect of Vegetable Milks on the Physical and Rheological Properties of Ice Cream. Food Sci. Technol. Res. 2014, 20, 987–996. [Google Scholar] [CrossRef]
- Sapiga, V.; Polischuk, G.; Buniowska, M.; Shevchenko, I.; Osmak, T. Polyfunctional properties of oat beta-glucan in the composition of milk-vegetable ice cream. Ukr. Food J. 2021, 10, 691–702. [Google Scholar] [CrossRef]
- Sapiga, V.; Polischuk, G.; Breus, N.; Osmak, T. Enzymatic destruction of protopectin in vegetable raw materials to increase its structuring ability in ice cream. Ukr. Food J. 2021, 10, 321–332. [Google Scholar] [CrossRef]
- Leahu, A.; Ropciuc, S.; Ghinea, C. Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. Appl. Sci. 2022, 12, 1754. [Google Scholar] [CrossRef]
- Mendonça, G.M.N.; Oliveira, E.M.D.; Rios, A.O.; Pagno, C.H.; Cavallini, D.C.U. Vegan Ice Cream Made from Soy Extract, Soy Kefir and Jaboticaba Peel: Antioxidant Capacity and Sensory Profile. Foods 2022, 11, 3148. [Google Scholar] [CrossRef]
- Aboulfazli, F.; Shori, A.B.; Baba, A.S. Effects of the replacement of cow milk with vegetable milk on probiotics and nutritional profile of fermented ice cream. Lwt 2016, 70, 261–270. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, A.; Sridhar, K.; Sharma, M.; Singh, T.P.; Kumar, S. Development and quality characteristics of functional Kulfi fortified with microencapsulated betalains. Int. J. Food Sci. Technol. 2021, 56, 5362–5370. [Google Scholar] [CrossRef]
- Chimkerd, C.; Winuprasith, T. Functional properties of vegetable powder and the application in pudding for elderly. J. Food Sci. Agric. Technol. 2018, 4, 67–72. [Google Scholar]
- USDA. United States Department of Agriculture Food Composition Database. Available online: https://fdc.nal.usda.gov/fdc-app.html#/ (accessed on 24 November 2022).
- Chen, Z.; Zuurmond, M.G.; van der Schaft, N.; Nano, J.; Wijnhoven, H.A.H.; Ikram, M.A.; Franco, O.H.; Voortman, T. Plant versus animal based diets and insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Eur. J. Epidemiol. 2018, 33, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.-C.; Calinoiu, L.-F.; Mitrea, L. Editorial: Exploiting the effect of dietary fibre on the gut microbiota in patients with pelvic radiotherapy. Br. J. Cancer 2022, 127, 1575–1576. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.C.; Mitrea, L.; Teleky, B.E.; Szabo, K.; Călinoiu, L.F.; Nemeş, S.A.; Martău, G.A. Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 575559. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W. The Impact of Plant-Based Non-Dairy Alternative Milk on the Dairy Industry. Food Sci. Anim. Resour. 2021, 41, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Bhupathiraju, S.N.; Rimm, E.B.; Spiegelman, D.; Chiuve, S.E.; Borgi, L.; Willett, W.C.; Manson, J.E.; Sun, Q.; Hu, F.B. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med. 2016, 13, e1002039. [Google Scholar] [CrossRef] [PubMed]
- Cifelli, C.J.; Houchins, J.A.; Demmer, E.; Fulgoni, V.L. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010. Nutrients 2016, 8, 422. [Google Scholar] [CrossRef]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and dairy products: Good or bad for human health? An assessment of the totality of scientific evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef]
- Pimentel, D.; Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 2003, 78, 660s–663s. [Google Scholar] [CrossRef]
- Johannesen, C.O.; Dale, H.F.; Jensen, C.; Lied, G.A. Effects of Plant-Based Diets on Outcomes Related to Glucose Metabolism: A Systematic Review. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 2811–2822. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Cesari, F.; Gori, A.M.; Sereni, A.; Becatti, M.; Fiorillo, C.; Marcucci, R.; Casini, A. Low-Calorie Vegetarian Versus Mediterranean Diets for Reducing Body Weight and Improving Cardiovascular Risk Profile: CARDIVEG Study (Cardiovascular Prevention With Vegetarian Diet). Circulation 2018, 137, 1103–1113. [Google Scholar] [CrossRef]
- Barnard, N.D.; Hatcher, H.I.; Jenkins, D.J.; Cohen, J.; Turner-McGrievy, G. Vegetarian and vegan diets in type 2 diadetes management. Nutr Rev. 2009, 67, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Kehinde, B.A.; Panghal, A.; Garg, M.K.; Sharma, P.; Chhikara, N. Chapter Four—Vegetable milk as probiotic and prebiotic foods. In Advances in Food and Nutrition Research; da Cruz, A.G., Prudencio, E.S., Esmerino, E.A., da Silva, M.C., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 115–160. [Google Scholar]
- Faghih, S.; Abadi, A.R.; Hedayati, M.; Kimiagar, S.M. Comparison of the effects of cows’ milk, fortified soy milk, and calcium supplement on weight and fat loss in premenopausal overweight and obese women. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Lydeking–Olsen, E.; Beck-Jensen, J.E.; Setchell, K.D.R.; Holm–Jensen, T. Soymilk or progesteronefor prevention of bone loss. Eur. J. Nutr. 2004, 43, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Hariri, M.; Salehi, R.; Feizi, A.; Mirlohi, M.; Ghiasvand, R.; Habibi, N. A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: Effects on epigenetics and oxidative stress in patients with type II diabetes. Genes Nutr. 2015, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Gohari, S.; El Batawy, O.; Mahdy, S. Biological Attributes of Unfermented and Fermented Oat Milk Compared to Cow Milk in Alloxan-Induced Diabetic Rats. J. Food Dairy Sci. 2019, 10, 61–69. [Google Scholar] [CrossRef]
- Önning, G.; Wallmark, A.; Persson, M.; Åkesson, B.; Elmståhl, S.; Öste, R. Consumption of Oat Milk for 5 Weeks Lowers Serum Cholesterol and LDL Cholesterol in Free-Living Men with Moderate Hypercholesterolemia. Ann. Nutr. Metab. 1999, 43, 301–309. [Google Scholar] [CrossRef]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef]
- Granfeldt, Y.; Nyberg, L.; Björck, I. Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects. Eur. J. Clin. Nutr. 2008, 62, 600–607. [Google Scholar] [CrossRef]
- Opyd, P.M.; Jurgoński, A.; Fotschki, B.; Juśkiewicz, J. Dietary Hemp Seeds More Effectively Attenuate Disorders in Genetically Obese Rats than Their Lipid Fraction. J. Nutr. 2020, 150, 1425–1433. [Google Scholar] [CrossRef]
- Owska, J.C.; Kliber, A.; owska, J.K.; Biskupski, M.; Grygorowicz, Z. (Eds.) Thyroid Hormone Levels and Metabolic Changes after Treated rats with Hemp Milk. 2002. Available online: http://www.hempreport.com/pdf/HempMilkStudy[1].pdf (accessed on 15 December 2022).
- Ekanayaka, R.A.; Ekanayaka, N.K.; Perera, B.; De Silva, P.G. Impact of a traditional dietary supplement with coconut milk and soya milk on the lipid profile in normal free living subjects. J. Nutr. Metab. 2013, 2013, 481068. [Google Scholar] [CrossRef] [PubMed]
- Eslami, O.; Khorramrouz, F.; Sohouli, M.; Bagheri, N.; Shidfar, F.; Fernandez, M.L. Effect of nuts on components of metabolic syndrome in healthy adults with overweight/obesity: A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2459–2469. [Google Scholar] [CrossRef] [PubMed]
- Vora, R.; Khushboo, M.; Shah, A.; Patel, D.M.; Patel, T.B. Diet in dermatology: A review. Egypt. J. Dermatol. Venerol. 2020, 40, 69–75. [Google Scholar] [CrossRef]
- Katta, R.; Desai, S.P. Diet and dermatology: The role of dietary intervention in skin disease. J. Clin. Aesthetic Dermatol. 2014, 7, 46–51. [Google Scholar]
- Ulvestad, M.; Bjertness, E.; Dalgard, F.; Halvorsen, J.A. Acne and dairy products in adolescence: Results from a Norwegian longitudinal study. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 530–535. [Google Scholar] [CrossRef]
- Fusano, M. Veganism in acne, atopic dermatitis, and psoriasis: Benefits of a plant-based diet. Clin. Dermatol. 2022. [Google Scholar] [CrossRef]
- Riyanto, P.; Subchan, P.; Lelyana, R. Advantage of soybean isoflavone as antiandrogen on acne vulgaris. Derm.-Endocrinol. 2015, 7, e1063751. [Google Scholar] [CrossRef]
- Conforti, C.; Agozzino, M.; Emendato, G.; Fai, A.; Fichera, F.; Marangi, G.F.; Neagu, N.; Pellacani, G.; Persichetti, P.; Segreto, F.; et al. Acne and diet: A review. Int. J. Dermatol. 2022, 61, 930–934. [Google Scholar] [CrossRef]
- Khan, A.; Chang, M.W. The role of nutrition in acne vulgaris and hidradenitis suppurativa. Clin. Dermatol. 2022, 40, 114–121. [Google Scholar] [CrossRef]
- Fam, V.W.; Charoenwoodhipong, P.; Sivamani, R.K.; Holt, R.R.; Keen, C.L.; Hackman, R.M. Plant-Based Foods for Skin Health: A Narrative Review. J. Acad. Nutr. Diet. 2022, 122, 614–629. [Google Scholar] [CrossRef]
- Solway, J.; McBride, M.; Haq, F.; Abdul, W.; Miller, R. Diet and Dermatology: The Role of a Whole-food, Plant-based Diet in Preventing and Reversing Skin Aging-A Review. J. Clin. Aesthetic Dermatol. 2020, 13, 38–43. [Google Scholar]
- Bazine, T.; Arslanoglu, Ş. TIGER NUT (CYPERUS ESCULENTUS); MORPHOLOGY, PRODUCTS, USES AND HEALTH BENEFITS. Black Sea J. Agric. 2020, 3, 324–328. [Google Scholar]
- Shi, Z.; Wu, X.; Santos Rocha, C.; Rolston, M.; Garcia-Melchor, E.; Huynh, M.; Nguyen, M.; Law, T.; Haas, K.N.; Yamada, D.; et al. Short-Term Western Diet Intake Promotes IL-23–Mediated Skin and Joint Inflammation Accompanied by Changes to the Gut Microbiota in Mice. J. Investig. Dermatol. 2021, 141, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
- Amin, S.; Adil, M.; Alam, M. ROLE OF DIETARY INTERVENTION IN PSORIASIS: A REVIEW. Indian J. Clin. Dermatol. 2017, 1, 1–5. [Google Scholar]
- Afifi, L.; Danesh, M.J.; Lee, K.M.; Beroukhim, K.; Farahnik, B.; Ahn, R.S.; Yan, D.; Singh, R.K.; Nakamura, M.; Koo, J.; et al. Dietary Behaviors in Psoriasis: Patient-Reported Outcomes from a U.S. National Survey. Dermatol. Ther. 2017, 7, 227–242. [Google Scholar] [CrossRef]
- Guidelines ACoRSoRA. Guidelines for the management of rheumatoid arthritis: 2002 Update. Arthritis Rheumatol. 2002, 46, 328–346. [Google Scholar] [CrossRef]
- Dey, M.; Cutolo, M.; Nikiphorou, E. Beverages in Rheumatoid Arthritis: What to Prefer or to Avoid. Nutrients 2020, 12, 3155. [Google Scholar] [CrossRef]
- Zhang, Y.; Kutateladze, T.G. Diet and the epigenome. Nat. Commun. 2018, 9, 3375. [Google Scholar] [CrossRef]
- Ingegnoli, F.; Cavalli, S.; Giudice, L.; Caporali, R. Caffeine and rheumatoid arthritis: A complicated relationship. Autoimmun. Rev. 2022, 21, 103117. [Google Scholar] [CrossRef]
- Bustamante, M.F.; Agustín-Perez, M.; Cedola, F.; Coras, R.; Narasimhan, R.; Golshan, S.; Guma, M. Design of an anti-inflammatory diet (ITIS diet) for patients with rheumatoid arthritis. Contemp. Clin. Trials Commun. 2020, 17, 100524. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Jia, H.; Feng, Q.; Wang, D.; Liang, D.; Wu, X.; Li, J.; Tang, L.; Li, Y.; et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 2015, 21, 895–905. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.M.; Dell’Oro, M.; Kessler, C.S.; Schumann, D.; Steckhan, N.; Jeitler, M.; Fischer, J.M.; Spoo, M.; Kriegel, M.A.; Schneider, J.G.; et al. Efficacy of therapeutic fasting and plant-based diet in patients with rheumatoid arthritis (NutriFast): Study protocol for a randomised controlled clinical trial. BMJ Open 2021, 11, e047758. [Google Scholar] [CrossRef] [PubMed]
- Alwarith, J.; Kahleova, H.; Rembert, E.; Yonas, W.; Dort, S.; Calcagno, M.; Burgess, N.; Crosby, L.; Barnard, N.D. Nutrition Interventions in Rheumatoid Arthritis: The Potential Use of Plant-Based Diets. A Review. Front. Nutr. 2019, 6, 141. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; Nikiphorou, E. Are we really what we eat? Nutrition and its role in the onset of rheumatoid arthritis. Autoimmun. Rev. 2018, 17, 1074–1077. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z. A literature review on plant-based foods and dietary quality in knee osteoarthritis. Eur. J. Rheumatol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Dahda, L.; Dupont, C.; Campoy, C.; Fierro, V.; Nieto, A. Cow’s milk allergy: Towards an update of DRACMA guidelines. World Allergy Organ. J. 2016, 9, 35. [Google Scholar] [CrossRef]
- Verduci, E.; D’Elios, S.; Cerrato, L.; Comberiati, P.; Calvani, M.; Palazzo, S.; Martelli, A.; Landi, M.; Trikamjee, T.; Peroni, D.G. Cow’s Milk Substitutes for Children: Nutritional Aspects of Milk from Different Mammalian Species, Special Formula and Plant-Based Beverages. Nutrients 2019, 11, 1739. [Google Scholar] [CrossRef]
- Chan, H.; Ribeiro, R.V.; Haden, S.; Hirani, V. Plant-Based Dietary Patterns, Body Composition, Muscle Strength and Function in Middle and Older Age: A Systematic Review. J. Nutr. Health Aging 2021, 25, 1012–1022. [Google Scholar] [CrossRef]
- Maroto-Rodriguez, J.; Delgado-Velandia, M.; Ortolá, R.; Carballo-Casla, A.; García-Esquinas, E.; Rodríguez-Artalejo, F.; Sotos-Prieto, M. Plant-based diets and risk of frailty in community-dwelling older adults: The Seniors-ENRICA-1 cohort. GeroScience 2023, 45, 221–232. [Google Scholar] [CrossRef]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Vellas, B.; van Kan, G.A.; Anker, S.D.; Bauer, J.M.; Bernabei, R.; Cesari, M.; Chumlea, W.C.; Doehner, W.; Evans, J.; et al. Frailty consensus: A call to action. J. Am. Med. Dir. Assoc. 2013, 14, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.S.; Pinheiro, M.B.; Fairhall, N.; Walsh, S.; Chesterfield Franks, T.; Kwok, W.; Bauman, A.; Sherrington, C. Evidence on Physical Activity and the Prevention of Frailty and Sarcopenia Among Older People: A Systematic Review to Inform the World Health Organization Physical Activity Guidelines. J. Phys. Act. Health 2020, 17, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
- Ortolá, R.; García-Esquinas, E.; García-Varela, G.; Struijk, E.A.; Rodríguez-Artalejo, F.; López-García, E. Influence of Changes in Diet Quality on Unhealthy Aging: The Seniors-ENRICA Cohort. Am. J. Med. 2019, 132, 1091–1102.e1099. [Google Scholar] [CrossRef]
- WHO. Decade of Healthy Ageing: Plan of Action 2020; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Rashidi Pour Fard, N.; Amirabdollahian, F.; Haghighatdoost, F. Dietary patterns and frailty: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 498–513. [Google Scholar] [CrossRef]
- Struijk, E.A.; Hagan, K.A.; Fung, T.T.; Hu, F.B.; Rodríguez-Artalejo, F.; Lopez-Garcia, E. Diet quality and risk of frailty among older women in the Nurses’ Health Study. Am. J. Clin. Nutr. 2020, 111, 877–883. [Google Scholar] [CrossRef]
- Alfieri, F.; Rivero-Pino, F.; Zakidou, P.; Fernandez-Dumont, A.; Roldán-Torres, R. Processes for Obtaining Plant-Based Dairy and Meat Substitutes; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Hunter, G.R.; Singh, H.; Carter, S.J.; Bryan, D.R.; Fisher, G. Sarcopenia and Its Implications for Metabolic Health. J. Obes. 2019, 2019, 8031705. [Google Scholar] [CrossRef]
- Givens, D.I. MILK Symposium review: The importance of milk and dairy foods in the diets of infants, adolescents, pregnant women, adults, and the elderly*. J. Dairy Sci. 2020, 103, 9681–9699. [Google Scholar] [CrossRef]
- Craig, W.J.; Brothers, C.J.; Mangels, R. Nutritional Content and Health Profile of Single-Serve Non-Dairy Plant-Based Beverages. Nutrients 2021, 14, 162. [Google Scholar] [CrossRef]
- Reijnders, L.; Soret, S. Quantification of the environmental impact of different dietary protein choices. Am. J. Clin. Nutr. 2003, 78, 664S–668S. [Google Scholar] [CrossRef]
- Rangel, A.H.d.N.; Sales, D.C.; Urbano, S.A.; GalvÃO JÚNior, J.G.B.; Andrade Neto, J.C.d.; MacÊDo, C.d.S. Lactose intolerance and cow’s milk protein allergy. Food Sci. Technol. 2016, 36, 179–187. [Google Scholar] [CrossRef]
- Heine, R.G.; AlRefaee, F.; Bachina, P.; De Leon, J.C.; Geng, L.; Gong, S.; Madrazo, J.A.; Ngamphaiboon, J.; Ong, C.; Rogacion, J.M. Lactose intolerance and gastrointestinal cow’s milk allergy in infants and children—Common misconceptions revisited. World Allergy Organ. J. 2017, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Usmani, Z.; Gupta, V.K.; Bhat, R. Valorization of fruits and vegetable wastes and by-products to produce natural pigments. Crit. Rev. Biotechnol. 2021, 41, 535–563. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- Katoch, G.K.; Nain, N.; Kaur, S.; Rasane, P. Lactose Intolerance and Its Dietary Management: An Update. J. Am. Nutr. Assoc. 2022, 41, 424–434. [Google Scholar] [CrossRef]
- Di Costanzo, M.; Berni Canani, R. Lactose Intolerance: Common Misunderstandings. Ann. Nutr. Metab. 2018, 73 (Suppl. S4), 30–37. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Soto-Reyes, N.; Dávila-Rodríguez, M.; Lorenzo-Leal, A.C.; Jiménez-Munguía, M.T.; Mani-López, E.; López-Malo, A. Plant-Based Milk Alternatives: Types, Processes, Benefits, and Characteristics. Food Rev. Int. 2021, 39, 1952421. [Google Scholar] [CrossRef]
- Leszkowicz, J.; Plata-Nazar, K.; Szlagatys-Sidorkiewicz, A. Can Lactose Intolerance Be a Cause of Constipation? A Narrative Review. Nutrients 2022, 14, 1785. [Google Scholar] [CrossRef]
- Walsh, J.; Meyer, R.; Shah, N.; Quekett, J.; Fox, A.T. Differentiating milk allergy (IgE and non-IgE mediated) from lactose intolerance: Understanding the underlying mechanisms and presentations. Br. J. Gen. Pract. J. R. Coll. Gen. Pract. 2016, 66, e609–e611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plamada, D.; Teleky, B.-E.; Nemes, S.A.; Mitrea, L.; Szabo, K.; Călinoiu, L.-F.; Pascuta, M.S.; Varvara, R.-A.; Ciont, C.; Martău, G.A.; et al. Plant-Based Dairy Alternatives—A Future Direction to the Milky Way. Foods 2023, 12, 1883. https://doi.org/10.3390/foods12091883
Plamada D, Teleky B-E, Nemes SA, Mitrea L, Szabo K, Călinoiu L-F, Pascuta MS, Varvara R-A, Ciont C, Martău GA, et al. Plant-Based Dairy Alternatives—A Future Direction to the Milky Way. Foods. 2023; 12(9):1883. https://doi.org/10.3390/foods12091883
Chicago/Turabian StylePlamada, Diana, Bernadette-Emőke Teleky, Silvia Amalia Nemes, Laura Mitrea, Katalin Szabo, Lavinia-Florina Călinoiu, Mihaela Stefana Pascuta, Rodica-Anita Varvara, Călina Ciont, Gheorghe Adrian Martău, and et al. 2023. "Plant-Based Dairy Alternatives—A Future Direction to the Milky Way" Foods 12, no. 9: 1883. https://doi.org/10.3390/foods12091883