Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit and ABA Injection
2.2. Determination of Fruit Firmness, Total Anthocyanin, Soluble Solid, Titratable Acid, Protopectin, and Soluble Pectin
2.3. RNA Extraction and RT-qPCR Analysis
2.4. RNAi Plasmid Construction
2.5. Determination of Fruit Aroma Components
2.6. Determination of Enzyme Activity
2.7. Subcellular Localization Assay
2.8. Analysis of DNA Sequence and Yeast One-Hybrid Analysis
2.9. Dual-Luciferase Assay
2.10. Statistical Assay
3. Results
3.1. ABA Induced the Ripening of Strawberry Fruit
3.2. Down-Regulation of FaMADS1 and Up-Regulation of Ripening-Related Gene Expressions by ABA
3.3. Down-Regulation of FaMADS1 in FaMADS1-RNAi Strawberry Fruit
3.4. Promoted Ripening in FaMADS1-RNAi Strawberry
3.5. Increased Ripening Gene Expressions and Enzyme Activity in FaMADS1-RNAi Strawberry Fruit
3.6. Localization and Interaction of FaMADS1 with ABI5-5, TRAB1, and ABI5
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Forlani, S.; Masiero, S.; Mizzotti, C. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens. J. Exp. Bot. 2019, 70, 2993–3006. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Park, Y.; Hwang, I. Abscisic acid: Biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem. 2015, 58, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.L.; Liu, M.; Zhao, H.; Meng, J.F.; Fang, Y.L. Effect of exogenous abscisic acid and methyl jasmonate on anthocyanin composition, fatty acids, and volatile compounds of cabernet sauvignon (Vitis vinifera L.) grape berries. Molecules 2016, 21, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.P.; Mao, L.C.; Wei, X.B.; Guan, W.L.; Lu, W.J.; Xu, C.J. ABA stimulates wound suberization through antagonizing the MYB4-mediated transcriptional repression of CYP86A1 and FAR in postharvest kiwifruit. Postharvest Biol. Technol. 2021, 172, 111354. [Google Scholar] [CrossRef]
- Jia, H.F.; Lu, D.; Sun, J.H.; Li, C.L.; Xing, Y.; Qin, L.; Shen, Y.Y. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. J. Exp. Bot. 2013, 64, 1677–1687. [Google Scholar] [CrossRef]
- Daminato, M.; Guzzo, F.; Casadoro, G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. J. Exp. Bot. 2013, 64, 3775–3786. [Google Scholar] [CrossRef]
- Han, Y.; Dang, R.; Li, J.; Jiang, J.; Zhang, N.; Jia, M.; Wei, L.; Li, Z.; Li, B.; Jia, W. SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening. Plant Physiol. 2015, 167, 915–930. [Google Scholar] [CrossRef]
- Hou, B.Z.; Xu, C.; Shen, Y.Y. A leu-rich repeat receptor-like protein kinase, FaRIPK1, interacts with the ABA receptor, FaABAR, to regulate strawberry (Fragaria × ananassa) fruit ripening. J. Exp. Bot. 2018, 69, 1569–1582. [Google Scholar] [CrossRef]
- Li, D.D.; Mou, W.S.; Xia, R.; Li, L.; Zawora, C.; Ying, T.J.; Mao, L.C.; Liu, Z.C.; Luo, Z.S. Integrated analysis of high-throughput sequencing data shows abscisic acid-responsive genes and miRNAs in strawberry receptacle fruit ripening. Hortic. Res. 2019, 6, 26. [Google Scholar] [CrossRef]
- Xie, Y.G.; Ma, Y.Y.; Bi, P.P.; Wei, W.; Liu, J.; Hu, Y.; Gou, Y.J.; Zhu, D.; Wen, Y.Q.; Feng, J.Y. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins. Plant Physiol. Biochem. 2020, 146, 374–383. [Google Scholar] [CrossRef]
- Liu, X.; Yue, Y.; Li, B.; Nie, Y.; Li, W.; Wu, W.H.; Ma, L.A.G. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 2007, 315, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Regulators of PP2C Phosphatase Activity Function as Abscisic Acid Sensors. Science 2009, 324, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Q.; Xin, Q.; Can, Z.; Liu, Z.Q.; Du, S.Y.; Mei, C.; Zhao, C.X.; Wang, X.F.; Shang, Y.; Jiang, T.; et al. The Magnesium-chelatase H Subunit Binds Abscisic Acid and Functions in Abscisic Acid Signaling: Newevidence in Arabidopsis. Plant Physiol. 2009, 150, 1940–1954. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, Y.P.; Chen, P.; Ren, J.; Ji, K.; Li, Q.; Li, P.; Dai, S.J.; Leng, P. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress. J. Exp. Bot. 2011, 62, 5659–5669. [Google Scholar] [CrossRef] [PubMed]
- Bastías, A.; Yañez, M.; Osorio, S.; Arbona, V.; Gómez-Cadenas, A.; Fernie, A.R.; Casaretto, J.A. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruit. J. Exp. Bot. 2014, 65, 2351–2363. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, P.; Lecourieux, D.; Kappel, C.; Cluzet, S.; Cramer, G.; Delrot, S.; Lecourieux, F. The basic leucine zipper transcription factor Abscisic Acid Response Element-Binding Factor2 is an important transcriptional regulator of abscisic acid-dependent grape berry ripening processes. Plant Physiol. 2014, 164, 365–383. [Google Scholar] [CrossRef]
- Shang, Y.; Yan, L.; Liu, Z.Q.; Cao, Z.; Mei, C.; Xin, Q.; Wu, F.Q.; Wang, X.F.; Du, S.Y.; Jiang, T.; et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 2010, 22, 1909–1935. [Google Scholar] [CrossRef]
- Hobo, T.; Kowyama, Y.; Hattori, T. A bzip factor, trab1, interacts with vp1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. USA 1999, 96, 15348–15353. [Google Scholar] [CrossRef]
- Kagaya, Y.; Hobo, T.; Murata, M.; Ban, A.; Hattori, T. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 2002, 14, 3177–3189. [Google Scholar] [CrossRef]
- Kapazoglou, A.; Engineer, C.; Drosou, V.; Kalloniati, C.; Tani, E.; Tsaballa, A.; Kouri, E.D.; Ganopoulos, I.; Flemetakis, E.; Tsaftaris, A.S. The study of two barley type I-like MADS-box genes as potential targets of epigenetic regulation during seed development. BMC Plant Biol. 2012, 12, 166. [Google Scholar] [CrossRef]
- Lovisetto, A.; Guzzo, F.; Tadiello, A.; Toffali, K.; Favretto, A.; Casadoro, G. Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol. Biol. Evol. 2012, 29, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.H.; Wu, J.; Zhang, Z.S.; Miao, Z.Q.; Zhao, P.X.; Wang, Z.; Xiang, C.B. Arabidopsis MADS-box transcription factor AGL21 acts as environment surveillance of seed germination by regulating ABI5 expression. Mol. Plant 2017, 10, 834–845. [Google Scholar] [CrossRef] [PubMed]
- Tuan, P.A.; Bai, S.; Saito, T.; Ito, A.; Moriguchi, T. Dormancy-associated MADS-box (DAM) and Abscisic Acid pathway regulate pear endodormancy through a feedback mechanism. Plant Cell Physiol. 2017, 58, 1378–1390. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, C.C.; Burn, J.E.; Perez, P.P.; Metzger, J.; Edwards, W.J.; Peacock, W.J.; Dennis, E.S. The FLF MADS-box gene: Arepressor of flowering in Arabidopsis regulated by vernalization andmethylation. Plant Cell 1999, 11, 444–458. [Google Scholar] [CrossRef]
- Sheldon, C.C.; Rouse, D.T.; Finnegan, E.J.; Peacock, W.J.; Dennis, E.S. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC). Proc. Natl. Acad. Sci. USA 2000, 97, 3753–3758. [Google Scholar] [CrossRef]
- Qi, X.L.; Liu, C.L.; Song, L.L.; Li, M. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening. Plant Sci. 2020, 301, 110634. [Google Scholar] [CrossRef]
- Chen, R.C.; Mao, L.C.; Guan, W.L.; Wei, X.B.; Huang, Z.H.; Wu, Y.Y. ABA-mediated miR5290 promotes anthocyanin biosynthesis by inhibiting the expression of FaMADS1 in postharvest strawberry fruit. Postharvest Biol. Technol. 2022, 189, 111934. [Google Scholar] [CrossRef]
- Lu, W.J.; Chen, J.X.; Ren, X.C.; Yuan, J.J.; Han, X.Y.; Mao, L.C.; Ying, T.J.; Luo, Z.S. One novel strawberry MADS-box transcription factor FaMADS1a acts as a negative regulator in fruit ripening. Sci. Hortic. 2018, 227, 124–131. [Google Scholar] [CrossRef]
- Li, D.D.; Mou, W.S.; Luo, Z.S.; Li, L.; Limwachiranon, J.; Mao, L.C.; Ying, T.J. Developmental and stress regulation on expression of a novel miRNA, Fan-miR73, and its target ABI5 in strawberry. Sci. Rep. 2016, 6, 28385. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; Escalante-Minakata, M.P.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria ×ananassa Duch., cv. Albion) at six stages of ripening. Food Chem. 2013, 138, 372–381. [Google Scholar] [CrossRef]
- Kafkas, E.; Koşar, M.; Paydaş, S.; Kafkas, S.; Başer, K.H.C. Quality characteristics of strawberry genotypes at different maturation stages. Food Chem. 2007, 100, 1229–1236. [Google Scholar] [CrossRef]
- Lei, Y.; Liu, Y.Z.; Gu, Q.Q.; Yang, X.Y.; Deng, X.X.; Chen, J.Y. Comparison of cell wall metabolism in the pulp of three cultivars of ‘Nanfeng’ tangerine differing in mastication trait. J. Sci. Food Agric. 2012, 92, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Liu, Y.; Schiff, M.; Marathe, R.; Dinesh-Kumar, S.P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 2002, 30, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Vandendriessche, T.; Nicolai, B.M.; Hertog, M.L.A.T.M. Optimization of HS SPME Fast GC-MS for high-throughput analysis of strawberry aroma. Food Anal. Methods 2013, 6, 512–520. [Google Scholar] [CrossRef]
- Chen, J.X.; Mao, L.C.; Mi, H.B.; Lu, W.J.; Ying, T.J.; Luo, Z.S. Involvement of abscisic acid in postharvest water-deficit stress associated with the accumulation of anthocyanins in strawberry fruit. Postharvest Biol. Technol. 2016, 111, 99–105. [Google Scholar] [CrossRef]
- Andrews, P.K.; Shulin, L. Cell wall hydrolytic enzyme activity during development of nonclimacteric sweet cherry (Prunus avium L.) fruit. J. Hortic. Sci. 1995, 70, 561–567. [Google Scholar] [CrossRef]
- Mao, H.W.; Jin, G.K.; Sun, E.A.; Lee, A.Y.; Bae, T.M.; Kim, D.R.; Hwang, Y.S. Potential role of pectate lyase and Ca2+, in the increase in strawberry fruit firmness induced by short-term treatment with high-pressure CO2. J. Food Sci. 2014, 79, 685–692. [Google Scholar] [CrossRef]
- Pérez, A.G.; Sanz, C.; Olías, R.; Ríos, J.J.; Olías, J.M. Evolution of strawberry alcohol acyltransferase activity during fruit development and storage. J. Agric. Food Chem. 1996, 44, 3286–3290. [Google Scholar] [CrossRef]
- Lu, W.J.; Chu, X.Q.; Li, Y.Z.; Wang, C.; Guo, X.Q. Cotton GhMKK1 induces the tolerance of salt and drought stress, and mediates defence responses to pathogen infection in transgenic Nicotiana benthamiana. PLoS ONE 2013, 8, e68503. [Google Scholar] [CrossRef]
- Wei, X.P.; Lu, W.J.; Mao, L.C.; Han, X.Y.; Wei, X.B.; Zhao, X.X.; Xia, M.; Xu, C.J. ABF2 an MYB transcription factors regu;ate feruloyl transferase FHT involved in ABA-mediate wound suberization of kiwifruit. J. Exp. Bot. 2020, 71, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Min, T.; Yin, X.R.; Shi, Y.N.; Luo, Z.R.; Yao, Y.C.; Grierson, D.; Ferguson, I.B.; Chen, K.S. Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency. J. Exp. Bot. 2012, 63, 6393–6405. [Google Scholar] [CrossRef] [PubMed]
- Goto-Yamamoto, N.; Wan, G.H.; Masaki, K.; Kobayashi, S. Structure and transcription of three chalconesynthase genes of grapevine (Vilis vinifera). Plant Sci. 2002, 162, 867–872. [Google Scholar] [CrossRef]
- Brummell, D.A.; Harpster, M.H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 2001, 47, 311–339. [Google Scholar] [CrossRef]
- Cao, S.F.; Hu, Z.C.; Zheng, Y.H.; Lu, B.H. Effect of BTH on anthocyanin content and activities of related enzymes in strawberry after harvest. J. Agric. Food Chem. 2010, 58, 5801–5805. [Google Scholar] [CrossRef]
- Kou, X.H.; Yang, S.; Chai, L.P.; Zhou, J.Q.; Liu, Y.F.; Xue, Z.H. Abscisic acid and fruit ripening: Multifaceted analysis of the effect of abscisic acid on fleshy fruit ripening. Sci. Hortic. 2021, 281, 109999. [Google Scholar] [CrossRef]
- Pombo, M.A.; Martìnez, G.A.; Civello, P.M. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation. Plant Sci. 2011, 181, 111–118. [Google Scholar] [CrossRef]
- Lunkenbein, S.; Coiner, H.A.; Ric de Vos, C.H.; Schaart, J.G.; Boone, M.J.; Krens, F.A.; Schwab, W.; Salentijn, E.M.J. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria×ananassa). J. Agric. Food Chem. 2006, 54, 2145–2153. [Google Scholar] [CrossRef]
- Xu, W.; Peng, H.; Yang, T.; Whitaker, B.; Huang, L.; Sun, J.; Chen, P. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation. Plant Physiol. Biochem. 2014, 82, 289–298. [Google Scholar] [CrossRef]
- Cao, J. The pectin lyases in Arabidopsis thaliana: Evolution, selection and expression profiles. PLoS ONE 2012, 7, e46944. [Google Scholar] [CrossRef]
- Zabetakis, I.; Holden, M.A. Strawberry flavor: Analysis and biosynthesis. J. Sci. Food Agric. 1997, 74, 421–434. [Google Scholar] [CrossRef]
- Forney, C.F.; Kalt, W.; Jordan, M.A. The composition of strawberry aroma is influenced by cultivar, maturity and storage. Hortic. Sci. 2000, 35, 1022–1026. [Google Scholar] [CrossRef]
- Cumplido-Laso, G.; Medina-Puche, L.; Moyano, E.; Hoffmann, T.; Sinz, Q.; Ring, L.; Studart-Wittkowski, C.; Caballero, J.L.; Schwab, W.; Muñoz-Blanco, J.; et al. The fruit ripening-related gene FaAAT2 encodes an acyl transferase involved in strawberry aroma biogenesis. J. Exp. Bot. 2012, 63, 4275–4290. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Hu, Z.; Deng, L.; Wang, Y.; Zhu, M.; Zhang, J.; Chen, G. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Plant Physiol. 2013, 163, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Boss, P.K.; Vivier, M.; Matsumoto, S.; Dry, I.B.; Thomas, M.R. A cDNA from grapevine (Vitis vinifera L.), which shows homology to AGAMOUS and SHATTERPROOF, is not only expressed in flowers but also throughout berry development. Plant Mol. Biol. 2001, 45, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Seymour, G.B.; Ryder, C.D.; Cevik, V.; Hammond, J.P.; Popovich, A.; King, G.J.; Vrebalov, J.; Giovannoni, J.J.; Manning, K. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria × ananassa Duch.) fruit, a non-climacteric tissue. J. Exp. Bot. 2011, 62, 1179–1188. [Google Scholar] [CrossRef]
- Pi, M.T.; Hu, S.Q.; Cheng, L.C.; Zhong, R.H.; Cai, Z.Y.; Liu, Z.C.; Yao, J.L.; Kang, C.Y. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. Hortic. Res. 2021, 8, 247. [Google Scholar] [CrossRef]
- Elitzur, T.; Yakir, E.; Quansah, L.; Zhangjun, F.; Vrebalov, J.; Khayat, E.; Giovannoni, J.J.; Friedman, H. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security. Plant Physiol. 2016, 171, 380–391. [Google Scholar] [CrossRef]
- Fu, D.Q.; Zhu, B.Z.; Zhu, H.L.; Jiang, W.B.; Luo, Y.B. Virus-induced gene silencing in tomato fruit. Plant J. 2005, 43, 299–308. [Google Scholar] [CrossRef]
- Jia, H.F.; Chai, Y.M.; Li, C.L.; Lu, D.; Luo, J.J.; Qin, L.; Shen, Y.Y. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiol. 2011, 157, 188–199. [Google Scholar] [CrossRef]
- Hoffmann, T.; Kalinowski, G.; Schwab, W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria × ananassa) byagro-infiltration: A rapid assay for gene function analysis. Plant J. 2006, 48, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Mekontso, F.N.; Wu, S.H.; Fu, R.Z.; Li, W.; Meng, L.H.; Wang, Q.; Li, J.K.; Song, H.M.; Xu, X.B. Konckdown of Sly-miR160a using short tandem target mimic (STTM) enhanced expression of auxin signaling genes and delayed postharvest ripening of tomato fruit. Postharvest Biol. Technol. 2023, 198, 112271. [Google Scholar] [CrossRef]
- Jia, M.R.; Ding, N.; Zhang, Q.; Xing, S.N.; Wei, L.Z.; Zhao, Y.Y.; Du, P.; Mao, W.W.; Li, J.Z.; Li, B.B.; et al. A FERONIA-Like Receptor Kinase regulates strawberry (Fragaria × ananassa) fruit ripening and quality formation. Front. Plant Sci. 2017, 8, 01099. [Google Scholar] [CrossRef]
- Brocard, I.M.; Lynch, T.J.; Finkelstein, R.R. Regulation and role of the Arabidopsis Abscisic Acid-Insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol. 2002, 129, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.F.; Wu, Y.R.; Xie, Q. Precise protein post-translational modifications modulate ABI5 activity. Trends Plant Sci. 2015, 20, 569. [Google Scholar] [CrossRef]
- Utsugi, S.; Ashikawa, I.; Nakamura, S.; Shibasaka, M. TaABI5, a wheat homolog of Arabidopsis thaliana ABA insensitive 5, controls seed germination. J. Plant Res. 2020, 133, 245–256. [Google Scholar] [CrossRef]
Compounds (μg kg−1 FW) | Empty Vector | FaMADS1-RNAi |
---|---|---|
Esters | ||
Methyl hexanoate | 0.424 ± 0.101 | 1.021 ± 0.132 * |
1-Methyl hexanoate | 0.000 ± 0.000 | 0.065 ± 0.018 ** |
Methyl 2-octynoate | 0.000 ± 0.000 | 0.083 ± 0.008 ** |
Octyl butyrate | 0.000 ± 0.000 | 0.129 ± 0.001 ** |
Octyl 3-methylbutyrate | 0.000 ± 0.000 | 0.377 ± 0.027 ** |
(3,7,11-Trimethyldodeca-1,6,10-trien-3-yl) formate | 0.000 ± 0.000 | 0.286 ± 0.128 ** |
3,7,11-Trimethyl-1,6,10-dodecatrien-3-olacetate | 0.000 ± 0.000 | 0.184 ± 0.044 ** |
Ketones | ||
5-Octyloxolan-2-one | 0.000 ± 0.000 | 0.608 ± 0.291 ** |
Methyl n-hexyl ketone | 52.400 ± 0.000 | 52.400 ± 0.000 |
4-Methoxy-2,5-dimethylfuran-3-one (DMMF) | 0.000 ± 0.000 | 0.336 ± 0.058 ** |
1-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-1-penten-3-one | 0.000 ± 0.000 | 0.352 ± 0.007 ** |
Alcohols | ||
Octan-2-ol | 0.332 ± 0.027 | 0.000 ± 0.000 ** |
3,7-Dimethyl-1,6-octadien-3-ol | 0.957 ± 0.056 | 1.453 ± 0.265 |
2-(4-Methyl-1-cyclohex-3-enyl) propan-2-ol | 0.071 ± 0.020 | 0.123 ± 0.002 |
3,7,11-Trimethyl-1,6,10-Dodecatrien-3-ol | 1.569 ± 0.038 | 14.913 ± 4.932 |
Acids | ||
7-Oxooctanoic acid | 0.090 ± 0.019 | 0.155 ± 0.034 |
Octanoic acid | 0.000 ± 0.000 | 0.073 ± 0.039 ** |
3-Hydroxydodecanoic acid | 0.000 ± 0.000 | 0.044 ± 0.005 ** |
Aldehydes | ||
€-hex-2-enal | 1.971 ± 0.049 | 0.000 ± 0.000 ** |
Nonanal | 0.203 ± 0.028 | 0.270 ± 0.053 |
Decanal | 0.061 ± 0.004 | 0.050 ± 0.007 |
Olefins | ||
D-1-methyl-4-(1-methylethenyl)-cyclohexene | 0.044 ± 0.000 | 0.061 ± 0.026 |
(Z)-5-Undecene | 0.058 ± 0.017 | 0.000 ± 0.000 ** |
(Z)-7,11-Dimethyl-3-methylene-1,6,10-dodecatriene | 0.090 ± 0.017 | 1.060 ± 0.153 * |
1-(1,5-Dimethyl)-4-methy-benzene | 0.000 ± 0.000 | 0.047 ± 0.027 ** |
1-(1,5-Dimethyl-4-hexenyl)-4-methylbenzene | 0.000 ± 0.000 | 0.090 ± 0.016 ** |
2,6-Dimethyl-6-(4-methyl-3-pentenyl)bicyclo [3.1.1]hept-2-ene | 0.000 ± 0.000 | 0.147 ± 0.027 ** |
(1R,4aR,8aS)-7-methyl-4-methylidene-1-propan-2-yl-2,3,4a,5,6,8a-hexahydro-1H-naphthalene | 0.091 ± 0.029 | 0.000 ± 0.000 ** |
3,7,11-Trimethyl-1,3,6,10-dodecatetraene | 0.000 ± 0.000 | 0.291 ± 0.068 ** |
7-epi-cis-sesquisabinene hydrate | 0.000 ± 0.000 | 0.229 ± 0.105 ** |
Terpenes | ||
2,3-Dihydro-1H-indene | 0.000 ± 0.000 | 0.052 ± 0.004 ** |
Benzenes | ||
Butylbenzene | 0.127 ± 0.032 | 0.151 ± 0.010 |
1-Methyl-2-propylbenzene | 0.095 ± 0.012 | 0.142 ± 0.019 |
(4aS-cis)-2,4a,5,6,7,8,9,9a-Octahydro-3,5,5-trimethyl-9-methylene-1H-Benzocycloheptene | 0.000 ± 0.000 | 0.037 ± 0.000 ** |
Others | ||
1-Methyl-6,7-dioxabicyclo[3.2.1]octane | 0.093 ± 0.001 | 0.000 ± 0.000 ** |
2,4-bis(1,1-dimethylethyl)-phenol | 0.182 ± 0.029 | 0.000 ± 0.000 ** |
1-Bromo-3,7,11-trimethyl-2,6,10-dodecatriene | 0.000 ± 0.000 | 0.086 ± 0.018 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, W.; Wei, X.; Han, X.; Chen, R.; Xiao, C.; Zheng, X.; Mao, L. Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit. Foods 2023, 12, 1802. https://doi.org/10.3390/foods12091802
Lu W, Wei X, Han X, Chen R, Xiao C, Zheng X, Mao L. Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit. Foods. 2023; 12(9):1802. https://doi.org/10.3390/foods12091802
Chicago/Turabian StyleLu, Wenjing, Xiaopeng Wei, Xueyuan Han, Renchi Chen, Chaogeng Xiao, Xiaojie Zheng, and Linchun Mao. 2023. "Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit" Foods 12, no. 9: 1802. https://doi.org/10.3390/foods12091802
APA StyleLu, W., Wei, X., Han, X., Chen, R., Xiao, C., Zheng, X., & Mao, L. (2023). Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit. Foods, 12(9), 1802. https://doi.org/10.3390/foods12091802