Chemical and Quality Analysis of Beauty Tea Processed from Fresh Leaves of Tieguanyin Variety with Different Puncturing Degrees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Tea Samples
2.3. Sensory Evaluation
2.4. UPLC-Q-TOF/MS Analysis
2.5. GC-MS Analysis
2.6. Odor Activity Values (OAVs) Calculation
2.7. Statistical Analysis
3. Result
3.1. Sensory Evaluation
3.2. Analysis of the Non-Volatile Differential Metabolites in Fresh Tea Leaves
3.2.1. Non-Volatile Metabolite Profiling of Fresh Leaves
3.2.2. Identification and Analysis of Differential Metabolites in Fresh Leaves
3.2.3. Analysis of Biosynthetic Pathways of Differential Metabolites
3.3. Analysis of Taste Components of Beauty Tea
3.3.1. Metabolomic Analysis of Non-Volatile Metabolites
3.3.2. Identification and Analysis of Non-Volatile Metabolites
3.3.3. Correlation Analysis between Taste Profiles and Non-Volatile Differential Metabolites of Beauty Tea
3.4. Analysis of Aroma Constituents of Beauty Tea
3.4.1. Determination of Volatile Constituents in Beauty Tea
3.4.2. Characteristic Analysis of Volatile Components
3.4.3. Analysis of the Characteristic Volatile Components
4. Discussion
4.1. Analysis of Non-Volatile Components in Fresh Leaves with Different Puncturing Degrees
4.2. Analysis on Taste Components of Beauty Tea with Different Puncturing Degrees
4.3. Analysis on Aroma Components of Beauty Tea with Different Puncturing Degrees
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ye, N. Germplasm Resources Utilization and Variety Innovation of Oolong Tea. Tea Fujian 2006, 3, 2–4. [Google Scholar]
- Ye, N. Analysis of Key Parents and Genealogy for Breeding of Tea Plant. China Tea 2008, 4, 11–13. [Google Scholar]
- Zhan, X.; Fan, S.; Guo, Y.; Zhang, W.; Yu, X.; Gao, F. Analysis on the Development of Beauty Tea from the Perspective of Cross-strait Rural Industry Integration. China Tea 2022, 44, 64–70. [Google Scholar]
- Guo, Y.; Zhu, C.; Zhao, S.; Zhang, S.; Wang, W.; Fu, H.; Han, Y. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar ‘Tieguanyin’ compared with cultivar ‘Benshan’. BMC Genom. 2019, 20, 265. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Liu, X.; Zhou, Y.; Wang, X.; Zeng, L.; Fu, X.; Li, J.; Tang, J.; Dong, F.; Yang, Z. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chem. 2017, 237, 356–363. [Google Scholar] [CrossRef]
- Chien, H.; Yang, M.; Wang, W.; Hong, X.; Zheng, Y.; Toh, J.; Wu, C.; Lai, C. Proteomic analysis of “Oriental Beauty” oolong tea leaves with different degrees of leafhopper infestation. Rapid Commun. Mass Spectrom. 2020, 34, e8825. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, S.; Gu, D. Research Progress on Effects of Tea Green Leafhopper Infestation on Tea Plant Growth and Tea Leaf Quality. J. Tea Commun. 2022, 49, 1–11. [Google Scholar]
- Wang, M. Study on the Effect of Different Leafhopper Biting on Tea Leaves. Master Thesis, South China Agricultural University, Guangzhou, China, 2016. [Google Scholar]
- Xu, K.; Tian, C.; Zhou, C.; Zhu, C.; Weng, J.; Sun, Y.; Lin, Y.; Lai, Z.; Guo, Y. Non-Targeted Metabolomics Analysis Revealed the Characteristic Non-Volatile and Volatile Metabolites in the Rougui Wuyi Rock Tea (Camellia sinensis) from Different Culturing Regions. Foods 2022, 11, 1694. [Google Scholar] [CrossRef]
- Zhuang, M.; Li, D.; Tu, Y.; Li, P.; Yan, J.; He, C.; Chen, M.; Jin, S. Quality Evaluation of Beauty Tea Produced by Different Tea Varieties. Chin. J. Trop. Crops 2022, 43, 1076–1084. [Google Scholar]
- Xiao, Z.; Cao, X.; Zhu, J.; Chen, F.; Niu, Y. Characterization of the key aroma compounds in three world-famous black teas. Eur. Food Res. Technol. 2022, 248, 2237–2252. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Q.; Wu, Z.; Bi, W.; Chen, B.; Hao, Z.; Wu, L.; Ye, N.; Sun, Y. Volatile metabolomics and coexpression network analyses provide insight into the formation of the characteristic cultivar aroma of oolong tea (Camellia sinensis). LWT 2022, 164, 113666. [Google Scholar] [CrossRef]
- Zhu, J.; Niu, Y.; Xiao, Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Food Chem. 2021, 339, 128136. [Google Scholar] [CrossRef] [PubMed]
- Vaishali, S.; Robin, J.; Ashu, G. Seasonal clonal variations and effects of stresses on quality chemicals and prephenate dehydratase enzyme activity in tea (Camellia sinensis). Eur. Food Res. Technol. 2011, 232, 307–317. [Google Scholar]
- Samynathan, R.; Kiruthikaa, S.; Chithraanjane, N.; Harsha, M.; Ilango, R.V.J.; Shanmugam, A.; Venkidasamy, B. The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze). Plant Gene 2021, 27, 100316. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, S.; Wang, S.; Shan, W.; Wang, X.; Lin, Y.; Su, F.; Yang, Z.; Yu, X. Defensive Responses of Tea Plants (Camellia sinensis) Against Tea Green Leafhopper Attack: A Multi-Omics Study. Front. Plant Sci. 2019, 10, 1705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tang, D.; Liu, M.; Ruan, J. Integrated analyses of the transcriptome and metabolome of the leaves of albino tea cultivars reveal coordinated regulation of the carbon and nitrogen metabolism. Sci. Hortic. 2018, 5, 231. [Google Scholar] [CrossRef]
- Pang, Y.; Abeysinghe, I.S.B.; He, J.; He, X.; Huhman, D.; Mewan, K.M.; Sumner, L.W.; Yun, J.; Dixon, R.A. Functional characterization of proanthocyanidin pathway enzymes from tea and their application for metabolic engineering. Plant Physiol. 2013, 161, 1103–1116. [Google Scholar] [CrossRef]
- Qiao, Z. Lignification: Flexibility, Biosynthesis and Regulation. Trends Plant Sci. 2016, 21, 713–721. [Google Scholar]
- Barros, J.; Serk, H.; Granlund, I.; Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 2015, 115, 1053–1074. [Google Scholar] [CrossRef]
- Qiu, C.; Sun, J.; Shen, J.; Zhang, S.; Ding, Y.; Gai, Z.; Fan, K.; Song, L.; Chen, B.; Ding, Z.; et al. Fulvic acid enhances drought resistance in tea plants by regulating the starch and sucrose metabolism and certain secondary metabolism. J. Proteom. 2021, 247, 104337. [Google Scholar] [CrossRef]
- Pei, J.; Wang, H.; Xia, Z.; Liu, C.; Chen, X.; Ma, P.; Lu, C.; Wang, W. Phylogeny and expression pattern of starch branching enzyme family genes in cassava (Manihot esculenta Crantz) under diverse environments. Mol. Cell Biochem. 2015, 406, 273–284. [Google Scholar] [CrossRef]
- Sambangi, P.; Usha Rani, P. Induction of phenolic acids and metals in Arachis hypogaea L. plants due to feeding of three lepidopteran pests. Arthropod-Plant Interact. 2013, 7, 517–525. [Google Scholar] [CrossRef]
- Qu, F.; Zhu, X.; Ai, Z.; Ai, Y.; Qiu, F.; Ni, D. Effect of different drying methods on the sensory quality and chemical components of black tea. LWT 2018, 99, 112–118. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.-Q.; Granato, D.; Xu, Y.-Q.; Ho, C.-T. Association between chemistry and taste of tea: A review. Trends Food Sci. Technol. 2020, 101, 139–149. [Google Scholar] [CrossRef]
- Dai, W.; Qi, D.; Yang, T.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y. Nontargeted Analysis Using Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry Uncovers the Effects of Harvest Season on the Metabolites and Taste Quality of Tea (Camellia sinensis L.). J. Agric. Food Chem. 2015, 63, 9869–9878. [Google Scholar] [CrossRef] [PubMed]
- Hua, J.; Xu, Q.; Yuan, H.; Wang, J.; Wu, Z.; Li, X.; Jiang, Y. Effects of novel fermentation method on the biochemical components change and quality formation of Congou black tea. J. Food Compos. Anal. 2021, 96, 2815. [Google Scholar] [CrossRef]
- Wang, H.; Hua, J.; Yu, Q.; Li, J.; Wang, J.; Deng, Y.; Yuan, H.; Jiang, Y. Widely targeted metabolomic analysis reveals dynamic changes in non-volatile and volatile metabolites during green tea processing. Food Chem. 2021, 363, 130131. [Google Scholar] [CrossRef] [PubMed]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Williner, M.R.; Pirovani, M.E.; Güemes, D.R. Ellagic acid content in strawberries of different cultivars and ripening stages. J. Sci. Food Agric. 2003, 83, 842–845. [Google Scholar] [CrossRef]
- Chen, Y.; Zhengyan, H.; Meiling, L.; Pengliang, L.; Junfeng, T.; Mei, C.; Lv, H.; Zhu, Y. Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea. Food Res. Int. 2018, 106, 909–919. [Google Scholar]
- Wang, K.L.F.L. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer. Int. J. Food Sci. Technol. 2011, 46, 1406–1412. [Google Scholar] [CrossRef]
- Zeng, L.; Xiao, Y.; Zhou, X.; Yu, J.; Jian, G.; Li, J.; Chen, J.; Tang, J.; Yang, Z. Uncovering reasons for differential accumulation of linalool in tea cultivars with different leaf area. Food Chem. 2021, 345, 128752. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, M.; Nakanishi, H.; Ema, J.; Ma, S.; Noguchi, E.; Inohara-Ochiai, M.; Fukuchi-Mizutani, M. Cloning of β-Primeverosidase from Tea Leaves, a Key Enzyme in Tea Aroma Formation. Plant Physiol. 2002, 130, 2164–2176. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-T.; Zheng, X.; Li, S. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, N.; Gao, T.; Jin, J.; Jing, T.; Wang, J.; Wu, Y.; Wan, X.; Schwab, W.; Song, C. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytol. 2020, 226, 362–372. [Google Scholar] [CrossRef] [PubMed]
Samples | Appearance (20%) | Aroma (30%) | Taste (35%) | Liquor Color (5%) | Infused Leaf (10%) | Total Score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Comment | Score | Comment | Score | Comment | Score | Comment | Score | Comment | Score | ||
NPBT | red-auburn, little dull, little curly, approach tippy, even | 80 ± 0.00 c | floral, fragrant and lasting | 88 ± 0.53 b | strong, thick, umami, little bitter | 84 ± 0.87 b | orange-red, bright | 88 ± 0.53 ab | fat and bold, little dull, even | 80 ± 0.00 c | 84.2 ± 0.47 c |
LPBT | red-auburn, yellow and white, curly, tippy, even | 87 ± 0.40 a | flowery and honey aroma, fragrant and lasting | 90 ± 0.56 a | umami, brisk, more mellow and thick, sweet after taste | 88 ± 0.50 a | deeply orange, bright | 87 ± 0.46 b | slightly curly, soft and bright, even | 87 ± 0.35 a | 88.25 ± 0.44 a |
HPBT | red-auburn, yellow and white, more curly, more tippy, more even | 84 ± 0.50 b | more flowery and honey aroma | 86 ± 0.56 c | mellow and thick, sweet, more umami and brisk | 88 ± 0.62 a | amber, bright | 89 ± 0.00 b | curly, red and bright, even | 85 ± 0.20 b | 86.35 ± 0.43 b |
No. | Compounds | Odour Description | Concentration (µg/kg Dry Weight of Tea Leaves) | ||
---|---|---|---|---|---|
NPBT | LPBT | HPBT | |||
1 | 1,6-octadien-3-ol, 3,7-dimethyl-(linalool) | floral, fruity | 22.55 ± 3.88 a | 23.26 ± 6.45 a | 22.97 ± 6.25 a |
2 | 1,5,7-octatrien-3-ol, 3,7-dimethyl-(dihydrolinalool) | floral, fruity | 43.11 ± 8.09 b | 61.55 ± 15.36 b | 104.06 ± 23.12 a |
3 | 2h-pyran-3-ol, 6-ethenyltetrahydro-2,2,6-trimethyl- | citrus-like, floral, green | 2.59 ± 0.62 b | 3.05 ± 1.05 b | 7.53 ± 0.58 a |
4 | geraniol | floral, sweet | 14.79 ± 1.35 a | 11.29 ± 2.93 a | 9.31 ± 2.47 a |
5 | 1,6,10-dodecatrien-3-ol, 3,7,11-trimethyl-, [S-(Z)]- | floral | 2.02 ± 0.22 a | 2.14 ± 0.19 a | NA |
6 | cedrol | cedarwood- like | 1.09 ± 0.11 a | NA | NA |
7 | cis-linalool oxide | sweet, floral, cream | 12.27 ± 3.54 b | 15.6 ± 4.92 b | 30.48 ± 5.67 a |
8 | trans-linalool oxide (furanoid) | sweet, floral | 3.15 ± 2.38 b | 4.56 ± 1.44 b | 10.35 ± 0.84 a |
9 | benzaldehyde | sweet, fruity | 23.14 ± 3.17 b | 26.33 ± 5.96 b | 50.99 ± 7.4 a |
10 | benzeneacetaldehyde | floral, fruity, sweet | 5.03 ± 0.94 a | 2.98 ± 1.62 a | 6.32 ± 1.89 a |
11 | decanal | sweet, floral, citrus-like | 4.47 ± 0.48 a | 5.23 ± 0.43 a | 5.46 ± 0.55 a |
12 | 1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-(β-cyclocitral) | fruity, fresh and sweet | 2.44 ± 0.22 b | 4.4 ± 0.66 a | 4.33 ± 1.08 a |
13 | 3-hydroxymandelic acid, ethyl ester, di-TMS | bitter almond | 2.68 ± 1.11 a | 4.56 ± 2.23 a | 9.13 ± 4.69 a |
14 | ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate | fruity | 12.77 ± 2.88 b | 16.58 ± 5.16 b | 38.19 ± 7.87 a |
15 | propanoic acid, 2-methyl-, hexyl ester | fruity | 2.22 ± 0.26 a | 2.04 ± 0.45 a | NA |
16 | butanoic acid, 3-hexenyl ester, (E)- | sweet, fruity | 4.54 ± 0.23 a | 3.35 ± 0.63 a | 3.47 ± 0.88 a |
17 | methyl salicylate | holly oil, minty | 6.54 ± 0.37 a | 5.97 ± 1.66 a | 6.08 ± 0.15 a |
18 | butanoic acid, hexyl ester | sweet, fruity | 6.61 ± 0.48 a | 5.79 ± 0.8 a | 5.55 ± 0.57 a |
19 | cis-3-hexenyl isovalerate | sweet, apple-like, grassy green | 15.13 ± 1.51 a | 15.62 ± 2.51 a | 5.61 ± 1.52 b |
20 | butanoic acid, 2-methyl-, hexyl ester | sweet, fruity | 20.93 ± 0.83 a | 22.23 ± 3.19 a | 4.52 ± 1.11 b |
21 | 2,6-octadienoic acid, 3,7-dimethyl-, methyl ester | floral, herbal smell, citrus-like | 2.65 ± 0.47 a | 2.66 ± 0.49 a | NA |
22 | hexanoic acid, 3-hexenyl ester, (Z)- | fresh and sweet, floral | 12.29 ± 1.96 a | 12.59 ± 2.43 a | 4.23 ± 0.47 b |
23 | hexanoic acid, hexyl ester | bean-like, fruity | 13.12 ± 3.16 a | 13 ± 2.1 a | 3.54 ± 0.4 b |
24 | hexanoic acid, 2-hexenyl ester, (E)- | fruity | 3.85 ± 0.66 a | 3.44 ± 0.62 a | NA |
25 | bicyclo [2.2.1]hept-2-ene, 1,7,7-trimethyl- | - | 6.85 ± 0.6 a | 8.98 ± 2.38 a | 5.7 ± 1.11 a |
26 | .alpha.-cubebene | - | 1.26 ± 0.35 a | NA | NA |
27 | .alfa.-Copaene | wormwood smell | 2.43 ± 0.57 a | 2.61 ± 0.27 a | NA |
28 | 1h-3a,7-methanoazulene, 2,3,4,7,8,8a-hexahydro-3,6,8,8- tetramethyl-, [3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]- | woody | 2.67 ± 0.51 b | 3.27 ± 0.04 a b | 3.94 ± 0.7 a |
29 | caryophyllene | spicy, woody, citrus-like | 18.1 ± 1.34 a | 10.5 ± 0.75 b | NA |
30 | humulene | spicy, woody, citrus-like | 2.01 ± 0.29 a | NA | NA |
31 | .alpha.-Muurolene | pine-like, citrus-like | 1.94 ± 0.52 a | 1.92 ± 0.53 a | NA |
32 | naphthalene, 1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)- | woody | 12.96 ± 2.61 a | NA | 2.32 ± 0.39 b |
33 | .alpha.-calacorene | woody | 1.6 ± 0.49 a | NA | NA |
34 | .tau.-muurolol | pine-like, citrus-like | 1.96 ± 0.28 a | 1.66 ± 0.22 a | NA |
35 | .gamma.-muurolene | pine-like, citrus-like | NA | 1.5 ± 0.06 a | NA |
36 | naphthalene, 1,2,4a,5,8,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, [1S-(1.alpha.,4a.beta.,8a.alpha.)]- | woody | NA | 14.25 ± 1.43 a | NA |
37 | hexane, 3,3-dimethyl- | - | 8.01 ± 0.85 a | NA | NA |
38 | cyclopentasiloxane, decamethyl- | - | 14.42 ± 4.53 a | NA | NA |
39 | undecane, 2,6-dimethyl- | - | 2.1 ± 0.63 a | NA | NA |
40 | cyclohexasiloxane, dodecamethyl- | - | 6.8 ± 2.23 a | NA | NA |
41 | dodecane, 1-iodo- | - | NA | NA | 1.98 ± 0.26 a |
42 | 1-oxaspiro [4.5]dec-6-ene, 2,6,10,10-tetramethyl- | fruity, sweet, woody | NA | NA | 2.26 ± 0.56 a |
43 | benzene, 1,2,3-trimethyl- | - | 15.17 ± 2.39 a | NA | NA |
44 | benzene, 1,2,3,5-tetramethyl- | - | 6.61 ± 1.28 a | 4.14 ± 1.86 a | 8.38 ± 3.05 a |
45 | benzene, 1,2,4-trimethyl- | - | NA | NA | 22.81 ± 4.82 a |
46 | trans-.beta.-Ionone | violet smell, fruity, woody | 1.83 ± 0.26 b | 1.27 ± 0.8 b | 3.56 ± 0.13 a |
47 | (R,S)-5-Ethyl-6-methyl-3E-hepten-2-one | fresh and sweet, green | NA | NA | 13.85 ± 2.76 a |
48 | furan, 2-pentyl- | fruity, green | NA | 11.78 ± 2.55 a | NA |
49 | thiourea, N-methyl-N’-phenyl- | - | 5.75 ± 0.99 a | 6.26 ± 1 a | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Zhang, Y.; Chen, C.; Zhong, S.; Li, M.; Xu, K.; Zhu, Y.; Li, P.; You, S.; Jin, S. Chemical and Quality Analysis of Beauty Tea Processed from Fresh Leaves of Tieguanyin Variety with Different Puncturing Degrees. Foods 2023, 12, 1737. https://doi.org/10.3390/foods12091737
Li M, Zhang Y, Chen C, Zhong S, Li M, Xu K, Zhu Y, Li P, You S, Jin S. Chemical and Quality Analysis of Beauty Tea Processed from Fresh Leaves of Tieguanyin Variety with Different Puncturing Degrees. Foods. 2023; 12(9):1737. https://doi.org/10.3390/foods12091737
Chicago/Turabian StyleLi, Mingjin, Yunzhi Zhang, Chunmei Chen, Sitong Zhong, Minxuan Li, Kai Xu, Yanyu Zhu, Pengchun Li, Shijun You, and Shan Jin. 2023. "Chemical and Quality Analysis of Beauty Tea Processed from Fresh Leaves of Tieguanyin Variety with Different Puncturing Degrees" Foods 12, no. 9: 1737. https://doi.org/10.3390/foods12091737
APA StyleLi, M., Zhang, Y., Chen, C., Zhong, S., Li, M., Xu, K., Zhu, Y., Li, P., You, S., & Jin, S. (2023). Chemical and Quality Analysis of Beauty Tea Processed from Fresh Leaves of Tieguanyin Variety with Different Puncturing Degrees. Foods, 12(9), 1737. https://doi.org/10.3390/foods12091737