Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sample Preparation
2.2. LIBS Experiments
3. Results and Discussion
3.1. LIBS Spectra of the Samples
3.2. Quantitative Analysis Modelling
3.2.1. Data Standardization
3.2.2. Feature Variable Selection
3.2.3. Residual Correction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, R.P.; Zou, M.; Qin, Y.; Tan, G.D.; Huang, S.P.; Quan, H.G.; Zhou, J.Y.; Liao, H. Modeling of the potential geographical distribution of three Fritillaria species under climate change. Front. Plant Sci. 2022, 12, 749838. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.X.; Li, R.; Liao, J.Q.; Hu, Y.Q.; Gao, Y.D.; Wang, M.C.; Li, J.; Zhao, Q. Integrative analysis of the steroidal alkaloids distribution and biosynthesis of Bulbus Fritillariae cirrhosae through metabolome and transcriptome analyses. BMC Genom. 2022, 23, 511. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Cui, X.T.; Teng, G.E.; Khan, M.N.; Wang, Q.Q. Distinguish Fritillaria cirrhosa and non-Fritillaria cirrhosa using laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2021, 23, 085507. [Google Scholar] [CrossRef]
- Hu, G.L.; Chen, R.Z.; Cheng, K.; Lv, X.Y. Rapid quantitative determination of Fritillaria thunbergia miq mixed into Fritillaria cirrhosa D. don by near-infrared diffuse reflectance spectroscopy. Chin. J. Pharm. Anal. 2005, 25, 150–152. [Google Scholar]
- Shen, T.T.; Li, W.J.; Zhang, X.; Kong, W.W.; Liu, F.; Wang, W.; Peng, J.Y. High-sensitivity determination of nutrient elements in panax notoginseng by laser-induced breakdown spectroscopy and chemometric methods. Molecules 2019, 24, 1525. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Wang, Q.Q.; Teng, G.E.; Xu, X.J.; Zhao, Z.F.; Chen, G.Y. Application of laser-induced breakdown spectroscopy combined with chemometrics for identification of penicillin manufacturers. Appl. Sci. 2022, 12, 4981. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Cui, X.T.; Teng, G.E.; Zhao, Y.; Wei, K. Evaluation and improvement of model robustness for plastics samples classification by laser-induced breakdown spectroscopy. Opt. Laser Technol. 2020, 125, 106035. [Google Scholar] [CrossRef]
- Cui, X.T.; Wang, Q.Q.; Wei, K.; Teng, G.E.; Xu, X.J. Laser-induced breakdown spectroscopy for the classification of wood materials using machine learning methods combined with feature selection. Plasma Sci. Technol. 2021, 23, 055505. [Google Scholar] [CrossRef]
- Khan, M.N.; Wang, Q.Q.; Idrees, B.S.; Xiangli, W.T.; Teng, G.E.; Cui, X.T.; Zhao, Z.F.; Wei, K.; Abrar, M. A review on laser-induced breakdown spectroscopy in different cancers diagnosis and classification. Front. Phys. 2022, 10, 821057. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Xiangli, W.T.; Teng, G.E.; Cui, X.T.; Wei, K. A brief review of laser-induced breakdown spectroscopy for human and animal soft tissues: Pathological diagnosis and physiological detection. Appl. Spectrosc. Rev. 2021, 56, 221–241. [Google Scholar] [CrossRef]
- Han, J.H.; Moon, Y.; Lee, J.J.; Choi, S.; Kim, Y.; Jeong, S. Differentiation of cutaneous melanoma from surrounding skin using laser-induced breakdown spectroscopy. Biomed. Opt. Express 2016, 7, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.H.; Keshavarz, M.H.; Atabak, H.R.H. Introducing laser induced breakdown spectroscopy (LIBS) as a novel, cheap and non-destructive method to study the changes of mechanical properties of plastic bonded explosives (PBX). Z. Anorg. Allg. Chem. 2018, 644, 1667–1673. [Google Scholar] [CrossRef]
- Shaik, A.K.; Epuru, N.R.; Syed, H.; Byram, C.; Soma, V.R. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt. Express 2018, 26, 8069–8083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tang, Y.; Shi, A.R.; Bao, L.R.; Shen, Y.; Shen, R.Q.; Ye, Y.H. Recent developments in spectroscopic techniques for the detection of explosives. Materials 2018, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Sheta, S.; Afgan, M.S.; Hou, Z.Y.; Yao, S.C.; Zhang, L.; Li, Z.; Wang, Z. Coal analysis by laser-induced breakdown spectroscopy: A tutorial review. J. Anal. Atom. Spectrom. 2019, 34, 1047–1082. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Y.M.; Zhang, Q.Z. Laser-induced breakdown spectroscopy-based coal-rock recognition: An in situ sampling and recognition method. IEEE Access 2021, 9, 164732–164741. [Google Scholar] [CrossRef]
- Dong, M.R.; Wei, L.P.; Gonzalez, J.J.; Oropeza, D.; Chirinos, J.; Mao, X.L.; Lu, J.D.; Russo, R.E. Coal discrimination analysis using tandem laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 2020, 92, 7003–7010. [Google Scholar] [CrossRef]
- Liu, K.; Tian, D.; Li, C.; Li, Y.C.; Yang, G.; Ding, Y. A review of laser-induced breakdown spectroscopy for plastic analysis. TrAC-Trend. Anal. Chem. 2019, 110, 327–334. [Google Scholar] [CrossRef]
- Junjuri, R.; Zhang, C.; Barman, I.; Gundawar, M.K. Identification of post-consumer plastics using laser-induced breakdown spectroscopy. Polym. Test. 2019, 76, 101–108. [Google Scholar] [CrossRef]
- Peng, X.Y.; Xu, B.H.; Xu, Z.Y.; Yan, X.T.; Zhang, N.; Qin, Y.Z.; Ma, Q.X.; Li, J.M.; Zhao, N.; Zhang, Q.M. Accuracy improvement in plastics classification by laser-induced breakdown spectroscopy based on a residual network. Opt. Express 2021, 29, 33269–33280. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Casado-Gavalda, M.P.; Dixit, Y.; Cama-Moncunill, R.; Cullen, P.J.; Sullivan, C. Laser-induced breakdown spectroscopy (LIBS) for food analysis: A review. Trends Food Sci. Tech. 2017, 65, 80–93. [Google Scholar] [CrossRef]
- Senesi, G.S.; Cabral, J.; Menegatti, C.R.; Marangoni, B.; Nicolodelli, G. Recent advances and future trends in LIBS applications to agricultural materials and their food derivatives: An overview of developments in the last decade (2010–2019). Part II. Crop plants and their food derivatives. TrAC-Trend. Anal. Chem. 2019, 118, 453–469. [Google Scholar] [CrossRef]
- Velasquez-Ferrin, A.; Babos, D.V.; Marina-Montes, C.; Anzano, J. Rapidly growing trends in laser-induced breakdown spectroscopy for food analysis. Appl. Spectrosc. Rev. 2021, 56, 492–512. [Google Scholar] [CrossRef]
- Lin, X.M.; Li, H.; Yao, Q.H. Signal detection of carbon in iron-based alloy by double-pulse laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2015, 17, 953–957. [Google Scholar] [CrossRef]
- Qi, L.F.; Sun, L.X.; Xin, Y.; Cong, Z.B.; Li, Y.; Yu, H.B. Application of stand-off double-pulse laser-induced breakdown spectroscopy in elemental analysis of magnesium alloy. Plasma Sci. Technol. 2015, 17, 676–681. [Google Scholar] [CrossRef]
- Aberkane, S.M.; Abdelhamid, M.; Mokdad, F.; Yahiaoui, K.; Abdelli-Messaci, S.; Harith, M.A. Sorting zamak alloys via chemometric analysis of their LIBS spectra. Anal. Methods 2017, 9, 3696–3703. [Google Scholar] [CrossRef]
- Yang, Y.W.; Hao, X.J.; Zhang, L.L.; Ren, L. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors 2020, 20, 1393. [Google Scholar] [CrossRef]
- Sheng, L.W.; Zhang, T.L.; Niu, G.H.; Wang, K.; Tang, H.S.; Duan, Y.X.; Li, H. Classification of iron ores by laser-induced breakdown spectroscopy (LIBS) combined with random forest (RF). J. Anal. Atom. Spectrom. 2015, 30, 453–458. [Google Scholar] [CrossRef]
- Wang, P.; Li, N.; Yan, C.H.; Feng, Y.Z.; Ding, Y.; Zhang, T.L.; Li, H. Rapid quantitative analysis of the acidity of iron ore by the laser-induced breakdown spectroscopy (LIBS) technique coupled with variable importance measures-random forests (VIM-RF). Anal. Methods 2019, 11, 3419–3428. [Google Scholar] [CrossRef]
- Villas-Boas, P.R.; Franco, M.A.; Martin-Neto, L.; Gollany, H.T.; Milori, D.M.B.P. Applications of laser-induced breakdown spectroscopy for soil analysis, part I: Review of fundamentals and chemical and physical properties. Eur. J. Soil Sci. 2020, 71, 789–804. [Google Scholar] [CrossRef]
- Yi, R.X.; Li, J.M.; Yang, X.Y.; Zhou, R.; Yu, H.W.; Hao, Z.Q.; Guo, L.B.; Li, X.Y.; Zeng, X.Y.; Lu, Y.F. Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence. Anal. Chem. 2017, 89, 2334–2337. [Google Scholar] [CrossRef] [PubMed]
- Gazeli, O.; Stefas, D.; Couris, S. Sulfur detection in soil by laser induced breakdown spectroscopy assisted by multivariate analysis. Materials 2021, 14, 541. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.N.; Ma, Q.; Liu, S.S.; Shi, X.Y.; Zhang, Q.; Wu, Z.S.; Qiao, Y.J. Monitoring As and Hg variation in An-Gong-Niu-Huang Wan (AGNH) intermediates in a pilot scale blending process using laser-induced breakdown spectroscopy. Spectrochim. Acta A 2015, 151, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.W.; Lv, J.X.; Liu, K.; Li, Q.Z.; Tang, Z.Y.; Zhou, R.; Zhang, W.; Chen, J.; Liu, K.; Li, X.Y.; et al. Fast detection of harmful trace elements in glycyrrhiza using standard addition and internal standard method-Laser-induced breakdown spectroscopy (SAIS-LIBS). Microchem. J. 2021, 168, 106408. [Google Scholar] [CrossRef]
- Wang, J.M.; Xue, S.W.; Zheng, P.C.; Chen, Y.Y.; Peng, R. Determination of lead and copper in ligusticum wallichii by laser-induced breakdown spectroscopy. Anal. Lett. 2017, 50, 2000–2011. [Google Scholar] [CrossRef]
- Han, W.W.; Su, M.G.; Sun, D.X.; Yin, Y.P.; Wang, Y.P.; Gao, C.L.; Yang, F.C.; Fu, Y.B. Analysis of metallic elements dissolution in the astragalus at different decocting time by using LIBS technique. Plasma Sci. Technol. 2020, 22, 085501. [Google Scholar] [CrossRef]
- Nisar, S.; Dastgeer, G.; Shafiq, M.; Usman, M. Qualitative and semi-quantitative analysis of health-care pharmaceutical products using laser-induced breakdown spectroscopy. J. Pharm. Anal. 2019, 9, 20–24. [Google Scholar] [CrossRef]
- Iqbal, J.; Asghar, H.; Shah, S.K.H.; Naeem, M.; Abbasi, S.A.; Ali, R. Elemental analysis of sage (herb) using calibration-free laser-induced breakdown spectroscopy. Appl. Opt. 2020, 59, 4927–4932. [Google Scholar] [CrossRef]
- Hao, N.; Gao, X.; Zhao, Q.; Miao, P.Q.; Cheng, J.W.; Li, Z.; Liu, C.Q.; Li, W.L. Rapid origin identification of chrysanthemum morifolium using laser-induced breakdown spectroscopy and chemometrics. Postharvest Biol. Tec. 2023, 197, 112226. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, Y.; Cui, P.D.; Hao, N.; Liu, C.Q.; Miao, P.Q.; Li, Z. Laser-induced breakdown spectroscopy (LIBS) for the detection of exogenous contamination of metal elements in lily bulbs. Spectrochim. Acta B 2023, 287, 122053. [Google Scholar] [CrossRef]
Sample Number | Fritillaria cirrhosa (g) | Fritillaria thunbergii (g) | Fritillaria thunbergii Content (%) |
---|---|---|---|
1 | 0.0000 | 1.0000 | 100.0000 |
2 | 0.0502 | 0.9501 | 95.9351 |
3 | 0.1001 | 0.9002 | 89.9810 |
4 | 0.1505 | 0.8505 | 85.0020 |
5 | 0.2008 | 0.8005 | 79.9621 |
6 | 0.2500 | 0.7500 | 75.0150 |
7 | 0.3008 | 0.7001 | 70.0030 |
8 | 0.3507 | 0.6501 | 65.0105 |
9 | 0.4002 | 0.6005 | 59.9560 |
10 | 0.4505 | 0.5506 | 55.0105 |
11 | 0.5003 | 0.5005 | 49.9900 |
12 | 0.5506 | 0.4503 | 45.0005 |
13 | 0.6001 | 0.4008 | 39.9920 |
14 | 0.6503 | 0.3500 | 35.0420 |
15 | 0.7001 | 0.3000 | 30.0530 |
16 | 0.7506 | 0.2500 | 25.0000 |
17 | 0.8009 | 0.2007 | 20.0539 |
18 | 0.8507 | 0.1501 | 15.0350 |
19 | 0.9008 | 0.1003 | 10.0070 |
20 | 0.9503 | 0.0507 | 5.0185 |
21 | 1.0040 | 0.0000 | 0.0000 |
Element | Ca II | Ca II | Ca I | Na I | Na I | K I | K I |
---|---|---|---|---|---|---|---|
Wavelength (nm) | 393.3 | 396.8 | 422.6 | 588.9 | 589.5 | 766.4 | 769.8 |
Data Normalization Methods | MC | NA | SNV | NM |
---|---|---|---|---|
MAE (%) | 24.2832 | 48.0711 | 8.6604 | 8.6111 |
RMSEP (%) | 26.6806 | 60.7073 | 10.8970 | 10.8760 |
Order of Importance | Wave Length (nm) | Element | Importance Weights | Order of Importance | Wave Length (nm) | Element | Importance Weights |
---|---|---|---|---|---|---|---|
1 | 589.6 | Na I | 1.0000 | 30 | 393.0 | Ca II | 0.1348 |
2 | 590.2 | Na I | 0.7738 | 31 | 396.4 | Ca II | 0.1290 |
3 | 393.6 | Ca II | 0.7149 | 32 | 588.6 | Na I | 0.1261 |
4 | 587.2 | Na I | 0.5281 | 33 | 589.1 | Na I | 0.1243 |
5 | 770.7 | K I | 0.4977 | 34 | 767.0 | K I | 0.1172 |
6 | 770.4 | K I | 0.4790 | 35 | 421.5 | Ca I | 0.1171 |
7 | 422.9 | Ca I | 0.4503 | 36 | 393.3 | Ca II | 0.1123 |
8 | 769.1 | K I | 0.4119 | 37 | 770.2 | K I | 0.1116 |
9 | 764.4 | K I | 0.3929 | 38 | 764.7 | K I | 0.1067 |
10 | 768.9 | K I | 0.3683 | 39 | 769.7 | K I | 0.1038 |
11 | 587.5 | Na I | 0.3464 | 40 | 766.0 | K I | 0.1001 |
12 | 397.0 | Ca II | 0.3338 | 41 | 769.9 | K I | 0.0939 |
13 | 771.2 | K I | 0.3215 | 42 | 392.7 | Ca II | 0.0935 |
14 | 423.5 | Ca I | 0.3163 | 43 | 589.9 | Na I | 0.0858 |
15 | 764.9 | K I | 0.3150 | 44 | 768.3 | K I | 0.0714 |
16 | 765.2 | K I | 0.3010 | 45 | 767.6 | K I | 0.0645 |
17 | 768.6 | K I | 0.2787 | 46 | 422.4 | Ca I | 0.0613 |
18 | 765.5 | K I | 0.2757 | 47 | 422.6 | Ca I | 0.0502 |
19 | 423.2 | Ca I | 0.2688 | 48 | 769.4 | K I | 0.0416 |
20 | 421.8 | Ca I | 0.2527 | 49 | 392.5 | Ca II | 0.0391 |
21 | 396.1 | Ca II | 0.2355 | 50 | 767.3 | K I | 0.0272 |
22 | 588.0 | Na I | 0.2331 | 51 | 766.2 | K I | 0.0163 |
23 | 771.0 | K I | 0.2170 | 52 | 768.1 | K I | 0.0149 |
24 | 766.8 | K I | 0.2160 | 53 | 767.8 | K I | 0.0142 |
25 | 765.7 | K I | 0.2109 | 54 | 588.3 | Na I | 0.0116 |
26 | 589.5 | Na I | 0.2045 | 55 | 588.9 | Na I | 0.0091 |
27 | 423.8 | Ca I | 0.1751 | 56 | 422.1 | Ca I | 0.0090 |
28 | 587.8 | Na I | 0.1438 | 57 | 588.8 | Na I | 0.0046 |
29 | 396.7 | Ca II | 0.1358 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Teng, G.; Wang, Q.; Xu, X.; Zhao, Z.; Liu, H.; Bao, M.; Zheng, Y.; Luo, T.; Lu, B. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods 2023, 12, 1710. https://doi.org/10.3390/foods12081710
Wei K, Teng G, Wang Q, Xu X, Zhao Z, Liu H, Bao M, Zheng Y, Luo T, Lu B. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods. 2023; 12(8):1710. https://doi.org/10.3390/foods12081710
Chicago/Turabian StyleWei, Kai, Geer Teng, Qianqian Wang, Xiangjun Xu, Zhifang Zhao, Haida Liu, Mengyu Bao, Yongyue Zheng, Tianzhong Luo, and Bingheng Lu. 2023. "Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy" Foods 12, no. 8: 1710. https://doi.org/10.3390/foods12081710