Towards Sustainable and Nutritionally Enhanced Flatbreads from Sprouted Sorghum, Tapioca, and Cowpea Climate-Resilient Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flours
2.2. Flatbread Formulation, Production, and Characterization
2.2.1. Experimental Design
2.2.2. Flatbread Production
2.2.3. Texture
2.2.4. Moisture Content (MC) and Water Activity (aw)
2.3. Choice of Formulations: Technological, Nutritional and Economic Criteria
- Physico-chemical properties
- Nutritional value
- Economic sustainability
2.4. Characterization of Selected Flatbreads Formulations
2.4.1. Relevant Starch Nutritional Fractions
2.4.2. Total Polyphenol Content (TPC) and DPPH• Free Radical-Scavenging Activity Analysis
2.4.3. Colour Analysis
2.4.4. Preliminary Sensory Evaluation
2.5. Statistical Analysis
3. Results and Discussion
3.1. Experimental Design
3.2. Choice of Formulations: Technological, Nutritional, and Economic Criteria
- Physico-chemical properties
- Nutritional value
- Economic sustainability
3.3. Characterization of Selected Flatbreads
3.3.1. Relevant Starch Nutritional Fractions
3.3.2. Total Phenolic Content (TPC) and DPPH• Free Radical Scavenging Activity
3.3.3. Colour Analysis
3.3.4. Preliminary Sensory Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Noorfarahzilah, M.; Lee, J.S.; Sharifudin, M.S.; Fadzelly, M.A.; Hasmadi, M. Applications of composite flour in development of food products. Int. Food Res. J. 2014, 21, 2061. [Google Scholar]
- Noort, M.W.J.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.M.M.; de Kock, H.L.; Magano, N.; Taylor, J.R.N. Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Al-Dmoor, H.M. Flat bread: Ingredients and fortification. Qual. Assur. Saf. Crops Foods 2012, 4, 2–8. [Google Scholar] [CrossRef]
- Pasqualone, A. Traditional flat breads spread from the Fertile Crescent: Production process and history of baking systems. J. Ethn. Foods 2018, 5, 10–19. [Google Scholar] [CrossRef]
- Renzetti, S.; Heetesonne, I.; Ngadze, R.T.; Linnemann, A.R. Dry Heating of Cowpea Flour below Biopolymer Melting Temperatures Improves the Physical Properties of Bread Made from Climate-Resilient Crops. Foods 2022, 11, 1554. [Google Scholar] [CrossRef]
- Renzetti, S.; Aisala, H.; Ngadze, R.T.; Linnemann, A.R.; Noort, M.W. Bread Products from Blends of African Climate Resilient Crops: Baking Quality, Sensory Profile and Consumers’ Perception. Foods 2023, 12, 689. [Google Scholar] [CrossRef]
- Xu, T. Bioactive Factors and Processing Technology for Cereal Foods; Wang, J., Sun, B., Tsao, R., Eds.; Springer: Singapore, 2019; pp. 103–135. ISBN 978-981-13-6166-1. [Google Scholar]
- Singh, A.; Sharma, S.; Singh, B. Effect of germination time and temperature on the functionality and protein solubility of sorghum flour. J. Cereal Sci. 2017, 76, 131–139. [Google Scholar] [CrossRef]
- Zhu, F. Composition, structure, physicochemical properties, and modifications of cassava starch. Carbohydr. Polym. 2015, 122, 456–480. [Google Scholar] [CrossRef]
- Falade, K.O.; Akingbala, J.O. Utilization of Cassava for Food. Food Rev. Int. 2010, 27, 51–83. [Google Scholar] [CrossRef]
- Abass, A.B.; Awoyale, W.; Alenkhe, B.; Malu, N.; Asiru, W.; Manyong, V.; Sanginga, N. Can food technology innovation change the status of a food security crop? A review of cassava transformation into “bread” in Africa. Food Rev. Int. 2018, 34, 87–102. [Google Scholar] [CrossRef]
- Kerr, W.L.; Ward, C.D.W.; McWatters, K.H.; Resurreccion, A.V.A. Effect of Milling and Particle Size on Functionality and Physicochemical Properties of Cowpea Flour. Cereal Chem. 2000, 77, 213–219. [Google Scholar] [CrossRef]
- Da Silva, A.C.; Da Costa Santos, D.; Junior, D.L.T.; Da Silva, P.B.; Dos Santos, R.C.; Siviero, A. Cowpea: A strategic legume species for food security and health. In Legume Seed Nutraceutical Research; Jimenez-Lopez, J.C., Clemente, A., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
- Marchini, M.; Marti, A.; Tuccio, M.G.; Bocchi, E.; Carini, E. Technological functionality of composite flours from sorghum, tapioca and cowpea. Int. J. Food Sci. Technol. 2021, 57, 4736–4743. [Google Scholar] [CrossRef]
- Marchini, M.; Marti, A.; Folli, C.; Prandi, B.; Ganino, T.; Conte, P.; Fadda, C.; Mattarozzi, M.; Carini, E. Sprouting of Sorghum (Sorghum bicolor [L.] Moench): Effect of Drying Treatment on Protein and Starch Features. Foods 2021, 10, 407. [Google Scholar] [CrossRef]
- Flander, L.; Salmenkallio-Marttila, M.; Suortti, T.; Autio, K. Optimization of ingredients and baking process for improved wholemeal oat bread quality. LWT 2007, 40, 860–870. [Google Scholar] [CrossRef]
- Scazzina, F.; Del Rio, D.; Serventi, L.; Carini, E.; Vittadini, E. Development of Nutritionally Enhanced Tortillas. Food Biophys. 2008, 3, 235–240. [Google Scholar] [CrossRef]
- Bejosano, F.P.; Joseph, S.; Lopez, R.M.; Kelekci, N.N.; Waniska, R.D. Rheological and Sensory Evaluation of Wheat Flour Tortillas During Storage. Cereal Chem. 2005, 82, 256–263. [Google Scholar] [CrossRef]
- Vincent, A.; Grande, F.; Compaoré, E.; Amponsah Annor, G.; Addy, P.A.; Aburime, L.C.; Ahmed, D.; Bih Loh, A.M.; Dahdouh Cabia, S.; Deflache, N.; et al. FAO/INFOODS Food Composition Table for Western Africa (2019) User Guide & Condensed Food Composition Table/Table de Composition des Aliments FAO/INFOODS Pour l’Afrique de l’Ouest (2019) Guide D’utilisation & Table de Composition des Aliments Condensée. Rome, FAO. 2020. Available online: http://www.fao.org/3/ca7779b/CA7779B.PDF (accessed on 24 May 2022).
- Leslie, J.; Ciemins, E.; Essama, S.B. Female Nutritional Status across the Life-Span in Sub-Saharan Africa. 1. Prevalence Patterns. Food Nutr. Bull. 1997, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Lartey, A. Maternal and child nutrition in Sub-Saharan Africa: Challenges and interventions. Proc. Nutr. Soc. 2008, 67, 105–108. [Google Scholar] [CrossRef]
- Englyst, K.N.; Vinory, S.; Englyst, H.N.; Lang, V. Glycaemic index of cerealproducts explained by their content of rapidly and slowly available glucose. Br. J. Nutr. 2003, 89, 329–339. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Cirlini, M.; Morini, E.; Rinaldi, M.; Ganino, T.; Chiavaro, E. Effect of chestnut flour supplementation on physico-chemical properties and volatiles in bread making. LWT 2013, 53, 233–239. [Google Scholar] [CrossRef]
- Zhi, R.; Zhao, L.; Shi, J. Improving the sensory quality of flavored liquid milk by engaging sensory analysis and consumer preference. J. Dairy Sci. 2016, 99, 5305–5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchini, M.; Arduini, R.; Carini, E. Insight into molecular and rheological properties of sprouted sorghum flour. Food Chem. 2021, 356, 129603. [Google Scholar] [CrossRef] [PubMed]
- Serventi, L.; Carini, E.; Curti, E.; Vittadini, E. Effect of formulation on physicochemical properties and water status of nutritionally enhanced tortillas. J. Sci. Food Agric. 2009, 89, 73–79. [Google Scholar] [CrossRef]
- Abd Elmoneim, O.E.; Bernhardt, R. Influence of grain germination on functional properties of sorghum flour. Food Chem. 2010, 121, 387–392. [Google Scholar]
- Collar, C.; Jiménez, T.; Conte, P.; Fadda, C. Impact of ancient cereals, pseudocereals and legumes on starch hydrolysis and antiradical activity of technologically viable blended breads. Carbohydr. Polym. 2014, 113, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. S2), S33–S50. [Google Scholar]
- Lehmann, U.; Robin, F. Slowly digestible starch e its structure and health implications: A review. Trends Food Sci. Technol. 2007, 18, e346–e355. [Google Scholar] [CrossRef]
- Gamel, T.H.; Linssen, J.P.; Mesallem, A.S.; Damir, A.A.; Shekib, L.A. Effect of seed treatments on the chemical composition and properties of two amaranth species: Starch and protein. J. Sci. Food Agric. 2005, 85, 319–327. [Google Scholar] [CrossRef]
- Chung, H.-J.; Liu, Q.; Hoover, R.; Warkentin, T.D.; Vandenberg, B. In vitro starch digestibility, expected glycemic index, and thermal and pasting properties of flours from pea, lentil and chickpea cultivars. Food Chem. 2008, 111, 316–321. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. High legume-wheat matrices: An alternative to promote bread nutritional value meeting dough viscoelastic restrictions. Eur. Food Res. Technol. 2012, 234, 273–284. [Google Scholar] [CrossRef]
- Cai, R.; Hettiarachchy, N.S.; Jalaluddin, M. High-Performance Liquid Chromatography Determination of Phenolic Constituents in 17 Varieties of Cowpeas. J. Agric. Food Chem. 2003, 51, 1623–1627. [Google Scholar] [CrossRef]
- Lemmens, E.; Moroni, A.V.; Pagand, J.; Heirbaut, P.; Ritala, A.; Karlen, Y.; Lê, K.; Broeck, H.C.V.D.; Brouns, F.J.; De Brier, N.; et al. Impact of Cereal Seed Sprouting on Its Nutritional and Technological Properties: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 305–328. [Google Scholar] [CrossRef] [Green Version]
- Gan, R.-Y.; Lui, W.-Y.; Wu, K.; Chan, C.-L.; Dai, S.-H.; Sui, Z.-Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; González-Aguilar, G.; Rouzaud-Sández, O.; Robles-Sánchez, M. Technologies applied to sorghum (Sorghum bicolor L. Moench): Changes in phenolic compounds and antioxidant capacity. Food Sci. Technol. 2018, 38, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Donkor, O.N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated grains–Sources of bioactive compounds. Food Chem. 2012, 135, 950–959. [Google Scholar] [CrossRef]
- Ragaee, S.; Guzar, I.; Dhull, N.; Seetharaman, K. Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread. LWT 2011, 44, 2147–2153. [Google Scholar] [CrossRef]
- Michalska, A.; Amigo-Benavent, M.; Zielinski, H.; del Castillo, M.D. Effect of bread making on formation of Maillard reaction products contributing to the overall antioxidant activity of rye bread. J. Cereal Sci. 2008, 48, 123–132. [Google Scholar] [CrossRef]
- Limbo, S.; Piergiovanni, L. Shelf life of minimally processed potatoes: Part 1. Effects of high oxygen partial pressures in combination with ascorbic and citric acids on enzymatic browning. Postharvest Biol. Technol. 2006, 39, 254–264. [Google Scholar] [CrossRef]
- | - | X1 | X2 | X3 | X4 | X5 |
---|---|---|---|---|---|---|
Exp. Name | Run Order | W (g) | T (g) | SS (g) | C (g) | Water (mL) |
F1 | 6 | 22 (11.2) | 22 (11.2) | 75 (38.1) | 78 (39.5) | 112.7 |
F2 | 5 | 32 (14.7) | 32 (14.7) | 75 (34.6) | 78 (36) | 110.8 |
F3 | 10 | 32 (12.5) | 22 (8.6) | 125 (48.6) | 78 (30.3) | 146.1 |
F4 | 8 | 22 (8.6) | 32 (12.5) | 125 (48.6) | 78 (30.3) | 147.8 |
F5 | 7 | 32 (12.5) | 22 (8.6) | 75 (29.2) | 128 (49.7) | 142.6 |
F6 | 11 | 22 (8.6) | 32 (12.5) | 75 (29.2) | 128 (49.7) | 130.8 |
F7 | 4 | 22 (7.4) | 22 (7.4) | 125 (42.1) | 128 (43.1) | 161 |
F8 | 9 | 32 (10.1) | 32 (10.1) | 125 (39.4) | 128 (40.4) | 183.3 |
F9 | 1 | 27 (10.5) | 27 (10.5) | 100 (38.9) | 103 (40.1) | 140 |
F10 | 2 | 27 (10.5) | 27 (10.5) | 100 (38.9) | 103 (40.1) | 140 |
F11 | 3 | 27 (10.5) | 27 (10.5) | 100 (38.9) | 103 (40.1) | 140 |
Trial | Puncture Test | One-Dimensional Extensibility Test | MC (g/100 g) | aw | ||
---|---|---|---|---|---|---|
- | P_f (N) | P_e (mm) | E_f (N) | E_e (mm) | - | - |
F1 | 3.84 ± 0.1 e | 11.45 ± 0.47 abc | 8.56 ± 0.39 b | 3.26 ± 0.53 b | 29.77 ± 0.34 bcde | 0.9087 ± 0.0013 bcd |
F2 | 2.38 ± 0.28 f | 10.26 ± 0.42 cd | 5.47 ± 0.8 f | 3.06 ± 0.46 bc | 29.34 ± 0.01 de | 0.9104 ± 0.0009 bc |
F3 | 4.78 ± 0.95 cde | 11.31 ± 1.95 abc | 7.54 ± 1.32 bc | 2.76 ± 0.6 bc | 30.93 ± 0.31 b | 0.9064 ± 0.0008 cde |
F4 | 2.92 ± 0.7 4 f | 12.81 ± 1.32 a | 5.98 ± 1.32 ef | 2.11 ± 0.63 d | 32.74 ± 0.68 a | 0.9184 ± 0.0041 a |
F5 | 5.37 ± 0.63 bc | 10.72 ± 1.05 bcd | 10.01 ± 0.73 a | 3.1 ± 0.51 bc | 30.03 ± 0.45 bcd | 0.9028 ± 0.0042 de |
F6 | 5.89 ± 1.13 b | 12.64 ± 0.37 ab | 7.43 ± 1.12 bcd | 3.23 ± 0.54 b | 29.57 ± 0.52 cde | 0.8964 ± 0.002 f |
F7 | 2.51 ± 0.52 f | 9.76 ± 1.34 cd | 6.88 ± 1.57 cde | 2.6 ± 0.38 c | 32.45 ± 0.47 a | 0.9173 ± 0.0003 a |
F8 | 3.99 ± 0.41 e | 11.41 ± 1.67 abc | 7.42 ± 1.6 bcd | 2.75 ± 0.54 bc | 33.3 ± 0.02 a | 0.9148 ± 0.0031 ab |
F9 | 4.99 ± 1.07 bcd | 9.95 ± 0.35 cd | 6.43 ± 1.22 cdef | 2.73 ± 0.5 bc | 26.1 ± 0 f | 0.884 ± 0.009 g |
F10 | 4.51 ± 0.84 cde | 9.29 ± 0.85 d | 6.25 ± 0.6 def | 2.64 ± 0.28 c | 29.52 ± 0.89 cde | 0.9021 ± 0.0036 ef |
F11 | 4.36 ± 0.38 de | 10.05 ± 0.73 cd | 7.12 ± 0.82 cde | 3.1 ± 0.31 bc | 28.66 ± 1.36 e | 0.9015 ± 0.0027 ef |
STD | 7.78 ± 1.26 a | 12.91 ± 3.32 a | 6.12 ± 1.02 ef | 7.32 ± 0.6 a | 30.7 ± 0.28 bc | 0.9132 ± 0.0010 ab |
Component (100 g) | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | STD |
---|---|---|---|---|---|---|---|---|---|---|
Energy (kcal) | 206 (2) | 219 (4) | 172 (0) | 171 (0) | 235 (4) | 235 (4) | 192 (0) | 201 (2) | 203 (2) | 354 |
Protein (g) | 14.45 (2) | 13.74 (0) | 13.58 (0) | 13.17 (0) | 15.94 (4) | 15.54 (4) | 15.15 (4) | 14.62 (2) | 14.56 (2) | 12.00 |
Fat (g) | 1.94 (1) | 1.89 (0) | 2.09 (2) | 2.03 (2) | 1.86 (0) | 1.80 (0) | 1.99 (2) | 1.96 (1) | 1.95 (1) | 2.2 |
Carbohydrate (g) | 63.42 (1) | 64.27 (2) | 65.37 (2) | 65.94 (2) | 60.69 (0) | 61.26 (0) | 62.61 (0) | 63.24 (1) | 63.31 (1) | 65.3 |
Fibre (g) | 9.65 (1) | 9.52 (0) | 9.31 (0) | 9.00 (0) | 10.32 (2) | 10.01 (2) | 9.77 (2) | 9.67 (1) | 9.66 (1) | 12.2 |
Ash (g) | 2.12 (1) | 2.07 (0) | 1.90 (0) | 1.92 (0) | 2.34 (2) | 2.35 (2) | 2.18 (2) | 2.13 (1) | 2.13 (1) | 1.3 |
Ca (mg) | 46.59 (1) | 47.41 (2) | 38.35 (0) | 39.16 (0) | 53.42 (2) | 54.23 (2) | 45.47 (0) | 46.10 (1) | 46.29 (1) | 45.00 |
Fe (mg) | 3.40 (2) | 3.40 (2) | 2.89 (0) | 2.78 (0) | 4.01 (4) | 3.89 (4) | 3.41 (4) | 3.38 (0) | 3.39 (2) | 4.9 |
Mg (mg) | 145.64 (1) | 137.70 (0) | 131.53 (0) | 130.87 (0) | 162.73 (2) | 162.06 (2) | 153.45 (2) | 147.52 (1) | 146.80 (1) | 68 |
P (mg) | 203.57 (1) | 200.85 (0) | 165.54 (0) | 160.09 (0) | 246.47 (2) | 241.03 (2) | 205.06 (2) | 203.10 (1) | 203.28 (1) | 244 |
K (mg) | 604.43 (1) | 574.76 (0) | 527.19 (0) | 521.47 (0) | 695.07 (2) | 689.35 (2) | 632.75 (2) | 610.65 (1) | 608.27 (1) | 356 |
Na (mg) | 9.80 (1) | 9.27 (0) | 7.81 (0) | 7.73 (0) | 11.99 (2) | 11.91 (2) | 10.29 (2) | 9.89 (1) | 9.86 (1) | 5.00 |
Zn (mg) | 2.60 (2) | 2.46 (0) | 2.56 (0) | 2.49 (0) | 2.76 (4) | 2.69 (4) | 2.75 (4) | 2.64 (2) | 2.63 (2) | 2.00 |
Cu (mg) | 0.52 (1) | 0.49 (0) | 0.51 (0) | 0.50 (0) | 0.56 (2) | 0.55 (2) | 0.56 (2) | 0.53 (1) | 0.53 (1) | 0.27 |
Vit A (µg RE) | 0.79 (2) | 0.72 (0) | 0.61 (0) | 0.61 (0) | 1.00 (4) | 1.00 (4) | 0.86 (4) | 0.81 (2) | 0.80 (2) | 0 |
Vit E (mg) | 1.07 (1) | 0.99 (0) | 1.22 (2) | 1.21 (2) | 0.97 (0) | 0.96 (0) | 1.17 (2) | 1.10 (1) | 1.09 (1) | 0.23 |
Vit C (mg) | 0.78 (1) | 0.76 (0) | 0.60 (0) | 0.64 (0) | 0.93 (2) | 0.97 (2) | 0.81 (2) | 0.79 (1) | 0.79 (1) | 0 |
Thiamine (mg) | 0.39 (1) | 0.38 (0) | 0.37 (0) | 0.36 (0) | 0.43 (2) | 0.42 (2) | 0.41 (2) | 0.39 (1) | 0.39 (1) | 0.37 |
Riboflavin (mg) | 0.12 (1) | 0.12 (0) | 0.12 (0) | 0.12 (0) | 0.13 (2) | 0.13 (2) | 0.13 (2) | 0.12 (1) | 0.12 (1) | 0.09 |
Niacin (mg) | 3.36 (1) | 3.27 (0) | 3.75 (2) | 3.68 (2) | 3.09 (0) | 3.02 (0) | 3.47 (2) | 3.40 (1) | 3.38 (1) | 3.3 |
Pantothenic acid | 1.05 (1) | 0.95 (0) | 1.34 (2) | 1.34 (2) | 0.81 (0) | 0.81 (0) | 1.16 (2) | 1.09 (1) | 1.07 (1) | n.a. |
Vitamin B6 (mg) | 0.41 (2) | 0.43 (2) | 0.40 (0) | 0.41 (1) | 0.40 (0) | 0.41 (2) | 0.39 (0) | 0.40 (1) | 0.41 (1) | 0.49 |
Folate (µg) | 191.83 (1) | 180.60 (0) | 153.66 (0) | 155.99 (0) | 230.31 (2) | 232.65 (2) | 202.32 (2) | 193.97 (1) | 193.15 (1) | 40 |
Total score | 29 | 12 | 10 | 11 | 44 | 46 | 46 | 26 | 28 | - |
Flour | Price ($/kg) | |||
---|---|---|---|---|
- | Sierra Leone | Tanzania | Burundi | Togo |
W | 0.71 | 1.38 | 0.79 | 1.17 |
T | 0.59 | 1.08 | 0.31 | 1.10 |
S | 0.66 | 1.29 | 0.68 | 0.50 |
C | 0.71 | 2.15 | 0.73 | 1.26 |
F1 | 0.68 | 1.62 | 0.67 | 0.94 |
F2 | 0.68 | 1.58 | 0.66 | 0.96 |
F3 | 0.68 | 1.54 | 0.68 | 0.87 |
F4 | 0.67 | 1.53 | 0.66 | 0.86 |
F5 | 0.69 | 1.71 | 0.69 | 1.01 |
F6 | 0.68 | 1.70 | 0.67 | 1.01 |
F7 | 0.68 | 1.65 | 0.68 | 0.92 |
F8 | 0.68 | 1.63 | 0.67 | 0.94 |
F9 | 0.68 | 1.62 | 0.67 | 0.94 |
- | F4 | F6 | F7 | STD |
---|---|---|---|---|
Colour a | ||||
L* | 53.3 ± 1.71 d | 57.11 ± 1.97 b | 54.63 ± 1.26 c | 67.37 ± 1.87 a |
a* | 6.38 ± 0.62 a | 6.58 ± 0.93 a | 6.89 ± 0.68 a | 3.8 ± 0.54 b |
b* | 10.59 ± 1.24 c | 14.62 ± 1.71 a | 13.15 ± 1.17 b | 10.94 ± 0.84 c |
ΔE (STD as the reference) | 14.3 | 11.2 | 13.3 | - |
Sensory analysis d | ||||
Acceptability test | ||||
Consistency | 5.22 ± 0.97 b | 6.26 ± 1.06 a | 6.15 ± 0.91 a | 6.33 ± 0.92 a |
Appearance | 5.89 ± 1.01 c | 6.48 ± 1.09 ab | 6.44 ± 0.89 b | 7 ± 0.83 a |
Flavour | 6.15 ± 1.03 b | 5.44 ± 0.97 c | 6.78 ± 0.97 a | 6.89 ± 0.89 a |
Overall acceptability | 5.7 ± 0.99 c | 5.96 ± 1.09 c | 6.48 ± 0.94 b | 7.19 ± 0.68 a |
Nutritional fractions of starch (g/100 g d.b.) b | ||||
RDS | 35.51 ± 2.26 b (61) | 37.56 ± 1.68 b (62) | 36.96 ± 0.79 b (57) | 47.55 ± 3.43 a (73) |
SDS | 23.07 ± 1.11 ab (39) | 22.82 ± 2.66 ab (38) | 27.87 ± 1.41 a (43) | 17.3 ± 5.62 b (27) |
DS | 58.58 | 60.38 | 64.83 | 64.85 |
RS | 0.93 ± 0.01 a | 0.69 ± 0.04 c | 0.79 ± 0.08 b | 0.48 ± 0.02 d |
TS | 60 | 61 | 66 | 65 |
TPC (mg GAE/kg d.b.) c | 770.78 ± 0.69 b | 654.78 ± 1.25 c | 835.45 ± 1.40 a | 650.65 ± 1.20 c |
TEAC (µmol Trolox eq./g d.b.) c | 1.03 ± 0.02 b | 0.96 ± 0.03 c | 1.09 ± 0.03 a | 0.92 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchini, M.; Paciulli, M.; Broccardo, L.; Tuccio, M.G.; Scazzina, F.; Cirlini, M.; Carini, E. Towards Sustainable and Nutritionally Enhanced Flatbreads from Sprouted Sorghum, Tapioca, and Cowpea Climate-Resilient Crops. Foods 2023, 12, 1638. https://doi.org/10.3390/foods12081638
Marchini M, Paciulli M, Broccardo L, Tuccio MG, Scazzina F, Cirlini M, Carini E. Towards Sustainable and Nutritionally Enhanced Flatbreads from Sprouted Sorghum, Tapioca, and Cowpea Climate-Resilient Crops. Foods. 2023; 12(8):1638. https://doi.org/10.3390/foods12081638
Chicago/Turabian StyleMarchini, Mia, Maria Paciulli, Lorenza Broccardo, Maria Grazia Tuccio, Francesca Scazzina, Martina Cirlini, and Eleonora Carini. 2023. "Towards Sustainable and Nutritionally Enhanced Flatbreads from Sprouted Sorghum, Tapioca, and Cowpea Climate-Resilient Crops" Foods 12, no. 8: 1638. https://doi.org/10.3390/foods12081638
APA StyleMarchini, M., Paciulli, M., Broccardo, L., Tuccio, M. G., Scazzina, F., Cirlini, M., & Carini, E. (2023). Towards Sustainable and Nutritionally Enhanced Flatbreads from Sprouted Sorghum, Tapioca, and Cowpea Climate-Resilient Crops. Foods, 12(8), 1638. https://doi.org/10.3390/foods12081638