Effects of Pomegranate Peel Extract and/or Lactic Acid as Natural Preservatives on Physicochemical, Microbiological Properties, Antioxidant Activity, and Storage Stability of Khalal Barhi Date Fruits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Pomegranate Peel Extract (PPE)
2.3. HPLC Analysis of Polyphenolic Compounds of PPE
2.4. Experimental Design
2.5. Physicochemical Properties
2.6. Total Phenolic Content
2.7. Antioxidant Activity
2.8. Color Measurement
2.9. Texture Profile Analysis
2.10. Sensory Evaluation
2.11. Yeasts and Molds Count
2.12. Statistical Analysis
3. Results and Discussion
3.1. HPLC Analysis of PPE
3.2. Physicochemical Properties
3.3. Total Phenolics and Antioxidant Activity
3.4. Color Measurements
3.5. Texture Profile
3.6. Sensory Evaluation
3.7. Yeasts and Molds Count
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Z.-X.; Shi, L.-E.; Aleid, S.M. Date fruit: Chemical composition, nutritional and medicinal values, products. J. Sci. Food Agric. 2013, 93, 2351–2361. [Google Scholar] [CrossRef] [PubMed]
- Younas, A.; Naqvi, S.A.; Khan, M.R.; Shabbir, M.A.; Jatoi, M.A.; Anwar, F.; Inam-Ur-Raheem, M.; Saari, N.; Aadil, R.M. Functional food and nutra-pharmaceutical perspectives of date (Phoenix dactylifera L.) fruit. J. Food Biochem. 2020, 44, e13332. [Google Scholar] [CrossRef] [PubMed]
- FAO. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 7 January 2023).
- Singh, V.; Aggarwal, P.; Kaur, S.; Kaur, N. Intermediate moisture date (Phoenix dactylifera L.) based dessert with natural sugars: Phytonutritional profile, characterization, sensory quality, and shelf-life studies. J. Food Process. Preserv. 2022, 46, e17237. [Google Scholar] [CrossRef]
- Abu-Shama, H.S.; Abou-Zaid, F.O.F.; El-Sayed, E.Z. Effect of using edible coatings on fruit quality of Barhi date cultivar. Sci. Hortic. 2020, 265, 109262. [Google Scholar] [CrossRef]
- Siddiq, M.; Greiby, I. Overview of Date Fruit Production, Postharvest handling, Processing, and Nutrition. In Dates; John Wiley & Sons Ltd: Chichester, UK, 2013; pp. 1–28. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Babiker, E.E.; Mohamed Ahmed, I.A.; Shahzad, S.A.; Alsawmahi, O.N. Quality Attributes of Refrigerated Barhi Dates Coated with Edible Chitosan Containing Natural Functional Ingredients. Foods 2022, 11, 1584. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, M.; Jemni, M.; Kahramanoğlu, I.; Artés, F.; Shahkoomahally, S.; Namsi, A.; Ihtisham, M.; Brestic, M.; Mohammadi, M.; Rastogi, A. Commercial techniques for preserving date palm (Phoenix dactylifera) fruit quality and safety: A review. Saudi J. Biol. Sci. 2021, 28, 4408–4420. [Google Scholar] [CrossRef] [PubMed]
- Seddiek, A.S.; Hamad, G.M.; Zeitoun, A.; Zeitoun, M.; Ali, S. Antimicrobial and antioxidant activity of some plant extracts against different food spoilage and pathogenic microbes. Eur. J. Nutr. Food Saf. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Ahmed, A.R.; Ali, S. Effect of Inclusion of Date Press Cake on Texture, Color, Sensory, Microstructure, and Functional Properties of Date Jam. Processes 2022, 10, 2442. [Google Scholar] [CrossRef]
- Oladzad, S.; Fallah, N.; Mahboubi, A.; Afsham, N.; Taherzadeh, M.J. Date fruit processing waste and approaches to its valorization: A review. Bioresour. Technol. 2021, 340, 125625. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Najda, A.; Sharma, R.; Nurzyńska-Wierdak, R.; Dhanjal, D.S.; Sharma, R.; Manickam, S.; Kabra, A.; Kuča, K.; Bhardwaj, P. Fruit and Vegetable Peel-Enriched Functional Foods: Potential Avenues and Health Perspectives. Evid. Based Complement. Altern. Med. 2022, 2022, 8543881. [Google Scholar] [CrossRef]
- Kumar, N.; Daniloski, D.; Pratibha; Neeraj; D’Cunha, N.M.; Naumovski, N.; Petkoska, A.T. Pomegranate peel extract—A natural bioactive addition to novel active edible packaging. Food Res. Int. 2022, 156, 111378. [Google Scholar] [CrossRef] [PubMed]
- Kharchoufi, S.; Licciardello, F.; Siracusa, L.; Muratore, G.; Hamdi, M.; Restuccia, C. Antimicrobial and antioxidant features of ‘Gabsi’ pomegranate peel extracts. Ind. Crops Prod. 2018, 111, 345–352. [Google Scholar] [CrossRef]
- Chen, J.; Liao, C.; Ouyang, X.; Kahramanoğlu, I.; Gan, Y.; Li, M. Antimicrobial Activity of Pomegranate Peel and Its Applications on Food Preservation. J. Food Qual. 2020, 2020, 8850339. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Hanani, Z.A.N.; Yee, F.C.; Nor-Khaizura, M.A.R. Effect of pomegranate (Punica granatum L.) peel powder on the antioxidant and antimicrobial properties of fish gelatin films as active packaging. Food Hydrocoll. 2019, 89, 253–259. [Google Scholar] [CrossRef]
- Ghimire, A.; Paudel, N.; Poudel, R. Effect of pomegranate peel extract on the storage stability of ground buffalo (Bubalus bubalis) meat. LWT 2022, 154, 112690. [Google Scholar] [CrossRef]
- Seddiek, A.S.; Hamad, G.M.; Zeitoun, A.A.; Zeitoun, M.A.M.; Ali, S. The combined effect of lactic acid and natural plant extracts from guava leaves and pomegranate peel on the shelf life of fresh-cut apple slices during cold storage. Food Res. 2022, 6, 161–169. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Liu, Q.; Pang, X.; Zhao, X.; Yang, H. Sanitising efficacy of lactic acid combined with low-concentration sodium hypochlorite on Listeria innocua in organic broccoli sprouts. Int. J. Food Microbiol. 2019, 295, 41–48. [Google Scholar] [CrossRef]
- Trevisani, M.; Berardinelli, A.; Cevoli, C.; Cecchini, M.; Ragni, L.; Pasquali, F. Effects of sanitizing treatments with atmospheric cold plasma, SDS and lactic acid on verotoxin-producing Escherichia coli and Listeria monocytogenes in red chicory (radicchio). Food Control 2017, 78, 138–143. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Nair, M.S.; Saxena, A.; Kaur, C. Characterization and Antifungal Activity of Pomegranate Peel Extract and its Use in Polysaccharide-Based Edible Coatings to Extend the Shelf-Life of Capsicum (Capsicum annuum L.). Food Bioprocess Technol. 2018, 11, 1317–1327. [Google Scholar] [CrossRef]
- Abdelkhalek, A.; Al-Askar, A.A.; Behiry, S.I. Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci. Rep. 2020, 10, 16120. [Google Scholar] [CrossRef]
- Atia, A.; Abdelkarim, D.; Younis, M.; Alhamdan, A. Effects of pre-storage dipping in calcium chloride and salicylic acid on the quality attributes of stored Khalal Barhi dates. Int. J. Agric. Biol. Eng. 2020, 13, 206–212. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; Haminiuk, C.W.I.; Sora, G.T.S.; Bergamasco, R.; Vieira, A.M.S. Antioxidant and rheological properties of guava jam with added concentrated grape juice. J. Sci. Food Agric. 2014, 94, 146–152. [Google Scholar] [CrossRef]
- Adiamo, O.Q.; Ghafoor, K.; Al-Juhaimi, F.; Mohamed Ahmed, I.A.; Babiker, E.E. Effects of thermosonication and orange by-products extracts on quality attributes of carrot (Daucus carota) juice during storage. Int. J. Food Sci. Technol. 2017, 52, 2115–2125. [Google Scholar] [CrossRef]
- Alhamdan, A.M.; Fickak, A.; Atia, A.R. Evaluation of sensory and texture profile analysis properties of stored Khalal Barhi dates nondestructively using Vis/NIR spectroscopy. J. Food Process Eng. 2019, 42, e13215. [Google Scholar] [CrossRef]
- Kumar, N.; Pratibha; Neeraj; Ojha, A.; Upadhyay, A.; Singh, R.; Kumar, S. Effect of active chitosan-pullulan composite edible coating enrich with pomegranate peel extract on the storage quality of green bell pepper. LWT 2021, 138, 110435. [Google Scholar] [CrossRef]
- Voon, Y.Y.; Hamid, N.S.A.; Rusul, G.; Osman, A.; Quek, S.Y. Physicochemical, microbial and sensory changes of minimally processed durian (Durio zibethinus cv. D24) during storage at 4 and 28 °C. Postharvest Biol. Technol. 2006, 42, 168–175. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; Behiry, S.I.; Ali, H.M.; Abdelkhalek, A.; Sas-Paszt, L.; Al-Huqail, A.A.; Ali, M.M.; Salem, M.Z.M. Pomegranate trees quality under drought conditions using potassium silicate, nanosilver, and selenium spray with valorization of peels as fungicide extracts. Sci. Rep. 2022, 12, 6363. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Morsy, M.K.; Mekawi, E.; Elsabagh, R. Impact of pomegranate peel nanoparticles on quality attributes of meatballs during refrigerated storage. LWT 2018, 89, 489–495. [Google Scholar] [CrossRef]
- Gull, A.; Bhat, N.; Wani, S.M.; Masoodi, F.A.; Amin, T.; Ganai, S.A. Shelf life extension of apricot fruit by application of nanochitosan emulsion coatings containing pomegranate peel extract. Food Chem. 2021, 349, 129149. [Google Scholar] [CrossRef] [PubMed]
- Bertolo, M.R.V.; Martins, V.C.A.; Horn, M.M.; Brenelli, L.B.; Plepis, A.M.G. Rheological and antioxidant properties of chitosan/gelatin-based materials functionalized by pomegranate peel extract. Carbohydr. Polym. 2020, 228, 115386. [Google Scholar] [CrossRef]
- Abebe, Z.; Tola, Y.B.; Mohammed, A. Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill) fruits. Afr. J. Agric. Res. 2017, 12, 550–565. [Google Scholar]
- Tabikha, M.M.M.; El-Shehawy, S.M.M.; Helal, D.M.A. Changes in chemical and nutritional quality during cold storage of some fruit and vegetable juice blends. J. Food Dairy Sci. 2010, 1, 181–191. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Aljabr, A. Prediction of Date Fruit Quality Attributes during Cold Storage Based on Their Electrical Properties Using Artificial Neural Networks Models. Foods 2022, 11, 1666. [Google Scholar] [CrossRef] [PubMed]
- Abdelkarim, D.O.; Mohamed Ahmed, I.A.; Ahmed, K.A.; Younis, M.; Yehia, H.M.; Zein El-Abedein, A.I.; Alhamdan, A. Extending the Shelf Life of Fresh Khalal Barhi Dates via an Optimized Postharvest Ultrasonic Treatment. Plants 2022, 11, 2029. [Google Scholar] [CrossRef]
- Tappi, S.; Tylewicz, U.; Romani, S.; Dalla Rosa, M.; Rizzi, F.; Rocculi, P. Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage. Innov. Food Sci. Emerg. Technol. 2017, 39, 148–155. [Google Scholar] [CrossRef]
- Zheng, W.-W.; Chun, I.-J.; Hong, S.-B.; Zang, Y.-X. Quality characteristics of fresh-cut ‘Fuji’ apple slices from 1-methylcyclopropene-, calcium chloride-, and rare earth-treated intact fruits. Sci. Hortic. 2014, 173, 100–105. [Google Scholar] [CrossRef]
- Siddiq, M.; Aleid, S.M.; Kader, A.A. Dates: Postharvest Science, Processing Technology and Health Benefits; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Synowiec, A.; Gniewosz, M.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Węglarz, Z. Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innov. Food Sci. Emerg. Technol. 2014, 23, 171–181. [Google Scholar] [CrossRef]
- Mu, T.-H.; Zhang, M.; Sun, H.-N.; Pérez, I.C. Chapter 10—Sweet potato staple foods. In Sweet Potato; Mu, T.-H., Singh, J., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 273–302. [Google Scholar] [CrossRef]
- Yang, G.; Yue, J.; Gong, X.; Qian, B.; Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
Polyphenolic Compound | Conc. (mg/g) * |
---|---|
Gallic acid | 12.50 ± 0.36 |
Chlorogenic acid | 1.19 ± 0.09 |
Catechin | 4.10 ± 0.17 |
Methyl gallate | 0.21 ± 0.03 |
Caffeic acid | 0.05 ± 0.01 |
Syringic acid | 0.31 ± 0.04 |
Pyro catechol | ND |
Rutin | 0.07 ± 0.01 |
Ellagic acid | 35.12 ± 0.94 |
Coumaric acid | ND |
Vanillin | 0.07 ± 0.01 |
Ferulic acid | 0.53 ± 0.07 |
Naringenin | 1.29 ± 0.09 |
Daidzein | ND |
Quercetin | ND |
Cinnamic acid | ND |
Apigenin | 0.18 ± 0.02 |
Kaempferol | ND |
Hesperetin | ND |
Treatments | Storage Period (Week) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
Moisture content (%) | |||||||
Control | 68.41 ± 1.25 Aa | 67.05 ± 0.92 Aa | 65.24 ± 1.75 Ab | 63.11 ± 0.72 Bc | - | - | - |
LA | 68.36 ± 1.43 Aa | 67.48 ± 1.73 Aab | 65.71 ± 1.33 Abc | 64.28 ± 1.40 ABcd | 62.39 ± 1.31 Ad | - | - |
PPE | 68.43 ± 0.98 Aa | 68.03 ± 1.17 Aa | 67.52 ± 0.92 Aab | 65.85 ± 0.83 Abc | 64.71 ± 1.53 Acd | 63.17 ± 1.22 Ade | 62.27 ± 1.38 Ae |
LA + PPE | 68.37 ± 0.80 Aa | 67.72 ± 1.45 Aa | 66.94 ± 0.81 Aab | 65.27 ± 0.89 Abc | 64.08 ± 1.27 Ac | 62.13 ± 1.34 Ad | - |
Water activity | |||||||
Control | 0.938 ± 0.03 Aa | 0.929 ± 0.04 Aa | 0.919 ± 0.01 Aa | 0.913 ± 0.07 Aa | - | - | - |
LA | 0.936 ± 0.01 Aa | 0.930 ± 0.02 Aa | 0.922 ± 0.07 Aa | 0.918 ± 0.04 Aa | 0.914 ± 0.04 Aa | - | - |
PPE | 0.939 ± 0.02 Aa | 0.934 ± 0.06 Aa | 0.926 ± 0.02 Aa | 0.922 ± 0.07 Aa | 0.919 ± 0.05 Aa | 0.918 ± 0.04 Aa | 0.916 ± 0.08 Aa |
LA + PPE | 0.938 ± 0.04 Aa | 0.932 ± 0.02 Aa | 0.925 ± 0.06 Aa | 0.920 ± 0.03 Aa | 0.917 ± 0.03 Aa | 0.915 ± 0.07 Aa | - |
Total soluble solids (%) | |||||||
Control | 27.16 ± 0.52 Ad | 29.41 ± 0.84 Ac | 32.81 ± 0.61 Ab | 33.91 ± 0.80 Aa | - | - | - |
LA | 27.18 ± 0.45 Ad | 28.85 ± 0.71 Ac | 30.16 ± 0.95 Bb | 31.47 ± 0.33 Ba | 32.05 ± 0.54 Aa | - | - |
PPE | 27.24 ± 0.71 Ae | 28.30 ± 0.43 Ad | 29.23 ± 0.52 Bcd | 30.05 ± 0.74 Cbc | 30.84 ± 0.43 Bab | 31.11 ± 0.42 Aa | 31.45 ± 0.37 Aa |
LA + PPE | 27.20 ± 0.90 Ae | 28.56 ± 0.57 Ad | 29.54 ± 0.43 Bcd | 30.37 ± 0.44 BCbc | 31.09 ± 0.72 Bab | 31.63 ± 0.65 Aa | - |
pH | |||||||
Control | 6.28 ± 0.21 Aa | 6.01 ± 0.62 Aab | 5.63 ± 0.30 Ab | 4.89 ± 0.51 Ac | - | - | - |
LA | 6.00 ± 0.56 Aa | 5.92 ± 0.09 Aab | 5.83 ± 0.27 Aab | 5.60 ± 0.72 Aab | 5.26 ± 0.19 Bb | - | - |
PPE | 6.19 ± 0.32 Aa | 6.15 ± 0.43 Aa | 6.04 ± 0.16 Aa | 5.91 ± 0.65 Aab | 5.79 ± 0.41 Aab | 5.51 ± 0.26 Aab | 5.28 ± 0.17 Ab |
LA + PPE | 6.08 ± 0.18 Aa | 6.03 ± 0.22 Aa | 5.92 ± 0.51 Aab | 5.75 ± 0.38 Aabc | 5.42 ± 0.17 ABbc | 5.29 ± 0.31 Ac | - |
Titratable acidity (% malic acid/100 g) | |||||||
Control | 0.12 ± 0.03 Ad | 0.16 ± 0.02 Ac | 0.21 ± 0.04 Ab | 0.27 ± 0.01 Aa | - | - | - |
LA | 0.14 ± 0.07 Ab | 0.16 ± 0.05 Aab | 0.19 ± 0.05 Aab | 0.21 ± 0.04 ABab | 0.24 ± 0.07 Aa | - | - |
PPE | 0.12 ± 0.05 Ac | 0.13 ± 0.04 Ac | 0.15 ± 0.01 Abc | 0.18 ± 0.05 Babc | 0.20 ± 0.04 Aab | 0.21 ± 0.02 Aab | 0.23 ± 0.03 Aa |
LA + PPE | 0.13 ± 0.03 Ad | 0.14 ± 0.03 Acd | 0.17 ± 0.02 Abcd | 0.20 ± 0.03 ABabc | 0.21 ± 0.06 Aab | 0.24 ± 0.05 Aa | - |
Treatments | Storage Period (Week) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
Total phenolic content (mg GAE/g) | |||||||
Control | 8.24 ± 0.21 Ca | 6.19 ± 0.40 Cb | 4.46 ± 0.35 Dc | 3.19 ± 0.61 Dd | - | - | - |
LA | 8.22 ± 0.45 Ca | 6.67 ± 0.18 Cb | 5.71 ± 0.19 Cc | 4.80 ± 0.52 Cd | 4.12 ± 0.42 Ce | - | - |
PPE | 12.36 ± 0.53 Aa | 11.08 ± 0.69 Ab | 9.48 ± 0.34 Ac | 8.33 ± 0.37 Ad | 7.04 ± 0.35 Ae | 6.22 ± 0.27 Af | 5.17 ± 0.42 Ag |
LA + PPE | 10.47 ± 0.18 Ba | 9.13 ± 0.43 Bb | 8.21 ± 0.60 Bc | 6.58 ± 0.35 Bd | 5.71 ± 0.34 Be | 5.04 ± 0.18 Bf | - |
DPPH scavenging (%) | |||||||
Control | 44.17 ± 0.98 Ca | 36.22 ± 0.78 Cb | 27.45 ± 0.91 Dc | 23.84 ± 0.75 Dd | - | - | - |
LA | 44.11 ± 1.09 Ca | 37.26 ± 1.25 Cb | 31.45 ± 1.16 Cc | 29.14 ± 0.86 Cd | 24.52 ± 1.14 Ce | - | - |
PPE | 68.26 ± 0.87 Aa | 63.74 ± 1.12 Ab | 54.19 ± 1.27 Ac | 49.77 ± 1.37 Ad | 44.89 ± 1.27 Ae | 40.24 ± 1.09 Af | 38.52 ± 0.93 Af |
LA + PPE | 58.35 ± 1.36 Ba | 52.44 ± 1.32 Bb | 49.82 ± 1.41 Bc | 41.63 ± 0.94 Bd | 39.13 ± 1.44 Be | 33.40 ± 1.23 Bf | - |
Treatments | Storage Period (Week) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
L* | |||||||
Control | 55.32 ± 1.32 Aa | 50.26 ± 0.87 Bb | 44.53 ± 1.22 Bc | 41.68 ± 0.84 Bd | - | - | - |
LA | 55.92 ± 0.81 Aa | 51.75 ± 1.14 ABb | 49.24 ± 1.17 Ac | 48.19 ± 0.97 Ac | 43.75 ± 1.20 Cd | - | - |
PPE | 54.87 ± 1.13 Aa | 52.16 ± 0.78 Ab | 50.46 ± 0.87 Abc | 49.17 ± 1.26 Acd | 48.36 ± 0.81 Ad | 47.65 ± 1.14 Ad | 45.68 ± 1.32 Ae |
LA + PPE | 55.76 ± 1.37 Aa | 51.84 ± 0.82 ABb | 49.80 ± 0.91 Ac | 48.92 ± 1.24 Ac | 46.15 ± 0.78 Bd | 45.50 ± 0.93 Bd | - |
a* | |||||||
Control | 1.29 ± 0.04 Bd | 1.54 ± 0.07 Ac | 1.85 ± 0.08 Ab | 2.43 ± 0.03 Aa | - | - | - |
LA | 1.36 ± 0.05 ABd | 1.49 ± 0.03 Ac | 1.75 ± 0.08 ABb | 1.82 ± 0.09 Bb | 2.30 ± 0.05 Aa | - | - |
PPE | 1.40 ± 0.07 Ae | 1.46 ± 0.09 Ae | 1.61 ± 0.08 Bd | 1.68 ± 0.05 Cd | 1.91 ± 0.06 Cc | 2.10 ± 0.05 Bb | 2.22 ± 0.06 Aa |
LA + PPE | 1.34 ± 0.05 ABe | 1.48 ± 0.07 Ad | 1.64 ± 0.09 Bc | 1.74 ± 0.07 BCc | 2.05 ± 0.03 Bb | 2.27 ± 0.06 Aa | - |
b* | |||||||
Control | 36.25 ± 0.92 Aa | 32.11 ± 1.09 Bb | 26.47 ± 0.88 Bc | 23.59 ± 0.76 Cd | - | - | - |
LA | 36.68 ± 1.23 Aa | 33.58 ± 1.40 ABb | 30.05 ± 0.92 Ac | 26.19 ± 0.75 Bd | 25.42 ± 0.84 Ad | - | - |
PPE | 36.43 ± 0.85 Aa | 34.66 ± 0.76 Ab | 31.65 ± 1.14 Ac | 29.44 ± 1.20 Ad | 26.19 ± 1.33 Ae | 24.75 ± 0.76 Aef | 24.11 ± 0.64 Af |
LA + PPE | 37.09 ± 0.79 Aa | 34.15 ± 1.17 Ab | 30.94 ± 0.84 Ac | 28.43 ± 0.91 Ad | 26.00 ± 0.79 Ae | 23.86 ± 1.04 Af | - |
Treatments | Storage Period (Week) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
Hardness (kg) | |||||||
Control | 1055 ± 7 Aa | 732 ± 4 Db | 237 ± 5 Dc | 83 ± 3 Dd | - | - | - |
LA | 1041 ± 5 Ba | 745 ± 7 Cb | 315 ± 8 Cc | 143 ± 3 Cd | 79 ± 2 Ce | - | - |
PPE | 1064 ± 9 Aa | 821 ± 5 Ab | 406 ± 4 Ac | 250 ± 5 Ad | 176 ± 3 Ae | 122 ± 4 Af | 85 ± 3 Ag |
LA + PPE | 1058 ± 8 Aa | 779 ± 6 Bb | 371 ± 7 Bc | 184 ± 3 Bd | 113 ± 3 Bde | 81 ± 2 Bde | - |
Cohesiveness | |||||||
Control | 0.81 ± 0.03 Aa | 0.77 ± 0.05 Aab | 0.75 ± 0.02 Aab | 0.72 ± 0.08 Ab | - | - | - |
LA | 0.80 ± 0.05 Aa | 0.79 ± 0.02 Aa | 0.78 ± 0.06 Aa | 0.76 ± 0.05 Aa | 0.73 ± 0.07 Aa | - | - |
PPE | 0.87 ± 0.04 Aa | 0.85 ± 0.03 Aa | 0.82 ± 0.04 Aab | 0.81 ± 0.03 Aab | 0.79 ± 0.06 Aab | 0.78 ± 0.04 Aab | 0.75 ± 0.06 Ab |
LA + PPE | 0.85 ± 0.07 Aa | 0.83 ± 0.08 Aa | 0.80 ± 0.09 Aa | 0.79 ± 0.03 Aa | 0.76 ± 0.02 Aa | 0.74 ± 0.08 Aa | - |
Springiness (mm) | |||||||
Control | 0.90 ± 0.07 Aa | 0.86 ± 0.09 Aab | 0.81 ± 0.03 Ab | 0.78 ± 0.05 Ab | - | - | - |
LA | 0.91 ± 0.03 Aa | 0.89 ± 0.05 Aa | 0.87 ± 0.07 Aa | 0.83 ± 0.06 Aab | 0.78 ± 0.03 Ab | - | - |
PPE | 0.94 ± 0.05 Aa | 0.92 ± 0.08 Aab | 0.91 ± 0.04 Aabc | 0.88 ± 0.03 Aabcd | 0.84 ± 0.02 Abcd | 0.82 ± 0.06 Acd | 0.81 ± 0.03 Ad |
LA + PPE | 0.92 ± 0.06 Aa | 0.91 ± 0.07 Aab | 0.89 ± 0.09 Aab | 0.86 ± 0.08 Aab | 0.83 ± 0.07 Aab | 0.79 ± 0.04 Ab | - |
Treatments | Storage Period (Week) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
Appearance | |||||||
Control | 8.13 ± 0.61 Aa | 7.58 ± 0.70 Aab | 7.12 ± 0.62 Bbc | 6.40 ± 0.86 Bc | - | - | - |
LA | 8.11 ± 0.45 Aa | 7.90 ± 0.95 Aa | 7.52 ± 0.36 ABab | 6.84 ± 0.58 ABbc | 6.43 ± 0.37 Cc | - | - |
PPE | 8.84 ± 0.12 Aa | 8.67 ± 0.33 Aa | 8.35 ± 0.41 Aab | 8.13 ± 0.67 Aabc | 7.94 ± 0.48 Aabc | 7.69 ± 0.62 Abc | 7.32 ± 0.53 Ac |
LA + PPE | 8.44 ± 0.37 Aa | 8.23 ± 0.74 Aab | 8.16 ± 0.48 Aab | 7.87 ± 0.59 Aab | 7.26 ± 0.29 Bbc | 6.51 ± 0.71 Bc | - |
Odor | |||||||
Control | 8.25 ± 0.29 Aa | 8.03 ± 0.37 Aab | 7.76 ± 0.48 Ab | 7.11 ± 0.17 Bc | - | - | - |
LA | 8.12 ± 0.57 Aa | 8.01 ± 0.48 Aab | 7.80 ± 0.54 Aab | 7.35 ± 0.79 ABab | 7.16 ± 0.36 Bb | - | - |
PPE | 8.81 ± 0.18 Aa | 8.60 ± 0.37 Aab | 8.53 ± 0.32 Aab | 8.42 ± 0.52 Aab | 8.26 ± 0.62 Aab | 7.82 ± 0.52 Abc | 7.35 ± 0.48 Ac |
LA + PPE | 8.31 ± 0.53 Aa | 8.25 ± 0.51 Aa | 8.14 ± 0.29 Aab | 7.68 ± 0.78 ABab | 7.45 ± 0.39 Bab | 7.19 ± 0.80 Ab | - |
Taste | |||||||
Control | 8.43 ± 0.29 Aa | 8.11 ± 0.18 Aab | 7.63 ± 0.90 Abc | 7.10 ± 0.48 Ac | - | - | - |
LA | 8.11 ± 0.63 Aa | 8.02 ± 0.55 Aa | 7.82 ± 0.63 Aa | 7.70 ± 0.70 Aa | 7.12 ± 0.53 Aa | - | - |
PPE | 8.35 ± 0.48 Aa | 8.23 ± 0.71 Aa | 8.14 ± 0.58 Aa | 8.07 ± 0.81 Aa | 7.92 ± 0.65 Aa | 7.75 ± 0.44 Aa | 7.16 ± 0.53 Aa |
LA + PPE | 8.23 ± 0.61 Aa | 8.14 ± 0.82 Aa | 8.05 ± 0.29 Aa | 7.93 ± 0.92 Aa | 7.74 ± 0.38 Aa | 7.20 ± 0.61 Aa | - |
Texture | |||||||
Control | 8.60 ± 0.29 Aa | 8.04 ± 0.80 Aab | 7.56 ± 0.90 Ab | 6.19 ± 0.82 Bc | - | - | - |
LA | 8.51 ± 0.40 Aa | 8.33 ± 0.19 Aa | 8.12 ± 0.45 Aa | 7.81 ± 0.90 Aa | 7.05 ± 0.30 Ab | - | - |
PPE | 8.64 ± 0.31 Aa | 8.51 ± 0.48 Aa | 8.34 ± 0.62 Aa | 8.09 ± 0.63 Aab | 7.74 ± 0.57 Aabc | 7.30 ± 0.46 Abc | 7.06 ± 0.52 Ac |
LA + PPE | 8.62 ± 0.23 Aa | 8.40 ± 0.55 Aa | 8.29 ± 0.62 Aab | 8.00 ± 0.19 Aab | 7.52 ± 0.62 Abc | 7.05 ± 0.38 Ac | - |
Overall acceptability | |||||||
Control | 8.35 ± 0.52 Aa | 7.94 ± 0.62 Aab | 7.52 ± 0.29 Ab | 6.71 ± 0.51 Bc | - | - | - |
LA | 8.21 ± 0.60 Aa | 8.07 ± 0.73 Aa | 7.82 ± 0.42 Aa | 7.43 ± 0.39 ABab | 6.89 ± 0.45 Bb | - | - |
PPE | 8.66 ± 0.43 Aa | 8.50 ± 0.80 Aab | 8.34 ± 0.18 Aab | 8.18 ± 0.80 Aab | 7.97 ± 0.72 Aabc | 7.64 ± 0.53 Abc | 7.21 ± 0.37 Ac |
LA + PPE | 8.40 ± 0.39 Aa | 8.28 ± 0.61 Aa | 8.16 ± 0.90 Aa | 7.87 ± 0.18 ABab | 7.49 ± 0.81 ABab | 6.99 ± 0.72 Ab | - |
Treatments | Storage Period (Week) | ||||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
Control | 2.13 ± 0.11 Ad | 2.94 ± 0.19 Ac | 3.44 ± 0.21 Ab | 4.21 ± 0.19 Aa | - | - | - |
LA | n.d | n.d | 0.54 ± 0.10 Bc | 1.28 ± 0.14 Bb | 2.72 ± 0.14 Aa | - | - |
PPE | n.d | n.d | 0.59 ± 0.14 Bd | 1.13 ± 0.18 Bc | 1.55 ± 0.17 Bb | 1.93 ± 0.17 Ba | 2.11 ± 0.16 Aa |
LA + PPE | n.d | n.d | 0.35 ± 0.09 Bd | 1.00 ± 0.12 Bc | 1.33 ± 0.15 Bb | 2.43 ± 0.18 Aa | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, N.K.; Alnemr, T.M.; Ali, S.A. Effects of Pomegranate Peel Extract and/or Lactic Acid as Natural Preservatives on Physicochemical, Microbiological Properties, Antioxidant Activity, and Storage Stability of Khalal Barhi Date Fruits. Foods 2023, 12, 1160. https://doi.org/10.3390/foods12061160
Alqahtani NK, Alnemr TM, Ali SA. Effects of Pomegranate Peel Extract and/or Lactic Acid as Natural Preservatives on Physicochemical, Microbiological Properties, Antioxidant Activity, and Storage Stability of Khalal Barhi Date Fruits. Foods. 2023; 12(6):1160. https://doi.org/10.3390/foods12061160
Chicago/Turabian StyleAlqahtani, Nashi K., Tareq M. Alnemr, and Salim A. Ali. 2023. "Effects of Pomegranate Peel Extract and/or Lactic Acid as Natural Preservatives on Physicochemical, Microbiological Properties, Antioxidant Activity, and Storage Stability of Khalal Barhi Date Fruits" Foods 12, no. 6: 1160. https://doi.org/10.3390/foods12061160
APA StyleAlqahtani, N. K., Alnemr, T. M., & Ali, S. A. (2023). Effects of Pomegranate Peel Extract and/or Lactic Acid as Natural Preservatives on Physicochemical, Microbiological Properties, Antioxidant Activity, and Storage Stability of Khalal Barhi Date Fruits. Foods, 12(6), 1160. https://doi.org/10.3390/foods12061160