Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Bacterial Strains
2.2. Growing Bacterial Cultures and Inoculum Preparation
2.3. Sample Preparation, Inoculation, and Storage
2.4. Enumeration
2.5. Modeling Survival Kinetics
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Pre-Growth Temperature on the Survival Kinetics of L. monocytogenes
3.2. Effect of Pre-Growth Temperature on the Survival Kinetics of S. enterica
3.3. Determination of Aerobic Plate Count (APC), Yeast, and Mold during Storage
3.4. Modeling the Survival Kinetics of L. monocytogenes and S. enterica
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. 2019, 10 (Suppl. S4), S404–S421. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.M.; Mondragón, A.C.; Lamas, A.; Roca-Saavedra, P.; Ibarra, I.S.; Rodriguez, J.A.; Cepada, A.; Franco, C.M. Effect of Packaging Systems on the Inactivation of Microbiological Agents. In Antimicrobial Food Packaging; Academic Press: Cambridge, MA, USA, 2016; pp. 107–116. [Google Scholar]
- Miceli, A.; Settanni, L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019, 69, 185–199. [Google Scholar] [CrossRef]
- Almenar, E. Innovations in packaging technologies for produce. In Controlled and Modified Atmospheres for Fresh and Fresh-Cut Produce; Academic Press: Cambridge, MA, USA, 2020; pp. 211–264. [Google Scholar]
- Francis, G.A.; Gallone, A.; Nychas, G.J.; Sofos, J.N.; Colelli, G.; Amodio, M.L.; Spano, G. Factors affecting quality and safety of fresh-cut produce. Crit. Rev. Food Sci. Nutr. 2012, 52, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, B.; Deshi, V.; Ozturk, B.; Siddiqui, M.W. Fresh-cut fruits and vegetables: Quality issues and safety concerns. In Fresh-Cut Fruits and Vegetables; Academic Press: Cambridge, MA, USA, 2020; pp. 1–15. [Google Scholar]
- Botondi, R.; Barone, M.; Grasso, C. A Review into the Effectiveness of Ozone Technology for Improving Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods 2021, 10, 748. [Google Scholar] [CrossRef] [PubMed]
- Callejón, R.M.; Rodríguez-Naranjo, M.I.; Ubeda, C.; Hornedo-Ortega, R.; Garcia-Parrilla, M.C.; Troncoso, A.M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: Trends and causes. Foodborne Pathog. Dis. 2015, 12, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Carstens, C.K.; Salazar, J.K.; Darkoh, C. Multistate Outbreaks of Foodborne Illness in the United States Associated with Fresh Produce from 2010 to 2017. Front. Microbiol. 2019, 10, 2667. [Google Scholar] [CrossRef]
- Irvin, K.; Viazis, S.; Fields, A.; Seelman, S.; Blickenstaff, K.; Gee, E.; Wise, M.E.; Marshall, K.E.; Gieraltowski, L.; Harris, S. An Overview of Traceback Investigations and Three Case Studies of Recent Outbreaks of Escherichia coli O157:H7 Infections Linked to Romaine Lettuce. J. Food Prot. 2021, 84, 1340–1356. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Gooneratne, R.; Hussain, M.A. Listeria monocytogenes in Fresh Produce: Outbreaks, Prevalence and Contamination Levels. Foods 2017, 6, 21. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Sant’Ana, A.S. Survival and growth behavior of Listeria monocytogenes in ready-to-eat vegetable salads. Food Control 2022, 138, 109023. [Google Scholar] [CrossRef]
- Gu, G.; Kroft, B.; Lichtenwald, M.; Luo, Y.; Millner, P.; Patel, J.; Nou, X. Dynamics of Listeria monocytogenes and the microbiome on fresh-cut cantaloupe and romaine lettuce during storage at refrigerated and abusive temperatures. Int. J. Food Microbiol. 2022, 364, 109531. [Google Scholar] [CrossRef] [PubMed]
- Wadamori, Y.; Gooneratne, R.; Hussain, M.A. Outbreaks and factors influencing microbiological contamination of fresh produce. J. Sci. Food Agric. 2017, 97, 1396–1403. [Google Scholar] [CrossRef] [PubMed]
- Glaize, A.; Young, M.; Harden, L.; Gutierrez-Rodriguez, E.; Thakur, S. The effect of vegetation barriers at reducing the transmission of Salmonella and Escherichia coli from animal operations to fresh produce. Int. J. Food Microbiol. 2021, 347, 109196. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.A.; Alves, Â.; Ferreira, V.; Teixeira, P.C.M. The impact of environmental stresses in the virulence traits of Listeria monocytogenes relevant to food safety. In Listeria monocytogenes; Intechopen: London, UK, 2018; Volume 89. [Google Scholar]
- Smith, A.; Moorhouse, E.; Monaghan, J.; Taylor, C.; Singleton, I. Sources and survival of Listeria monocytogenes on fresh, leafy produce. J. Appl. Microbiol. 2018, 125, 930–942. [Google Scholar] [CrossRef]
- Ly, V.; Parreira, V.R.; Farber, J.M. Current understanding and perspectives on Listeria monocytogenes in low-moisture foods. Curr. Opin. Food Sci. 2019, 26, 18–24. [Google Scholar] [CrossRef]
- CDC. 2021. Available online: https://www.cdc.gov/listeria/outbreaks/packaged-salad-mix-12-21/details.html (accessed on 20 November 2022).
- Qadri, O.S.; Yousuf, B.; Srivastava, A.K. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food Agric. 2015, 1, 1121606. [Google Scholar] [CrossRef]
- Jideani, A.I.; Anyasi, T.A.; Mchau, G.R.; Udoro, E.O.; Onipe, O.O. Processing and preservation of fresh-cut fruit and vegetable products. In Postharvest Handling; IntechOpen: London, UK, 2017; Volume 47. [Google Scholar]
- Waitt, J.A.; Kuhn, D.D.; Welbaum, G.E.; Ponder, M.A. Postharvest transfer and survival of Salmonella enterica serotype enteritidis on living lettuce. Lett. Appl. Microbiol. 2014, 58, 95–101. [Google Scholar] [CrossRef]
- Lee, S.; Han, A.; Yoon, J.H.; Lee, S.Y. Growth evaluation of Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes in fresh fruit and vegetable juices via predictive modeling. LWT 2022, 162, 113485. [Google Scholar] [CrossRef]
- Tucci, P.; Centorotola, G.; Salini, R.; Iannetti, L.; Sperandii, A.F.; D’Alterio, N.; Migliorati, G.; Pomilio, F. Challenge test studies on Listeria monocytogenes in ready-to-eat iceberg lettuce. Food Sci. Nutr. 2019, 7, 3845–3852. [Google Scholar] [CrossRef]
- György, É.; Laslo, É.; Csató, E. Antibacterial activity of plant extracts against isolated from ready-to-eat salads. Act. Aliment. 2020, 13, 131–143. [Google Scholar]
- Sant’Ana, A.S.; Barbosa, M.S.; Destro, M.T.; Landgraf, M.; Franco, B.D. Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life. Int. J. Food Microbiol. 2012, 157, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Pinton, S.C.; Bardsley, C.A.; Marik, C.M.; Boyer, R.R.; Strawn, L.K. Fate of Listeria monocytogenes on Broccoli and Cauliflower at Different Storage Temperatures. J. Food Prot. 2020, 83, 858–864. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Abu Ghoush, M.; Al-Holy, M.; Abu Hilal, H.; Al-Nabulsi, A.A.; Osaili, T.M.; Ayyash, M.; Holley, R.A. Survival and growth of Listeria monocytogenes and Staphylococcus aureus in ready-to-eat Mediterranean vegetable salads: Impact of storage temperature and food matrix. Int. J. Food Microbiol. 2021, 346, 109149. [Google Scholar] [CrossRef] [PubMed]
- Bardsley, C.A.; Boyer, R.R.; Rideout, S.L.; Strawn, L.K. Survival of Listeria monocytogenes on the surface of basil, cilantro, dill, and parsley plants. Food Control 2019, 95, 90–94. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Y.; Zhou, B.; Zheng, J.; Nou, X. Growth and survival of Salmonella enterica and Listeria monocytogenes on fresh-cut produce and their juice extracts: Impacts and interactions of food matrices and temperature abuse conditions. Food Control 2019, 100, 300–304. [Google Scholar] [CrossRef]
- López-Gálvez, F.; Gil, M.I.; Allende, A. Impact of relative humidity, inoculum carrier and size, and native microbiota on Salmonella ser. Typhimurium survival in baby lettuce. Food Microbiol. 2018, 70, 155–161. [Google Scholar] [CrossRef]
- Singh, A.; Yemmireddy, V. Pre-Growth Environmental Stresses Affect Foodborne Pathogens Response to Subsequent Chemical Treatments. Microorganisms 2022, 10, 786. [Google Scholar] [CrossRef]
- Ma, T.; Luo, J.; Tian, C.; Sun, X.; Quan, M.; Zheng, C.; Kang, L.; Zhan, J. Influence of technical processing units on chemical composition and antimicrobial activity of carrot (Daucus carrot L.) juice essential oil. Food Chem. 2015, 170, 394–400. [Google Scholar] [CrossRef]
- Ziegler, M.; Kent, D.; Stephan, R.; Guldimann, C. Growth potential of Listeria monocytogenes in twelve different types of RTE salads: Impact of food matrix, storage temperature and storage time. Int. J. Food Microbiol. 2019, 296, 83–92. [Google Scholar] [CrossRef]
- Lokerse, R.F.A.; Maslowska-Corker, K.A.; Van de Wardt, L.C.; Wijtzes, T. Growth capacity of Listeria monocytogenes in ingredients of ready-to-eat salads. Food Control 2016, 60, 338–345. [Google Scholar] [CrossRef]
- Jechalke, S.; Schierstaedt, J.; Becker, M.; Flemer, B.; Grosch, R.; Smalla, K.; Schikora, A. Salmonella Establishment in Agricultural Soil and Colonization of Crop Plants Depend on Soil Type and Plant Species. Front. Microbiol. 2019, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Melotto, M. Human Pathogen Colonization of Lettuce Dependent Upon Plant Genotype and Defense Response Activation. Front. Plant Sci. 2020, 10, 1769. [Google Scholar] [CrossRef] [PubMed]
- Bolten, S.; Belias, A.; Weigand, K.A.; Pajor, M.; Qian, C.; Ivanek, R.; Weidmann, M. Population dynamics of Listeria spp., Salmonella spp., and Escherichia coli on fresh produce: A scoping review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 4537–4572. [Google Scholar] [CrossRef] [PubMed]
- Harrand, A.S.; Kovac, J.; Carroll, L.M.; Guariglia-Oropeza, V.; Kent, D.J.; Wiedmann, M. Assembly and Characterization of a Pathogen Strain Collection for Produce Safety Applications: Pre-growth Conditions Have a Larger Effect on Peroxyacetic Acid Tolerance Than Strain Diversity. Front. Microbiol. 2019, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Parnell, T.L.; Harris, L.J.; Suslow, T.V. Reducing Salmonella on cantaloupes and honeydew melons using wash practices applicable to postharvest handling, foodservice, and consumer preparation. Int. J. Food Microbiol. 2005, 99, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Espin, J.C.; Wichers, H.J. Study of the oxidation of resveratrol catalyzed by polyphenol oxtoase, effect of polyphenol oxidase, laccase, and peroxidase on the antiradical capacity of resveratrol. J. Food Biochem. 2000, 24, 225–250. [Google Scholar] [CrossRef]
- Patel, J.; Sharma, M. Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int. J. Food Microbiol. 2010, 139, 41–47. [Google Scholar] [CrossRef]
- Salazar, J.K.; Sahu, S.N.; Hildebrandt, I.M.; Zhang, L.; Qi, Y.; Liggans, G.; Datta, A.R.; Tortorello, M.L. Growth kinetics of Listeria monocytogenes in cut produce. J. Food Prot. 2017, 80, 1328–1336. [Google Scholar] [CrossRef]
- Gu, G.; Ottesen, A.; Bolten, S.; Ramachandran, P.; Reed, E.; Rideout, S.; Luo, Y.; Patel, J.; Brown, E.; Nou, X. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol. 2018, 73, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.; Granato, D.; Mattila, P.H. Accumulation of Phenolic Acids during Storage over Differently Handled Fresh Carrots. Foods 2020, 9, 1515. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, E.; Pérez-Rodríguez, F.; Valero, A.; Garcı, R.M.; Zurera, G. Growth of Listeria monocytogenes on shredded, ready-to-eat iceberg lettuce. Food Control 2008, 19, 487–494. [Google Scholar] [CrossRef]
- Salazar, J.K.; Fay, M.; Qi, Y.; Liggans, G. Growth Kinetics of Listeria monocytogenes on Cut Red Cabbage. J. Food Prot. 2022, 85, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Demirdöven, A.; Karabıyıklı, Ş.; Tokatlı, K.; Öncül, N. Inhibitory effects of red cabbage and sour cherry pomace anthocyanin extracts on food borne pathogens and their antioxidant properties. LWT-Food Sci. Technol. 2015, 63, 8–13. [Google Scholar] [CrossRef]
- Alvarez, M.V.; Moreira, M.D.R.; Roura, S.I.; Ayala-Zavala, J.F.; González-Aguilar, G.A. Using natural antimicrobials to enhance the safety and quality of fresh and processed fruits and vegetables: Types of antimicrobials. In Handbook of Natural Antimicrobials for Food Safety and Quality; Elsevier: Amsterdam, The Netherlands, 2015; pp. 287–313. [Google Scholar]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef] [PubMed]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, P.; Kaur, R. Prevalence and growth of pathogens on salad vegetables, fruits and sprouts. Int. J. Hyg. Environ. Health 2001, 203, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef]
- Yeo, H.J.; Ki, W.Y.; Lee, S.; Kim, C.Y.; Kim, J.K.; Park, S.U.; Park, C.H. Metabolite Profiles and Biological Activities of Different Phenotypes of Chinese cabbage (Brassica rapa ssp. Pekinensis). Food Res. Int. 2023, 174, 113619. [Google Scholar] [CrossRef]
- Vandamm, J.P.; Li, D.; Harris, L.J.; Schaffner, D.W.; Danyluk, M.D. Fate of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on fresh-cut celery. Food Microbiol. 2013, 34, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Harrand, A.S.; Guariglia-Oropeza, V.; Skeens, J.; Kent, D.; Wiedmann, M. Nature versus Nurture: Assessing the Impact of Strain Diversity and Pregrowth Conditions on Salmonella enterica, Escherichia coli, and Listeria Species Growth and Survival on Selected Produce Items. Appl. Environ. Microbiol. 2021, 87, e01925-20. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Asrani, R.K.; Patial, V. Listeria monocytogenes: A food-borne pathogen. In Foodborne Diseases; Academic Press: Cambridge, MA, USA, 2018; pp. 157–192. [Google Scholar]
- Wu, R.A.; Yuk, H.G.; Liu, D.; Ding, T. Recent advances in understanding the effect of acid-adaptation on the cross-protection to food-related stress of common foodborne pathogens. Crit. Rev. Food Sci. Nutr. 2022, 62, 7336–7353. [Google Scholar] [CrossRef] [PubMed]
- Ye, B.; He, S.; Zhou, X.; Cui, Y.; Zhou, M.; Shi, X. Response to Acid Adaptation in Salmonella enterica Serovar Enteritidis. J. Food Sci. 2019, 84, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, M.; Prodpran, T.; Benjakul, S.; Songtipya, P. Properties and characteristics of multi-layered films from tilapia skin gelatin and poly (lactic acid). Food Biophys. 2017, 12, 222–233. [Google Scholar] [CrossRef]
- Najafi, H.; Mohammad, B.; Bahreini, M. Microbiological quality of mixed fresh-cut vegetable salads and mixed ready-to-eat fresh herbs in Mashhad, Iran. In Proceedings of the International Conference on Nutrition and Food Sciences IPCBEE, Singapore, 23–24 July 2012; Volume 39, pp. 62–66. [Google Scholar]
- Sui, Y.; Zhao, Q.; Wang, Z.; Liu, J.; Jiang, M.; Yue, J.; Lan, J.; Liu, J.; Liao, Q.; Wang, Q.; et al. A comparative analysis of the microbiome of kiwifruit at harvest under open-field and rain-shelter cultivation systems. Front. Microbiol. 2021, 12, 757719. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, W.F.; Shady, H.M.A.; Sayed-Ahmed, E.S.F.; Amer, S.A. Antibacterial activity of Egyptian propolis and pollen extracts and their synergistic/antagonistic effect with lactic acid bacteria (lab) against food borne pathogenic bacteria. Egypt J. Exp. Biol. 2016, 12, 31–43. [Google Scholar]
- Raman, J.; Kim, J.S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.J.; Kim, S.J. Application of lactic acid bacteria (LAB) in sustainable agriculture: Advantages and limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef]
Type of Organism(s) | Time (h) | Iceberg Lettuce | Red Cabbage | Grated Carrot | Mixed Salad |
---|---|---|---|---|---|
APC | 0 | 1.88 ± 1.26 a,A | 2.52 ± 0.56 a,A | 2.55 ± 0.25 a,A | 2.60 ± 0.50 a,A |
12 | 2.25 ± 0.57 a,AB | 1.50 ± 0.91 a,B | 2.46 ± 0.29 a,AB | 2.72 ± 0.27 a,A | |
24 | 1.32 ± 0.83 a,A | 1.55 ± 1.00 a,A | 2.54 ± 0.32 a,A | 2.14 ± 0.64 a,A | |
48 | 2.02 ± 1.18 a,A | 1.65 ± 1.23 a,A | 2.47 ± 0.18 a,A | 2.24 ± 0.68 a,A | |
72 | 1.53 ± 1.01 a,A | 1.08 ± 0.86 a,A | 2.30 ± 0.47 a,A | 2.56 ± 0.40 a,A | |
Yeast | 0 | 4.09 ± 0.15 a,A | 3.99 ± 0.29 a,A | 4.02 ± 0.17 a,A | 4.08 ± 0.06 a,A |
12 | 4.09 ± 0.09 a,A | 4.14 ± 0.07 a,A | 4.10 ± 0.05 a,A | 4.10 ± 0.03 a,A | |
24 | 4.15 ± 0.14 a,A | 4.15 ± 0.12 a,A | 4.16 ± 0.08 a,A | 4.12 ± 0.04 a,A | |
48 | 4.16 ± 0.05 a,A | 4.23 ± 0.05 a,A | 4.13 ± 0.12 a,A | 4.17 ± 0.16 a,A | |
72 | 4.06 ± 0.17 a,A | 4.02 ± 0.24 a,A | 4.08 ± 0.23 a,A | 4.14 ± 0.15 a,A | |
Mold | 0 | 0.66 ± 0.62 a,A | 0.96 ± 0.57 a,A | 0.94 ± 0.92 a,A | 0.90 ± 0.83 a,A |
12 | 1.40 ± 0.55 a,A | 0.52 ± 0.74 a,A | 2.06 ± 0.44 ab,B | 1.52 ± 0.40 a,A | |
24 | 0.56 ± 0.76 a,A | 0.46 ± 0.64 a,A | 2.26 ± 0.23 ab,B | 1.46 ± 0.53 a,A | |
48 | 0.56 ± 0.76 a,A | 0.82 ± 0.75 a,A | 1.51 ± 1.38 ab,B | 1.49 ± 0.36 a,AB | |
72 | 0.40 ± 0.55 a,A | 0.72 ± 0.67 a,A | 2.07 ± 1.16 b,B | 1.94 ± 0.23 a,A |
Type of Pathogen | Pre-Growth Temp a (°C) | Type of Produce | R2 | SE of Fit b | Initial Value (log CFU/g) | Maximum Rate c (1/h) |
---|---|---|---|---|---|---|
L. monocytogenes | 37 | Lettuce | 0.817 | 0.0988 | 4.241 ± 0.0789 | −0.00944 ± 0.0033 |
Cabbage | 0.967 | 0.0417 | 4.137 ± 0.0241 | −0.018 ± 0.00275 | ||
Carrot * | - | - | - | - | ||
Mixed salad | 0.925 | 0.143 | 4.392 ± 0.13 | −0.0296 ± 0.00845 | ||
21 | Lettuce | 0.054 | 0.0998 | 4.174 ± 0.0982 | −0.00772 ± 0.0106 | |
Cabbage | 0.243 | 0.209 | 4.332 ± 0.209 | −0.0213 ± 0.0243 | ||
Carrot | 0.657 | 0.119 | 4.0434 ± 0.0707 | 0.0122 ± 0.00734 | ||
Mixed salad | 0.952 | 0.0709 | 4.4 ± 0.0709 | −0.052 ± 0.00956 | ||
4 | Lettuce | 0.847 | 0.1 | 4.507 ± 0.1 | −0.0291 ± 0.0119 | |
Cabbage | 0.204 | 0.156 | 4.5 ± 0.156 | −0.0184 ± 0.0191 | ||
Carrot | 0.653 | 0.18 | 4.0927 ± 0.165 | −0.0166 ± 0.0108 | ||
Mixed salad | 0.847 | 0.1 | 4.507 ± 0.1 | −0.0291 ± 0.0119 | ||
S. enterica | 37 | Lettuce | 0.994 | 0.0215 | 6.0802 ± 0.0147 | −0.0143 ± 0.00111 |
Cabbage | 0.194 | 0.199 | 5.372 ± 0.165 | −0.00796 ± 0.00791 | ||
Carrot | 0.985 | 0.0575 | 6.0964 ± 0.0339 | −0.03 ± 0.00349 | ||
Mixed salad | 0.92 | 0.106 | 6.136 ± 0.0983 | −0.0296 ± 0.00702 | ||
21 | Lettuce | 0.801 | 0.111 | 6.33 ± 0.0879 | −0.00954 ± 0.00345 | |
Cabbage | 0.919 | 0.101 | 5.843 ± 0.0933 | −0.0279 ± 0.00667 | ||
Carrot | 0.95 | 0.106 | 6.318 ± 0.0723 | −0.0245 ± 0.00549 | ||
Mixed salad | 0.957 | 0.0564 | 6.403 ± 0.0529 | −0.0105 ± 0.00168 | ||
4 | Lettuce | 0.876 | 0.102 | 6.269 ± 0.0794 | −0.0101 ± 0.00301 | |
Cabbage | 0.832 | 0.11 | 5.688 ± 0.0922 | −0.0122 ± 0.00466 | ||
Carrot | 0.939 | 0.114 | 6.297 ± 0.0663 | −0.0328 ± 0.00718 | ||
Mixed salad | 0.86 | 0.0993 | 6.225 ± 0.0909 | −0.0163 ± 0.00599 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaur, A.; Yemmireddy, V. Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage. Foods 2023, 12, 4287. https://doi.org/10.3390/foods12234287
Kaur A, Yemmireddy V. Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage. Foods. 2023; 12(23):4287. https://doi.org/10.3390/foods12234287
Chicago/Turabian StyleKaur, Avninder, and Veerachandra Yemmireddy. 2023. "Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage" Foods 12, no. 23: 4287. https://doi.org/10.3390/foods12234287
APA StyleKaur, A., & Yemmireddy, V. (2023). Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage. Foods, 12(23), 4287. https://doi.org/10.3390/foods12234287