Establishment of Food Allergy Model in Dextran Sulfate Sodium Induced Colitis Mice
Abstract
:1. Introduction
2. Animals, Materials and Methods
2.1. Animals
2.2. DSS-Induced Colitis
2.3. Experimental FA
2.4. Measurement of Colon Length and Spleen Index
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Histological Analysis
2.7. Immunohistochemistry
2.8. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renz, H.; Allen, K.J.; Sicherer, S.H.; Sampson, H.A.; Lack, G.; Beyer, K.; Oettgen, H.C. Food allergy. Nat. Rev. Dis. Prim. 2018, 4, 17098. [Google Scholar] [CrossRef] [PubMed]
- Sampath, V.; Abrams, E.M.; Adlou, B.; Akdis, C.; Akdis, M.; Brough, H.A.; Chan, S.; Chatchatee, P.; Chinthrajah, R.S.; Cocco, R.R.J.J.O.A.; et al. Food allergy across the globe. J. Allergy Clin. Immun. 2021, 148, 1347–1364. [Google Scholar] [CrossRef] [PubMed]
- Samadi, N.; Klems, M.; Untersmayr, E. The role of gastrointestinal permeability in food allergy. Ann. Allergy Asthma Immunol. 2018, 121, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Foong, R.X.; Santos, A.F. Oral Tolerance Induction-Opportunities and Mechanisms. Foods 2022, 11, 3386. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, R.; Liu, Y.; Gao, J.; Wu, Y.; Tu, C.; Chen, H.; Yuan, J. In Vitro Effect of Flavonoids on Basophils Degranulation and Intestinal Epithelial Barrier Damage Induced by ω-5 Gliadin-Derived Peptide. Foods 2022, 11, 3857. [Google Scholar] [CrossRef]
- Peloquin, J.M.; Goel, G.; Villablanca, E.J.; Xavier, R.J. Mechanisms of Pediatric Inflammatory Bowel Disease. Annu. Rev. Immunol. 2016, 34, 31–64. [Google Scholar] [CrossRef]
- Virta, L.J.; Kautiainen, H.; Kolho, K.L. Symptoms suggestive of cow’s milk allergy in infancy and pediatric inflammatory bowel disease. Pediatr. Allergy Immunol. 2016, 27, 361–367. [Google Scholar] [CrossRef]
- Grzybowska-Chlebowczyk, U.; Wos, H.; Sieron, A.L.; Wiecek, S.; Augusciak-Duma, A.; Koryciak-Komarska, H.; Kasznia-Kocot, J. Serologic investigations in children with inflammatory bowel disease and food allergy. Mediat. Inflamm. 2009, 2009, 512695. [Google Scholar] [CrossRef] [Green Version]
- Imanzadeh, F.; Nasri, P.; Sadeghi, S.; Sayyari, A.; Dara, N.; Abdollah, K.; Nilipoor, Y.; Mansuri, M.; Khatami, K.; Rouhani, P.; et al. Food allergy among Iranian children with inflammatory bowel disease: A preliminary report. J. Res. Med. Sci. 2015, 20, 855. [Google Scholar]
- Xiao, N.; Liu, F.; Zhou, G.; Sun, M.; Ai, F.; Liu, Z. Food-specific IgGs Are Highly Increased in the Sera of Patients with Inflammatory Bowel Disease and Are Clinically Relevant to the Pathogenesis. Intern. Med. 2018, 57, 2787–2798. [Google Scholar] [CrossRef] [Green Version]
- Wasielewska, Z.; Dolinska, A.; Wilczynska, D.; Szaflarska-Poplawska, A.; Krogulska, A. Prevalence of allergic diseases in children with inflammatory bowel disease. Postep. Dermatol. Alergol. 2019, 36, 282–290. [Google Scholar] [CrossRef]
- Johnson, E.; Therkelsen, S.P.; Nentwich, I.; Nissen-Meyer, L.S.H.; Hetland, G. IgE-sensitization to food and inhalant allergens in IBD patients compared with normal blood donors at Oslo University Hospital, Norway. Scand. J. Gastroenterol. 2019, 54, 1107–1110. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Navarro, S.; Lopata, A.L. Current advances of murine models for food allergy. Mol. Immunol. 2016, 70, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Nagamoto-Combs, K. Animal Models of Allergic Disease: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kanagaratham, C.; Sallis, B.F.; Fiebiger, E. Experimental Models for Studying Food Allergy. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 356–369.e1. [Google Scholar] [CrossRef]
- Lopes, J.P.; Sicherer, S. Food allergy: Epidemiology, pathogenesis, diagnosis, prevention, and treatment. Curr. Opin. Immunol. 2020, 66, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.J. Skin barrier function and allergic risk. Nat. Genet. 2006, 38, 399–400. [Google Scholar] [CrossRef] [PubMed]
- Callard, R.E.; Harper, J.I. The skin barrier, atopic dermatitis and allergy: A role for Langerhans cells? Trends Immunol. 2007, 28, 294–298. [Google Scholar] [CrossRef]
- Du Toit, G.; Roberts, G.; Sayre, P.H.; Bahnson, H.T.; Radulovic, S.; Santos, A.F.; Brough, H.A.; Phippard, D.; Basting, M.; Feeney, M.; et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 2015, 372, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Noti, M.; Kim, B.S.; Siracusa, M.C.; Rak, G.D.; Kubo, M.; Moghaddam, A.E.; Sattentau, Q.A.; Comeau, M.R.; Spergel, J.M.; Artis, D. Exposure to food allergens through inflamed skin promotes intestinal food allergy through the thymic stromal lymphopoietin-basophil axis. J. Allergy Clin. Immunol. 2014, 133, 1390–1399.e6. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, P.K.; Singh, K.; Singh, N.; Jaggi, A.S. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J. Physiol. Pharmacol. 2014, 18, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Okayasu, I.; Hatakeyama, S.; Yamada, M.; Ohkusa, T.; Inagaki, Y.; Nakaya, R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990, 98, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Eichele, D.D.; Kharbanda, K.K. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 2017, 23, 6016–6029. [Google Scholar] [CrossRef] [PubMed]
- Nell, S.; Suerbaum, S.; Josenhans, C. The impact of the microbiota on the pathogenesis of IBD: Lessons from mouse infection models. Nat. Rev. Microbiol. 2010, 8, 564–577. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Schwertassek, U.; Seydel, A.; Weber, K.; Falk, W.; Hauschildt, S.; Lehmann, J. A refined and translationally relevant model of chronic DSS colitis in BALB/c mice. Lab. Anim. 2018, 52, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Parvataneni, S.; Birmingham, N.P.; Gonipeta, B.; Gangur, V. Dominant, non-MHC genetic control of food allergy in an adjuvant-free mouse model. Int. J. Immuno. Genet. 2009, 36, 261–267. [Google Scholar] [CrossRef]
- Anderson, S.J.; Lockhart, J.S.; Estaki, M.; Quin, C.; A Hirota, S.; Alston, L.; Buret, A.G.; Hancock, T.M.; Petri, B.; Gibson, D.L.; et al. Effects of Azithromycin on Behavior, Pathologic Signs, and Changes in Cytokines, Chemokines, and Neutrophil Migration in C57BL/6 Mice Exposed to Dextran Sulfate Sodium. Comp. Med. 2019, 69, 4–15. [Google Scholar] [CrossRef]
- Hussain, M.; Bonilla-Rosso, G.; Kwong Chung, C.K.C.; Bariswyl, L.; Rodriguez, M.P.; Kim, B.S.; Engel, P.; Noti, M. High dietary fat intake induces a microbiota signature that promotes food allergy. J. Allergy Clin. Immunol. 2019, 144, 157–170.e8. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Li, X.; Gao, J.; Chen, H. Characterization of the potential allergenicity of irradiated bovine alpha-lactalbumin in a BALB/c mouse model. Food Chem. Toxicol. 2016, 97, 402–410. [Google Scholar] [CrossRef]
- Kovacs-Nolan, J.; Zhang, H.; Ibuki, M.; Nakamori, T.; Yoshiura, K.; Turner, P.V.; Matsui, T.; Mine, Y. The PepT1-transportable soy tripeptide VPY reduces intestinal inflammation. Biochim. Biophys. Acta 2012, 1820, 1753–1763. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, M.N.; Lee, K.E.; Hong, J.Y.; Oh, M.S.; Kim, S.Y.; Kim, K.W.; Sohn, M.H. Activated leucocyte cell adhesion molecule (ALCAM/CD166) regulates T cell responses in a murine model of food allergy. Clin. Exp. Immunol. 2018, 192, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Valadez-Cosmes, P.; Raftopoulou, S.; Mihalic, Z.N.; Marsche, G.; Kargl, J. Myeloperoxidase: Growing importance in cancer pathogenesis and potential drug target. Pharmacol. Ther. 2021, 236, 108052. [Google Scholar] [CrossRef] [PubMed]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15.25.1–15.25.14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.D.C. Features of B Cell Responses Relevant to Allergic Disease. J. Immunol. 2022, 208, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.K. Molecular Basis for Downregulation of C5a-Mediated Inflammation by IgG1 Immune Complexes in Allergy and Asthma. Curr. Allergy Asthma Rep. 2013, 13, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Flynn, S.; Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. Surg. Clin. N. Am. 2019, 99, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Qiu, L.; Mi, X.; Zhang, Z.; Xu, D.; Tao, X.; Xing, K.; Wu, Q.; Wei, H. Hot-water extract of ripened Pu-erh tea attenuates DSS-induced colitis through modulation of the NF-kappaB and HIF-1alpha signaling pathways in mice. Food Funct. 2020, 11, 3459–3470. [Google Scholar] [CrossRef] [PubMed]
- Boeckxstaens, G. Mast cells and inflammatory bowel disease. Curr. Opin. Pharmacol. 2015, 25, 45–49. [Google Scholar] [CrossRef]
- Zhou, G.X.; Liu, Z.J. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J. Dig. Dis. 2017, 18, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Ito, Y.; Shimomura, M.; Yoneda, K.; Naito, C.; Adachi, Y.; Meguro, T. Neutrophilia and hyperamylasemia in patients with immediate food allergy. Pediatr. Int. 2019, 61, 23–30. [Google Scholar] [CrossRef]
Parameter | Description | Score |
---|---|---|
Body weight loss (%) | None | 0 |
1–5% | 1 | |
5–10% | 2 | |
10–20% | 3 | |
>20% | 4 | |
Stool consistency | Normal | 0 |
Soft but soft | 1 | |
Loose | 2 | |
Watery stool | 3 | |
Severe diarrhea | 4 | |
Colonic hemorrhage | None | 0 |
Visible | 2 | |
Large amount of blood in the stool | 3 | |
Perianal bleeding | 4 |
Parameter | Description | Score |
---|---|---|
Scratching | No symptoms | 0 |
Mild scratching; rubbing of the nose, head, or feet (<5 episodes) | 1 | |
Intermediate scratching; rubbing of the nose, head, or feet (>5 to <10 episodes) | 2 | |
Severe scratching (>10 episodes) | 3 | |
Behavior | Normal | 0 |
Hyperactivity | 1 | |
Aggressive behavior; pain is loud after prodding | 2 | |
Physical appearance | Normal activity | 0 |
Significantly reduced mobility; piloerection | 2 | |
Immobility after prodding, tremors, and/or significant respiratory distress | 3 | |
Stool consistency | Normal | 0 |
Loose stool | 2 | |
Diarrhea | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Wu, Y.; Wu, H.; Meng, X.; Chen, H. Establishment of Food Allergy Model in Dextran Sulfate Sodium Induced Colitis Mice. Foods 2023, 12, 1007. https://doi.org/10.3390/foods12051007
Chen B, Wu Y, Wu H, Meng X, Chen H. Establishment of Food Allergy Model in Dextran Sulfate Sodium Induced Colitis Mice. Foods. 2023; 12(5):1007. https://doi.org/10.3390/foods12051007
Chicago/Turabian StyleChen, Bihua, Yuhong Wu, Huan Wu, Xuanyi Meng, and Hongbing Chen. 2023. "Establishment of Food Allergy Model in Dextran Sulfate Sodium Induced Colitis Mice" Foods 12, no. 5: 1007. https://doi.org/10.3390/foods12051007
APA StyleChen, B., Wu, Y., Wu, H., Meng, X., & Chen, H. (2023). Establishment of Food Allergy Model in Dextran Sulfate Sodium Induced Colitis Mice. Foods, 12(5), 1007. https://doi.org/10.3390/foods12051007