Microclimate of Grape Bunch and Sunburn of White Grape Berries: Effect on Wine Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plan
- 4 June 2021: Vine topping at fruit set to induce thickening of the leaf wall by growth of secondary shoots.
- 17 June 2021: Vertical positioning of the shoots and installation of the micrometeorological sensors.
- 13 July 2021: At bunch closure, leaf (and secondary shoot) removal in the bunch zone to ensure a bunch exposure of 100% and to induce sunburn symptoms. This treatment was performed only on 3 alternative rows, while the others were left without defoliation, with a bunch exposure of about 10% (examples of the canopy obtained with the two treatments are available in Figure S1).
- 27 July 2021: At the end of the veraison, canopy description.
- 11 September 2021: Grape harvesting for winemaking and for carpological analysis and description of sunburn symptoms.
2.2. Canopy Description
- leaf wall height;
- number of leaf layers (5 replications);
- estimation of the percentage of empty spaces;
- number of shoots in active growth;
- number of primary shoots in 1 plant;
- number of bunches in 1 plant;
- number of primary shoot leaves in 1 shoot;
- number of secondary shoots and their leaves in 1 primary shoot.
2.3. Sensors and Micrometeorological Data Analyses
2.4. Carpological Analysis and Description of Sunburn Symptoms
- asymptomatic berries;
- amber-colored berries;
- severely damaged berries;
- completely dry berries.
2.5. Winemaking Process
2.6. Chemical Analysis
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results
3.1. Canopy Description
3.2. Micrometeorological Analysis
3.3. Carpological Analysis and Description of Sunburn Symptoms
3.4. Production of Wines with Non-Sunburned and Sunburned Grapes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smart, R.E.; Dick, J.K.; Gravett, I.M.; Fisher, B.M. Canopy management to improve grape yield and wine quality—Principles and practices. S. Afr. J. Enol. Vitic. 1990, 11, 3–17. [Google Scholar] [CrossRef]
- Palliotti, A.; Frioni, T.; Tombesi, S.; Sabbatini, P.; Cruz-Castillo, J.G.; Lanari, J.G.V.; Silvestroni, O.; Gatti, M.; Poni, S. Double-pruning grapevines as a management tool to delay berry ripening and control yield. Am. J. Enol. Vitic. 2017, 68, 412–421. [Google Scholar] [CrossRef]
- Cataldo, E.; Fucile, M.; Mattii, G.B. A review: Soil management, sustainable strategies and approaches to improve the quality of modern viticulture. Agronomy 2021, 11, 2359. [Google Scholar] [CrossRef]
- Romero, P.; Navarro, J.M.; Ordaz, P.B. Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update. Agric. Water Manag. 2022, 259, 107216. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practices and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar] [CrossRef]
- Rustioni, L.; Rossoni, M.; Cola, G.; Mariani, L.; Failla, O. Bunch exposure to direct solar radiation increases ortho-diphenol anthocyanins in Northern Italy climatic condition. J. Int. Sci. Vigne Vin. 2011, 45, 85–99. [Google Scholar] [CrossRef]
- Sun, R.-Z.; Cheng, G.; Li, Q.; He, Y.-N.; Wang, Y.; Song, W.-F.; Zhang, X.; Cui, X.-D.; Chen, W.; Wang, J. Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front. Plant Sci. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Close, D.C.; McArthur, C. Rethinking the role of many plant phenolics: Protection from photodamage not herbivores? Oikos 2002, 99, 166–172. [Google Scholar] [CrossRef]
- Graham, L.E.; Kodner, R.B.; Fisher, M.M.; Graham, J.M.; Wilcox, L.W.; Hackney, J.M.; Obst, J.; Bilkey, P.C.; Hanson, D.T.; Cook, M.E. Early land plant adaptations to terrestrial stress: A focus on phenolics. In The Evolution of Plant Physiology. From Whole Plants to Ecosystems; Hemsley, A.R., Poole, I., Eds.; Academic Press: London, UK, 2004; pp. 155–169. [Google Scholar]
- Solovchenko, A.E.; Merzlyak, M.N. Screening of visible and UV radiation as a photoprotective mechanism in plants. Russ. J. Plant Physiol. 2008, 55, 719–737. [Google Scholar] [CrossRef]
- Pourcel, L.; Routaboul, J.M.; Cheynier, V.; Lepiniec, L.; Debeaujon, I. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci. 2007, 12, 29–36. [Google Scholar] [CrossRef]
- Rustioni, L. Oxidized polymeric phenolics: Could they be considered photoprotectors? J. Agric. Food Chem. 2017, 65, 7843–7846. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, J.M.; Holzapfel, B.P.; Stoll, M.; Friedel, M. Sunburn in grapes: A review. Front. Plant Sci. 2021, 11, 604691. [Google Scholar] [CrossRef] [PubMed]
- Rustioni, L.; Milani, C.; Parisi, S.; Failla, O. Chlorophyll role in berry sunburn symptoms studied in different grape (Vitis vinifera L.) cultivars. Sci. Hortic. 2015, 185, 145–150. [Google Scholar] [CrossRef]
- Gambetta, J.M.; Romar, V.; Schmidtke, L.M.; Holzapfel, B.F. Secondary metabolites coordinately protect gapes from excessive light and sunburn damage during development. Biomolecules 2022, 12, 42. [Google Scholar] [CrossRef]
- Rustioni, L.; Rocchi, L.; Guffanti, E.; Cola, G.; Failla, O. Characterization of grape (Vitis vinifera L.) berry sunburn symptoms by reflectance. J. Agric. Food Chem. 2014, 62, 3043–3046. [Google Scholar] [CrossRef] [PubMed]
- Rustioni, L.; Fracassetti, D.; Prinsi, B.; Geuna, F.; Ancelotti, A.; Fauda, V.; Tirelli, A.; Espen, L.; Failla, O. Oxidations in white grape (Vitis vinifera L.) skins: Comparison between ripening process and photooxidative sunburn symptoms. Plant Physiol. Biochem. 2020, 150, 270–278. [Google Scholar] [CrossRef]
- Rustioni, L.; Maghradze, D.; Failla, O. Optical properties of berry epicuticular waxes in four Georgian grape cultivars (Vitis vinifera L.). S. Afr. J. Enol. Vitic. 2012, 33, 138–143. [Google Scholar] [CrossRef]
- Rustioni, L.; Rossoni, M.; Calatroni, M.; Failla, O. Influence of bunch exposure on anthocyanins extractability from grapes skins (Vitis vinifera L.). Vitis 2011, 50, 137–143. [Google Scholar]
- Piombino, P.; Genovese, A.; Rustioni, L.; Moio, L.; Failla, O.; Bellincontro, A.; Mencarelli, F. Free and glycosylated green leaf volatiles, lipoxygenase and alcohol dehydrogenase in defoliated Nebbiolo grapes during postharvest dehydration. Aust. J. Grape Wine Res. 2022, 28, 107–118. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Gabrielli, M.; Fracassetti, D.; Romanini, E.; Colangelo, D.; Tirelli, A.; Lambri, M. Oxygen-induced faults in bottled white wine: A review of technological and chemical characteristics. Food Chem. 2021, 348, 128922. [Google Scholar] [CrossRef] [PubMed]
- Maggu, M.; Winz, R.; Kilmartin, P.A.; Trought, M.C.T.; Nicolau, L. Effect of skin contact and pressure on the composition of Sauvignon Blanc must. J. Agric. Food Chem. 2007, 55, 10281–10288. [Google Scholar] [CrossRef] [PubMed]
- Olejar, K.J.; Fedrizzi, B.; Kilmartin, P.A. Enhancement of Chardonnay antioxidant activity and sensory perception through maceration technique. LWT—Food Sci. Technol. 2016, 65, 152–157. [Google Scholar] [CrossRef]
- Bene, S.; Piskóti, I. Assessment of orange wines in the light of new food consumption trends. J. Food Investig. 2017, 63, 15–22. [Google Scholar]
- Bene, S.; Kállay, M. Polyphenol contents of skin-contact fermented white wines. Acta Aliment. 2019, 48, 515–524. [Google Scholar] [CrossRef]
- Ferreira, B.; Hory, C.; Bard, M.H.; Taisant, C.; Olsson, A.; Le Fur, Y. Effects of skin contact and settling on the level of the C18:2, C18:3 fatty acids and C6 compounds in burgundy chardonnay musts and wines. Food Qual. Prefer. 1995, 6, 35–41. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Easlon, H.M.; Bloom, A. Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Appl. Plant Sci. 2014, 2, 1400033. [Google Scholar] [CrossRef]
- Dinu, D.G.; Bianchi, D.; Mamasakhlisashvili, L.; Quarta, C.; Brancadoro, L.; Maghradze, D.; Cardinale, M.; Rustioni, L. Effects of genotype and environmental conditions on grapevine (Vitis vinifera L.) shoot morphology. Vitis 2021, 60, 85–91. [Google Scholar]
- Cola, G.; Failla, O.; Mariani, L. BerryTone—A simulation model for the daily course of grape berry temperature. Agric. For. Meteorol. 2009, 149, 1215–1228. [Google Scholar] [CrossRef]
- Methods of Analysis—OIV. Method OIV-MA-AS313-01 for the Determination of Total Acidity. Available online: https://www.oiv.int/standards/annex-a-methods-of-analysis-of-wines-and-musts/section-3-chemical-analysis/section-3-1-organic-compounds/section-3-1-3-acids/total-acidity-%28type-i%29 (accessed on 18 December 2022).
- Methods of Analysis—OIV. Method OIV-MA-AS312-02 for the Determination of Ethanol. Available online: https://www.oiv.int/standards/annex-a-methods-of-analysis-of-wines-and-musts/section-3-chemical-analysis/section-3-1-organic-compounds/section-3-1-2-alcohols (accessed on 18 December 2022).
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Fracassetti, D.; Gabrielli, M.; Costa, C.; Tomás-Barberán, F.A.; Tirelli, A. Characterization and suitability of polyphenols-based formulas to replace sulfur dioxide for storage of sparkling white wine. Food Control 2016, 60, 606–614. [Google Scholar] [CrossRef]
- Corona, O.; Squadrito, M.; Vento, G.; Tirelli, A.; Di Stefano, R. Over-evaluation of total flavonoids in grape skin extracts containing sulphur dioxide. Food Chem. 2015, 172, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Piva, G.; Fracassetti, D.; Tirelli, A.; Mascheroni, E.; Musatti, A.; Inglese, P.; Piergiovanni, L.; Rollini, M. Evaluation of the antioxidant/antimicrobial performance of Posidonia oceanica in comparison with three commercial natural extracts and as a treatment on fresh-cut peaches (Prunus persica Batsch). Postharvest Biol. Technol. 2017, 124, 54–61. [Google Scholar] [CrossRef]
- Fracassetti, D.; Bottelli, P.; Corona, O.; Foschino, R.; Vigentini, I. Innovative alcoholic drinks obtained by co-fermenting grape must and fruit juice. Metabolites 2019, 9, 86. [Google Scholar] [CrossRef]
- Schultz, H.R.; Kiefer, W.; Gruppe, W. Photosynthetic duration, carboxylation efficiency and stomatal limitation of sun and shade leaves of different ages in field-grown grapevine (Vitis vinifera L.). Vitis 1996, 35, 169–176. [Google Scholar]
- Di Sabatino, S.; Buccolieri, R.; Pappaccogli, G.; Leo, L.S. The effects of trees on micrometeorology in a real street canyon: Consequences for local air quality. J. Environ. Pollut. 2015, 58, 100–111. [Google Scholar] [CrossRef]
- Rustioni, L.; Cola, G.; Maghradze, D.; Abashidze, E.; Argiriou, A.; Aroutiounian, R.; Brazão, J.; Chipashvili, R.; Cocco, M.; Cornea, V.; et al. Description of the Vitis vinifera L. phenotypic variability in eno-carpological traits by a Euro-Asiatic collaborative network among ampelographic collections. Vitis 2019, 58, 37–46. [Google Scholar]
- Molitor, D.; Behr, M.; Fischer, S.; Hoffmann, L.; Evers, D. Timing of cluster-zone leaf removal and its impact on canopy morphology, cluster structure and bunch rop susceptibility of grapes. J. Int. Sci. Vigne Vin. 2011, 45, 149–159. [Google Scholar]
- Tardáguila, J.; Paz Diago, M.; Martínez de Toda, F.; Poni, S.; Vilanova, M. Effects of timing of leaf removal on yield, berry maturity, wine composition and sensory properties of cv. Grenache grown under non irrigated conditions. OENO One 2008, 42, 221–229. [Google Scholar]
- Maghradze, D.; Kikilashvili, S.; Gotsiridze, O.; Maghradze, T.; Fracassetti, D.; Failla, O.; Rustioni, L. Comparison between the grape technological characteristics of Vitis vinifera subsp. sylvestris and subsp. sativa. Agronomy 2021, 11, 472. [Google Scholar] [CrossRef]
- Friedel, M.; Stoll, M.; Patz, C.D.; Will, F.; Dietrich, H. Impact of light exposure on fruit composition of white ‘Riesling’ grape berries (Vitis vinifera L.). Vitis 2015, 54, 107–116. [Google Scholar]
- Lund, C.M.; Nicolau, L.; Gardner, R.C.; Kilmartin, P.A. Effect of polyphenols on the perception of key aroma compounds from Sauvignon Blanc wine. Aust. J. Grape Wine Res. 2009, 15, 18–26. [Google Scholar] [CrossRef]
- Rustioni, L.; Cola, G.; VanderWeide, J.; Murad, P.; Failla, O.; Sabbatini, P. Utilization of a freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of grape seeds in red (Vitis vinifera L.) cultivars. Food Chem. 2018, 259, 139–146. [Google Scholar] [CrossRef] [PubMed]
Parameter | Leaf Removed | Not Defoliated | Significance of the Difference * |
---|---|---|---|
Leaf wall height (cm) | 87.13 ± 10.73 | 111.20 ± 13.26 | 0.003 |
Percentage of empty spaces (%) | 23.13 ± 14.00 | 20.80 ± 15.47 | 0.336 |
Number of leaf layers | 3.36 ± 1.23 | 3.84 ± 1.28 | 0.162 |
Shoot density (number/m of row) | 16.05 ± 4.25 | 13.92 ± 2.59 | 0.179 |
Number of bunches in one plant | 15.93 ± 5.96 | 16.07 ± 6.68 | 0.818 |
Number of shoots in active growth | 0.000 | 0.000 | |
Number of primary shoots in one plant | 12.87 ± 3.29 | 12.87 ± 3.76 | 0.628 |
Number of secondary shoots in one primary shoot | 6.73 ± 3.22 | 9.00 ± 2.10 | 0.144 |
Number of primary shoot leaves in one shoot | 7.73 ± 1.87 | 12.87 ± 2.45 | 0.002 |
Number of secondary shoot leaves in one shoot | 21.27 ± 17.54 | 27.33 ± 18.02 | 0.314 |
Area of primary shoot leaves in one shoot (cm2) | 1440.98 ± 348.36 | 2397.49 ± 455.70 | 0.002 |
Area of secondary shoot leaves in one shoot (cm2) | 1128.84 ± 931.22 | 1450.85 ± 956.21 | 0.314 |
Total leaf area of one shoot (cm2) | 2569.81 ± 946.24 | 3848.34 ± 855.31 | 0.001 |
Total leaf area of one plant (m2) | 3.20 ± 1.03 | 4.86 ± 1.39 | 0.021 |
Percentage of leaf area due to primary shoot leaves (%) | 61.04 ± 19.14 | 64.30 ± 15.35 | 0.784 |
Percentage of leaf area due to secondary shoot leaves (%) | 38.96 ± 19.14 | 35.71 ± 15.35 | 0.784 |
Leaf area/bunch (m2) | 0.24 ± 0.17 | 0.35 ± 0.17 | 0.065 |
ΔT | ΔRH | ||
---|---|---|---|
Whole day | Mean | −0.6 | 1.3 |
S.E. mean | 0.0 | 0.1 | |
Sign. (p value) | 0.000 | 0.000 | |
Max. | 3.0 | 20.3 | |
Min. | −5.0 | −15.3 | |
Daytime | Mean | −0.5 | 0.1 |
S.E. mean | 0.0 | 0.1 | |
Sign. (p value) | 0.000 | 0.313 | |
Max. | 3.0 | 20.3 | |
Min. | −5.0 | −15.3 | |
Night-time | Mean | −0.7 | 3.2 |
S.E. mean | 0.0 | 0.1 | |
Sign. (p value) | 0.000 | 0.000 | |
Max. | 0.5 | 13.6 | |
Min. | −3.0 | −7.4 |
Parameter | Varietal Average 1 | Leaf Removal Effect | Light Sunburn Symptom Effect | ||||
---|---|---|---|---|---|---|---|
Leaf Removed | Not Defoliated | Significance 2 | Asymptomatic Berries | Amber-Colored Berries | Significance 2 | ||
Average berry weight (g) | 1.49 ± 0.21 | 1.32 ± 0.15 | 1.66 ± 0.08 | 0.001 | 1.45 ± 0.26 | 1.53 ± 0.17 | 0.223 |
Skin weight (g) | 0.16 ± 0.03 | 0.15 ± 0.03 | 0.17 ± 0.02 | 0.126 | 0.15 ± 0.01 | 0.18 ± 0.03 | 0.031 |
Number of seeds per berry | 1.82 ± 0.25 | 1.82 ± 0.35 | 1.82 ± 0.12 | 1.000 | 1.67 ± 0.23 | 1.97 ± 0.16 | 0.039 |
Seed weight (mg) | 41.61 ± 2.80 | 40.79 ± 3.09 | 42.43 ± 2.47 | 0.357 | 41.52 ± 2.87 | 41.69 ± 3.00 | 0.920 |
% of skin | 11.12 ± 1.33 | 11.66 ± 0.98 | 10.57 ± 1.50 | 0.084 | 10.47 ± 1.47 | 11.76 ± 0.88 | 0.048 |
% of seeds | 5.11 ± 0.72 | 5.58 ± 0.69 | 4.65 ± 0.39 | 0.011 | 4.83 ± 0.69 | 5.40 ± 0.69 | 0.076 |
Parameter | Vinification Without Maceration | Vinification with Maceration | ||
---|---|---|---|---|
Non-Sunburned Grapes | Sunburned Grapes | Non-Sunburned Grapes | Sunburned Grapes | |
Residual sugars (g/L) | 0.37 ± 0.01 aA | 2.09 ± 1.60 bA | 0.77 ± 0.24 aA | 0.46 ± 0.10 aB |
pH | 3.34 ± 0.01 aA | 3.40 ± 0.11 aA | 3.85 ± 0.25 aB | 3.58 ± 0.01 bA |
Titratable acidity (g tartaric acid/L) | 5.3 ± 0.4 aA | 5.3 ± 0.6 aA | 4.3 ± 0.1 aB | 4.6 ± 0.1 aB |
Ethanol (%, v/v) | 10.9 ± 0.4 aA | 11.0 ± 0.1 aA | 9.9 ± 1.2 aA | 10.1 ± 0.2 aA |
Total phenol index (g gallic acid/L) | 265 ± 17 aA | 321 ± 12 aA | 497 ± 75 aB | 707 ± 29 bB |
Total flavonoids (g catechin/L) | nm | nm | 138 ± 27 a | 285 ± 17 b |
ABS 420 nm (AU) | 0.14 ± 0.01 aA | 0.18 ± 0.01 bA | 0.21 ± 0.04 aB | 0.31 ± 0.03 bB |
Antioxidant capacity (mmol Trolox/L) | 0.88 ± 0.07 aA | 0.89 ± 0.07 aA | 2.28 ± 0.036 aB | 3.11 ± 0.62 bB |
Ratio AC/TPI | 3.32 aA | 2.78 bA | 4.60 aB | 4.41 aB |
Tartaric acid (g/L) | 3.42 ± 0.38 aA | 2.84 ± 0.67 aA | 1.77 ± 0.03 aB | 1.70 ± 0.16 aB |
Malic acid (g/L) | 1.64 ± 0.26 aA | 2.00 ± 0.15 bA | 1.71 ± 0.14 aA | 2.55 ± 0.11 bB |
Lactic acid (g/L) | 0.89 ± 0.00 aA | 0.44 ± 0.07 bA | 1.52 ± 0.08 aB | 0.83 ± 0.08 bB |
Acetic acid (g/L) | 0.47 ± 0.01 aA | 0.47 ± 0.05 aA | 0.34 ± 0.04 aB | 0.66 ± 0.08 bB |
Citric acid (g/L) | nd | nd | nd | nd |
Succinic acid (g/L) | 1.55 ± 0.01 aA | 1.64 ± 0.06 aA | 1.79 ± 0.05 aB | 1.73 ± 0.08 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rustioni, L.; Altomare, A.; Shanshiashvili, G.; Greco, F.; Buccolieri, R.; Blanco, I.; Cola, G.; Fracassetti, D. Microclimate of Grape Bunch and Sunburn of White Grape Berries: Effect on Wine Quality. Foods 2023, 12, 621. https://doi.org/10.3390/foods12030621
Rustioni L, Altomare A, Shanshiashvili G, Greco F, Buccolieri R, Blanco I, Cola G, Fracassetti D. Microclimate of Grape Bunch and Sunburn of White Grape Berries: Effect on Wine Quality. Foods. 2023; 12(3):621. https://doi.org/10.3390/foods12030621
Chicago/Turabian StyleRustioni, Laura, Alessio Altomare, Gvantsa Shanshiashvili, Fabio Greco, Riccardo Buccolieri, Ileana Blanco, Gabriele Cola, and Daniela Fracassetti. 2023. "Microclimate of Grape Bunch and Sunburn of White Grape Berries: Effect on Wine Quality" Foods 12, no. 3: 621. https://doi.org/10.3390/foods12030621