Informer-Based Safety Risk Prediction of Heavy Metals in Rice in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Data
2.1.2. Experimental Environment
2.2. Rice Safety Risk Assessment Model
2.2.1. Nemerow Integrated Pollution Index
2.2.2. Target Hazard Quotient
2.2.3. Total Carcinogenic Risk
2.3. Risk Classification Model Based on K-Medoids
- (1)
- Randomly select k representative objects as the initial centroids.
- (2)
- Assign each remaining object to the cluster represented by the nearest centroid.
- (3)
- Randomly select a noncentroid object y.
- (4)
- Calculate the total cost f of replacing the centroid x with y.
- (5)
- If f is negative, then replace x with y to form a new centroid.
- (6)
- Repeat (2)–(5) until k centroids no longer change.
2.4. Prediction Model of Rice Safety Risk Level Based on Informer
2.4.1. Prediction Model of Rice Safety Risk Level
2.4.2. Predictive Model of Rice Safety Risk Assessment Indicator Based on Informer
3. Results and Discussion
3.1. Performance Evaluation Metrics
3.1.1. Performance Evaluation of Indicator Prediction
3.1.2. Performance Evaluation of Risk Level Prediction Model
3.2. Rice Safety Risk Grading
3.2.1. Dataset of Rice Safety Risk Assessment Indicators
3.2.2. Safety Risk Classification
3.2.3. Analysis of Grading Results
- (1)
- Category 1 is a cluster of low-risk points, which is characterized by the fact that the distributions of NIPI, THQ, and TCR are all concentrated in a small range, concentrated in ranges of 0–0.0085, 0–0.004, and 0–0.015 × 10−5, respectively, and the numerical magnitudes are also small, but most of the data are concentrated in cluster 1.
- (2)
- Category 2 is a cluster of medium-risk points, which is characterized by a larger interval of NIPI, THQ, and TCR relative to Category 1, with distribution intervals concentrated in ranges of 0.1–0.75, 0.1–0.75, and 1 × 10−5–3.5 × 10−5, respectively.
- (3)
- Category 3 is a cluster of high-risk points, which is characterized by the data values of NIPI, THQ, and TCR being much larger than those in Category 1 and Category 2, and the intervals are distributed in ranges of 1–1.5, 0.5–0.8, and 0.00002–0.00005, respectively.
3.3. Rice Safety Risk Level Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clemens, S.; Ma, J.F. Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods. Annu. Rev. Plant Biol. 2016, 67, 489–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Qin, H.; Liu, X. Health risk assessment of heavy metals in the soil-water-rice system around the Xiazhuang uranium mine, China. Environ. Sci. Pollut. Res. 2019, 26, 5904–5912. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, Z.; Zulkafflee, N.S.; Mohd Redzuan, N.A.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Abdull Razis, A.F. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, Z.; Liu, S.; Ni, S.; Wang, X.; Huang, W. Evaluation of the Effectiveness of Composite Mineral Remediation Agents on Cd Immobilization in Soils and Rice. Soil Sediment Contam. 2022, 31, 386–403. [Google Scholar] [CrossRef]
- Huang, M. The decreasing area of hybrid rice production in China: Causes and potential effects on Chinese rice self-sufficiency. Food Secur. 2022, 14, 267–272. [Google Scholar] [CrossRef]
- Zhao, F. Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils. Front. Agric. Sci. Eng. 2020, 7, 333–338. [Google Scholar] [CrossRef]
- Wang, Z.; Pan, L.; Liu, G.; Zhang, H.; Zhang, J.; Jiang, J. Dietary exposure to cadmium of Shenzhen adult residents from a total diet study. Food Addit. Contam. Part A 2018, 35, 706–714. [Google Scholar] [CrossRef]
- Chen, J.; Zou, W.; Meng, L.; Fan, X.; Xu, G.; Ye, G. Advances in the Uptake and Transport Mechanisms and QTLs Mapping of Cadmium in Rice. Int. J. Mol. Sci. 2019, 20, 3417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qasemi, M.; Shams, M.; Sajjadi, S.A.; Farhang, M.; Erfanpoor, S.; Yousefi, M.; Zarei, A.; Afsharnia, M. Cadmium in Groundwater Consumed in the Rural Areas of Gonabad and Bajestan, Iran: Occurrence and Health Risk Assessment. Biol. Trace Elem. Res. 2019, 192, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bovio, F.; Melchioretto, P.; Forcella, M.E.; Fusi, P.; Urani, C. Cadmium promotes glycolysis upregulation and glutamine dependency in human neuronal cells. Neurochem. Int. 2021, 149, 105144. [Google Scholar] [CrossRef]
- Diaz, D.; Ujueta, F.; Mansur, G.; Lamas, G.A.; Navas-Acien, A.; Arenas, I.A. Low-Level Cadmium Exposure and Atherosclerosis. Curr. Environ. Health Rep. 2021, 8, 42–53. [Google Scholar] [CrossRef]
- Xia, S.; Song, Z.; Jeyakumar, P.; Bolan, N.S.; Wang, H. Characteristics and applications of biochar for remediating Cr(VI)-contaminated soils and wastewater. Environ. Geochem. Health 2020, 42, 1543–1567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, Y.; Gu, R.; Liang, Z.; Xu, W.; Jat Baloch, M.Y. Health Risk Assessment during In Situ Remediation of Cr(VI)-Contaminated Groundwater by Permeable Reactive Barriers: A Field-Scale Study. Int. J. Environ. Res. Public Health 2022, 19, 13079. [Google Scholar] [CrossRef]
- García-Rico, L.; Valenzuela-Rodríguez, M.P.; Meza-Montenegro, M.M.; López-Duarte, A.L. Arsenic in rice and rice products in Northwestern Mexico and health risk assessment. Food Addit. Contam. Part B—Surveill. 2020, 13, 25–33. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Calderón, J.; Rubies, A.G.; Bosch, J.; Timoner, I.; Castell, V.; Marquès, M.; Nadal, M.; Domingo, J.L. Dietary exposure to total and inorganic arsenic via rice and rice-based products consumption. Food Chem. Toxicol. 2020, 141, 111420. [Google Scholar] [CrossRef] [PubMed]
- Sibuar, A.A.; Zulkafflee, N.S.; Selamat, J.; Ismail, M.R.; Lee, S.Y.; Abdull Razis, A.F. Quantitative Analysis and Human Health Risk Assessment of Heavy Metals in Paddy Plants Collected from Perak, Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 731. [Google Scholar] [CrossRef]
- Raja, V.; Lakshmi, R.V.; Sekar, C.P.; Chidambaram, S.; Neelakantan, M.A. Health Risk Assessment of Heavy Metals in Groundwater of Industrial Township Virudhunagar, Tamil Nadu, India. Arch. Environ. Contam. Toxicol. 2021, 80, 144–163. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Q.; Guan, Q.; Ma, Y.; Ni, F.; Yang, E.; Zhang, J. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. J. Hazard. Mater. 2022, 422, 126878. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Anshuka, A.; Chandra, R.; Buzacott, A.J.; Sanderson, D.; van Ogtrop, F.F. Spatio temporal hydrological extreme forecasting framework using LSTM deep learning model. Stoch. Environ. Res. Risk Assess. 2022, 36, 3467–3485. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, X.; Zeng, J.; Jiao, Y.; Li, Y.; Zhong, L.; Yao, L. Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrol. Earth Syst. Sci. 2022, 26, 265–278. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Y.; Fu, H.; Yang, J. Comprehensive Analysis for Long-Term Hydrological Simulation by Deep Learning Techniques and Remote Sensing. Front. Earth Sci. 2022, 10, 875145. [Google Scholar] [CrossRef]
- Du, S.; Li, T.; Yang, Y.; Horng, S. Deep Air Quality Forecasting Using Hybrid Deep Learning Framework. IEEE Trans. Knowl. Data Eng. 2021, 33, 2412–2424. [Google Scholar] [CrossRef] [Green Version]
- Janarthanan, R.; Partheeban, P.; Somasundaram, K.; Elamparithi, P.N. A deep learning approach for prediction of air quality index in a metropolitan city. Sustain. Cities Soc. 2021, 67, 102720. [Google Scholar] [CrossRef]
- Peng, J.; Cao, H.; Ali, Z.; Wu, X.; Fan, J. Intelligent Reflecting Surface-Assisted Interference Mitigation with Deep Reinforcement Learning for Radio Astronomy. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1757–1761. [Google Scholar] [CrossRef]
- Sedaghat, N.; Romaniello, M.; Carrick, J.E.; Pineau, F. Machines learn to infer stellar parameters just by looking at a large number of spectra. Mon. Not. R. Astron. Soc. 2021, 501, 6026–6041. [Google Scholar] [CrossRef]
- Liu, H.; Lin, P.; Zheng, W.; Luan, Y.; Ma, J.; Ding, M.; Mo, H.; Wan, L.; Ling, T. A global eddy-resolving ocean forecast system in China—LICOM Forecast System (LFS). J. Oper. Oceanogr. 2021, 14, 2781–2799. [Google Scholar] [CrossRef]
- Zhu, X.; Zu, Z.; Ren, S.; Zhang, M.; Zhang, Y.; Wang, H.; Li, A. Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2). Geosci. Model Dev. 2022, 15, 995–1015. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, T.; Dong, W.; Liu, Y.; Hao, C.; Zhang, Q. Prediction of Safety Risk Levels of Veterinary Drug Residues in Freshwater Products in China Based on Transformer. Foods 2022, 11, 1690. [Google Scholar] [CrossRef]
- Geng, Z.; Liang, L.; Han, Y.; Tao, G.; Chu, C. Risk early warning of food safety using novel long short-term memory neural network integrating sum product based analytic hierarchy process. Br. Food J. 2022, 124, 898–914. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, T.; Dong, W.; Liu, Y.; Zhang, Q. Security Risk Level Prediction of Carbofuran Pesticide Residues in Chinese Vegetables Based on Deep Learning. Foods 2022, 11, 1061. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhao, Y.; Li, J. Chapter Two: Food consumption data. In The Fifth China Total Diet Study; Luo, J., Yue, M., Eds.; Science Press: Beijing, China, 2018; pp. 66–69. [Google Scholar]
- PyTorch. Available online: https://pytorch.org/ (accessed on 2 November 2022).
- Bekhet, H.A.; Yasmin, T. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A Nemerow Index Approach. In Proceedings of the 4th International Conference on Energy and Environment 2013, Putrajaya, Malaysia, 5–6 March 2013. [Google Scholar]
- Wang, J.; Zhang, X.; Yan, Q.; Zhang, K.; Zheng, Y.; Zhou, G. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J. Environ. Sci. 2018, 71, 283–291. [Google Scholar] [CrossRef]
- Łukasik, M.; Dąbrowska, D. Groundwater quality testing in the area of municipal waste landfill sites in Dąbrowa Górnicza (southern Poland). Environ. Socio-Econ. Stud. 2022, 10, 13–21. [Google Scholar] [CrossRef]
- Kong, M.; Zhong, H.; Wu, Y.; Liu, G.; Xu, Y.; Wang, G. Developing and validating intrinsic groundwater vulnerability maps in regions with limited data: A case study from Datong City in China using DRASTIC and Nemerow pollution indices. Environ. Earth Sci. 2019, 78, 262. [Google Scholar] [CrossRef]
- Tao, H.; Liao, X.; Zhao, D.; Gong, X.; Cassidy, D.P. Delineation of soil contaminant plumes at a co-contaminated site using BP neural networks and geostatistics. Geoderma 2019, 354, 113878. [Google Scholar] [CrossRef]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kępka, W.; Tymczuk, M.; Orłowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils(SE Poland)by indices of pollution. Chemosphere 2017, 168, 839–850. [Google Scholar] [CrossRef]
- Han, W.; Gao, G.; Geng, J.; Li, Y.; Wang, Y. Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere 2018, 197, 325–335. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, Y.; Fan, R.; Qiu, C.; Zhong, S.; Wei, L.; Luo, D. Effect of Cadmium on Cellular Ultrastructure in Mouse Ovary. Ultrastruct. Pathol. 2015, 39, 324–328. [Google Scholar] [CrossRef]
- Tanrıkut, E.; Karaer, A.; Celik, O.; Çelik, E.; Otlu, B.; Yılmaz, E.; Ozgul, O. Role of endometrial concentrations of heavy metals (cadmium, lead, mercury and arsenic) in the aetiology of unexplained infertility. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 179, 187–190. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, H.; Hu, J.; Guo, M.; Wang, Y.; Zhou, Y.; Yu, Z.; Fu, L.; Chen, Y.; Xu, D. Cadmium-induced neural tube defects and fetal growth restriction: Association with disturbance of placental folate transport. Toxicol. Appl. Pharmacol. 2016, 306, 79–85. [Google Scholar] [CrossRef]
- Bai, M.; Zhang, C.; Bai, Y.; Wang, T.; Qu, S.; Qi, H.; Zhang, M.; Tan, C.; Zhang, C. Occurrence and Health Risks of Heavy Metals in Drinking Water of Self-Supplied Wells in Northern China. Int. J. Environ. Res. Public Health 2022, 19, 12517. [Google Scholar] [CrossRef] [PubMed]
- Bhat, N.A.; Ghosh, P.; Ahmed, W.E.; Naaz, F.; Darshinee, A.P. Heavy metal contamination in soils and stream water in Tungabhadra basin, Karnataka: Environmental and health risk assessment. Int. J. Environ. Sci. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Xu, R. Heavy metal pollution characteristics and health evaluation of farmland soil in a gold mine slag area of Luoyang in China. Int. J. Agric. Biol. Eng. 2021, 14, 213–221. [Google Scholar] [CrossRef]
- Huang, Y.; Teng, Y.; Zhang, N.; Fu, Z.; Ren, W. Human health risk assessment of heavy metals in the soil–Panax notoginseng system in Yunnan province, China. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 1312–1326. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data; John Wiley and Sons Inc.: New York, NY, USA, 1990. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- State Administration of Market Reguiation. Available online: http://spcj.gsxt.gov.cn (accessed on 21 October 2021).
Computer Information | Operating System | Windows 10 64-bit |
CPU | Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz (8 CPUs) ~1.8 GHz | |
GPU | Radeon 540X Series | |
RAM | 16 GB | |
Toolkit | Python 3.6 | Numpy 1.19.4 |
Scikit_Learn 0.21.3 | ||
Pandas 0.25.1 | ||
Torch 1.8.0 | ||
Matplotlib 3.1.1 |
Category | NIPI | THQ | TCR | Sample Size | Risk Level |
---|---|---|---|---|---|
1 | 0.008093 | 0.009668 | 0.010973 | 2648 | Low |
2 | 0.126264 | 0.164193 | 0.18236 | 378 | Medium |
3 | 0.464388 | 0.263196 | 0.276102 | 154 | High |
Model | Low Level | Medium Level | High Level | ||||||
---|---|---|---|---|---|---|---|---|---|
P% | R% | F1% | P% | R% | F1% | P% | R% | F1% | |
LSTM | 98.21 | 97.21 | 97.70 | 83.76 | 87.30 | 85.49 | 69.70 | 74.68 | 72.10 |
GRU | 98.48 | 97.70 | 98.09 | 85.97 | 89.15 | 87.53 | 74.53 | 77.92 | 76.19 |
Transformer | 98.78 | 98.19 | 98.48 | 87.95 | 90.74 | 89.32 | 79.75 | 81.82 | 80.77 |
Informer | 99.17 | 98.94 | 99.06 | 91.77 | 94.44 | 93.09 | 91.33 | 88.96 | 90.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, P.; Dong, W.; Jiang, T.; Liu, T.; Hu, T.; Zhang, Q. Informer-Based Safety Risk Prediction of Heavy Metals in Rice in China. Foods 2023, 12, 542. https://doi.org/10.3390/foods12030542
Lu P, Dong W, Jiang T, Liu T, Hu T, Zhang Q. Informer-Based Safety Risk Prediction of Heavy Metals in Rice in China. Foods. 2023; 12(3):542. https://doi.org/10.3390/foods12030542
Chicago/Turabian StyleLu, Ping, Wei Dong, Tongqiang Jiang, Tianqi Liu, Tianyu Hu, and Qingchuan Zhang. 2023. "Informer-Based Safety Risk Prediction of Heavy Metals in Rice in China" Foods 12, no. 3: 542. https://doi.org/10.3390/foods12030542
APA StyleLu, P., Dong, W., Jiang, T., Liu, T., Hu, T., & Zhang, Q. (2023). Informer-Based Safety Risk Prediction of Heavy Metals in Rice in China. Foods, 12(3), 542. https://doi.org/10.3390/foods12030542