Preparation of a Dual-Functional Active Film Based on Bilayer Hydrogel and Red Cabbage Anthocyanin for Maintaining and Monitoring Pork Freshness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Composite Films
2.3. Characterization of Composite Films
2.3.1. The Color Change of Films
2.3.2. The Color of Composite Films
2.3.3. Light Transmission and Opacity
2.3.4. Thickness and Mechanical Properties
2.3.5. Moisture Content (MC) and Water Solubility (WS)
2.3.6. Water Vapor Permeability (WVP)
2.4. Antioxidant Capacity of the Film
2.5. Antimicrobial Activity of Composite Films
2.6. Colorimetric Response and Color Stability
2.7. Infrared Spectroscopy and Characterization of Microstructure
2.8. Application for the Pork Freshness
2.8.1. Determination of pH
2.8.2. Determination of Lipid Oxidation
2.8.3. Determination of Total Viable Count (TVC)
2.8.4. Determination of TVB-N
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Color of Composite Films
3.1.1. The Color of Untreated Composite Films
3.1.2. The Color Change of Composite Film
3.2. Properties of Composite Indicator Film
3.2.1. Infrared Spectrum Analysis of Composite Film
3.2.2. The Morphology and Structure
3.2.3. Physical and Mechanical Properties
3.2.4. DPPH Radical Scavenging Activity
3.2.5. Antimicrobial Activity
3.2.6. Volatile Ammonia Response
3.2.7. Stability of the Films
3.3. Application of Composite Films for Pork Freshness Maintaining and Monitoring
3.3.1. Determination of Concentration in Red Cabbage Anthocyanin
3.3.2. Sample Preparation
3.3.3. Antioxidant and Antibacterial Properties
3.3.4. Monitoring Freshness of Pork
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ren, Q.-S.; Fang, K.; Yang, X.-T.; Han, J.-W. Ensuring the quality of meat in cold chain logistics: A comprehensive review. Trends Food Sci. Technol. 2022, 119, 133–151. [Google Scholar] [CrossRef]
- Cao, S.; Wang, S.; Wang, Q.; Lin, G.; Niu, B.; Guo, R.; Yan, H.; Wang, H. Sodium alginate/chitosan-based intelligent bilayer film with antimicrobial activity for pork preservation and freshness monitoring. Food Control 2023, 148, 109615. [Google Scholar] [CrossRef]
- Lin, W.-F.; Guo, H.-Q.; Zhu, L.-J.; Yang, K.; Li, H.-Z.; Cui, L. Temporal variation of antibiotic resistome and pathogens in food waste during short-term storage. J. Hazard. Mater. 2022, 436, 129261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zheng, Y.; Li, R. Effects of chitosan-based coatings incorporated with ɛ-polylysine and ascorbic acid on the shelf-life of pork. Food Chem. 2022, 390, 133206. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, M.; Adhikari, B.; Devahastin, S.; Wang, H. Double-layer indicator films aided by BP-ANN-enabled freshness detection on packaged meat products. Food Packag. Shelf Life 2022, 31, 100808. [Google Scholar] [CrossRef]
- Park, J.; Rho, S.J.; Kim, Y.R. Enhancing antioxidant and antimicrobial activity of carnosic acid in rosemary (Rosmarinus officinalis L.) extract by complexation with cyclic glucans. Food Chem. 2019, 299, 125119. [Google Scholar] [CrossRef]
- Olszewska, M.A.; Gedas, A.; Simoes, M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res. Int. 2020, 134, 109214. [Google Scholar] [CrossRef]
- Aloui, H.; Deshmukh, A.R.; Khomlaem, C.; Kim, B.S. Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties. Food Hydrocoll. 2021, 113, 106508. [Google Scholar] [CrossRef]
- Myint, K.Z.; Yu, Q.; Qing, J.; Zhu, S.; Shen, J.; Xia, Y. Botanic antimicrobial agents, their antioxidant properties, application and safety issue. Food Packag. Shelf Life 2022, 34, 100924. [Google Scholar] [CrossRef]
- Liang, T.; Sun, G.; Cao, L.; Li, J.; Wang, L. A pH and NH3 sensing intelligent film based on Artemisia sphaerocephala Krasch. gum and red cabbage anthocyanins anchored by carboxymethyl cellulose sodium added as a host complex. Food Hydrocoll. 2019, 87, 858–868. [Google Scholar] [CrossRef]
- Xie, S.; Liu, Y.; Chen, H.; Zhang, Z.; Ge, M. Anthocyanin degradation and the underlying molecular mechanism in a red-fleshed grape variety. LWT 2021, 151, 112198. [Google Scholar] [CrossRef]
- Huang, X.; Du, L.; Li, Z.; Xue, J.; Shi, J.; Tahir, H.E.; Zhai, X.; Zhang, J.; Zhang, N.; Sun, W.; et al. A visual bi-layer indicator based on mulberry anthocyanins with high stability for monitoring Chinese mitten crab freshness. Food Chem. 2023, 411, 135497. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Marín, R.; Fernandes, S.C.M.; Sánchez, M.Á.A.; Labidi, J. Halochromic and antioxidant capacity of smart films of chitosan/chitin nanocrystals with curcuma oil and anthocyanins. Food Hydrocoll. 2022, 123, 107119. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Ying, Y.; Hu, L.; Hu, Y. pH-sensitive and antibacterial films developed by incorporating anthocyanins extracted from purple potato or roselle into chitosan/polyvinyl alcohol/nano-ZnO matrix: Comparative study. Int. J. Biol. Macromol. 2021, 178, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Guan, Y.; Huang, X.; Arslan, M.; Shi, J.; Li, Z.; Gong, Y.; Holmes, M.; Zou, X. High-sensitivity bilayer nanofiber film based on polyvinyl alcohol/sodium alginate/polyvinylidene fluoride for pork spoilage visual monitoring and preservation. Food Chem. 2022, 394, 133439. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, X.; Zhang, H.; Dong, M.; Li, L.; Zhangsun, H.; Wang, L. Dual-functional intelligent gelatin based packaging film for maintaining and monitoring the shrimp freshness. Food Hydrocoll. 2022, 124, 107258. [Google Scholar] [CrossRef]
- Nazmi, N.N.; Isa, M.I.N.; Sarbon, N.M. Preparation and characterization of chicken skin gelatin/CMC composite film as compared to bovine gelatin film. Food Biosci. 2017, 19, 149–155. [Google Scholar] [CrossRef]
- Li, Y.; Ying, Y.; Zhou, Y.; Ge, Y.; Yuan, C.; Wu, C.; Hu, Y. A pH-indicating intelligent packaging composed of chitosan-purple potato extractions strength by surface-deacetylated chitin nanofibers. Int. J. Biol. Macromol. 2019, 127, 376–384. [Google Scholar] [CrossRef]
- Kuswandi, B. A novel colorimetric food package label for fish spoilage based on polyaniline film. Food Control 2012, 25, 184–189. [Google Scholar] [CrossRef]
- Hoang, A.T.; Cho, Y.B.; Park, J.-S.; Yang, Y.; Kim, Y.S. Sensitive naked-eye detection of gaseous ammonia based on dye-impregnated nanoporous polyacrylonitrile mats. Sens. Actuators B Chem. 2016, 230, 250–259. [Google Scholar] [CrossRef]
- Li, T.; Wang, D.; Ren, L.; Mei, J.; Xu, Y.; Li, J. Preparation of pH-sensitive polylactic acid-naringin coaxial electrospun fiber membranes for maintaining and monitoring salmon freshness. Int. J. Biol. Macromol. 2021, 188, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Xu, X.; Feng, J.; Ren, Y.; Bai, X.; Xia, X. Preparation of NH3- and H2S-sensitive intelligent pH indicator film from sodium alginate/black soybean seed coat anthocyanins and its use in monitoring meat freshness. Food Packag. Shelf Life 2023, 35, 100994. [Google Scholar] [CrossRef]
- Prietto, L.; Mirapalhete, T.C.; Pinto, V.Z.; Hoffmann, J.F.; Vanier, N.L.; Lim, L.-T.; Guerra Dias, A.R.; da Rosa Zavareze, E. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT 2017, 80, 492–500. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Faseha, A.; Benjakul, S.; Kaewprachu, P. Application of anthocyanin as a color indicator in gelatin films. Food Biosci. 2020, 36, 100603. [Google Scholar] [CrossRef]
- Villalobos, R.; Chanona, J.; Hernández, P.; Gutiérrez, G.; Chiralt, A. Gloss and transparency of hydroxypropyl methylcellulose films containing surfactants as affected by their microstructure. Food Hydrocoll. 2005, 19, 53–61. [Google Scholar] [CrossRef]
- Pereira, V.A.; De Arruda, I.N.Q.; Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Zhai, Y.; St-Pierre, J. Impact of operating conditions on the acetylene contamination in the cathode of proton exchange membrane fuel cells. J. Power Sources 2017, 372, 134–144. [Google Scholar] [CrossRef]
- Silva-Pereira, M.C.; Teixeira, J.A.; Pereira-Júnior, V.A.; Stefani, R. Chitosan/corn starch blend films with extract from Brassica oleraceae (red cabbage) as a visual indicator of fish deterioration. LWT Food Sci. Technol. 2015, 61, 258–262. [Google Scholar] [CrossRef]
- Liu, L.; Wu, W.; Zheng, L.; Yu, J.; Sun, P.; Shao, P. Intelligent packaging films incorporated with anthocyanins-loaded ovalbumin-carboxymethyl cellulose nanocomplexes for food freshness monitoring. Food Chem. 2022, 387, 132908. [Google Scholar] [CrossRef]
- He, X.; Zeng, L.; Cheng, X.; Yang, C.; Chen, J.; Chen, H.; Ni, H.; Bai, Y.; Yu, W.; Zhao, K.; et al. Shape memory composite hydrogel based on sodium alginate dual crosslinked network with carboxymethyl cellulose. Eur. Polym. J. 2021, 156, 110592. [Google Scholar] [CrossRef]
- Cano, A.I.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 2015, 167, 59–64. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, Q.; Jin, Z.; Wang, Y.-C. Intelligent films based on pectin, sodium alginate, cellulose nanocrystals, and anthocyanins for monitoring food freshness. Food Chem. 2023, 404, 134528. [Google Scholar] [CrossRef] [PubMed]
- Staroszczyk, H.; Sztuka, K.; Wolska, J.; Wojtasz-Pająk, A.; Kołodziejska, I. Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 117, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cui, Z.; Shang, M.; Zhong, Y. A colorimetric film based on polyvinyl alcohol/sodium carboxymethyl cellulose incorporated with red cabbage anthocyanin for monitoring pork freshness. Food Packag. Shelf Life 2021, 28, 100641. [Google Scholar] [CrossRef]
- Aloui, A.; Hamani, N.; Delahoche, L. An integrated optimization approach using a collaborative strategy for sustainable cities freight transportation: A Case study. Sustain. Cities Soc. 2021, 75, 103331. [Google Scholar] [CrossRef]
- Tabari, M. Investigation of Carboxymethyl Cellulose (CMC) on Mechanical Properties of Cold Water Fish Gelatin Biodegradable Edible Films. Foods 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Fogarasi, A.-L.; Kun, S.; Tankó, G.; Stefanovits-Bányai, É.; Hegyesné-Vecseri, B. A comparative assessment of antioxidant properties, total phenolic content of einkorn, wheat, barley and their malts. Food Chem. 2015, 167, 1–6. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Rao, M.S.; Chawla, S.P.; Sharma, A. Active chitosan–polyvinyl alcohol films with natural extracts. Food Hydrocoll. 2012, 29, 290–297. [Google Scholar] [CrossRef]
- Alvarez Yela, A.C.; Tibaquirá Martínez, M.A.; Rangel Piñeros, G.A.; López, V.C.; Villamizar, S.H.; Núñez Vélez, V.L.; Abraham, W.-R.; Vives Flórez, M.J.; González Barrios, A.F. A comparison between conventional Pseudomonas aeruginosa rhamnolipids and Escherichia coli transmembrane proteins for oil recovery enhancing. Int. Biodeterior. Biodegrad. 2016, 112, 59–65. [Google Scholar] [CrossRef]
- Khodaei, S.M.; Gholami-Ahangaran, M.; Karimi Sani, I.; Esfandiari, Z.; Eghbaljoo, H. Application of intelligent packaging for meat products: A systematic review. Vet. Med. Sci. 2023, 9, 481–493. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, G.; Cao, L.; Wang, L. Accurately intelligent film made from sodium carboxymethyl starch/κ-carrageenan reinforced by mulberry anthocyanins as an indicator. Food Hydrocoll. 2020, 108, 106012. [Google Scholar] [CrossRef]
- Hernández-García, E.; Vargas, M.; Chiralt, A. Starch-polyester bilayer films with phenolic acids for pork meat preservation. Food Chem. 2022, 385, 132650. [Google Scholar] [CrossRef] [PubMed]
- Xiaobo, Z.; Jiewen, Z. Comparative analyses of apple aroma by a tin-oxide gas sensor array device and GC/MS. Food Chem. 2008, 107, 120–128. [Google Scholar] [CrossRef]
- Guo, Z.; Han, L.; Yu, Q.-l.; Lin, L. Effect of a sea buckthorn pomace extract-esterified potato starch film on the quality and spoilage bacteria of beef jerky sold in supermarket. Food Chem. 2020, 326, 127001. [Google Scholar] [CrossRef]
- Xu, W.; He, Y.; Li, J.; Zhou, J.; Xu, E.; Wang, W.; Liu, D. Portable beef-freshness detection platform based on colorimetric sensor array technology and bionic algorithms for total volatile basic nitrogen (TVB-N) determination. Food Control 2023, 150, 109741. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Yu, S.; Xiong, F.; Wang, Y.; Zhang, X.; Ren, Y. Characterization of the volatile flavor profiles of Zhenjiang aromatic vinegar combining a novel nanocomposite colorimetric sensor array with HS-SPME-GC/MS. Food Res. Int. 2022, 159, 111585. [Google Scholar] [CrossRef]
Samples | L | a | b | ΔE | Opacity | Appearance |
---|---|---|---|---|---|---|
GS | 85.35 ± 0.42 a | −1.63 ± 0.12 b | 10.00 ± 0.65 b | 7.04 ± 0.66 d | 0.84 ± 0.05 d | |
GSR | 46.36 ± 2.66 c | −8.14 ± 0.55 d | 4.48 ± 1.46 d | 43.11 ± 2.10 b | 3.24 ± 0.26 a | |
GC | 85.74 ± 0.70 a | −1.73 ± 0.07 b | 7.05 ± 0.71 c | 4.56 ± 0.82 e | 0.51 ± 0.21 e | |
GCR | 54.94 ± 0.52 b | −3.81 ± 0.43 c | 19.04 ± 1.69 a | 34.38 ± 0.62 c | 2.43 ±0.09 b | |
CS | 86.83 ± 0.63 a | −0.94 ± 0.26 b | 2.06 ± 0.06 e | 1.87 ± 0.42 f | 2.20± 0.06 c | |
CSR | 54.52 ± 1.40 b | 45.04 ± 1.52 a | −4.91 ± 0.28 f | 58.23 ± 1.66 a | 2.60 ± 0.17 b |
Samples | Thickness/μm | TS/MPa | EB/% | PS/N | MC/% | WS/% | WVP/10−11 (g m−1s−1 Pa−1) |
---|---|---|---|---|---|---|---|
GS | 83.60 ± 5.47 b | 13.09 ± 5.60 c | 54.32 ± 2.09 bc | 4.01 ± 0.27 c | 29.36 ± 0.09 a | 27.39 ± 2.36 a | 3.08 ± 0.04 c |
GSR | 96.80 ± 1.96 b | 18.70 ± 3.52 c | 48.17 ± 6.20 c | 3.08 ± 0.57 c | 28.81 ± 0.66 a | 28.04 ± 0.11 a | 5.70 ± 0.11 bc |
GC | 98.03 ± 3.19 ab | 69.85 ± 1.51 b | 101.09 ± 2.58 a | 6.01 ± 0.28 b | 30.09 ± 1.17 a | 18.32 ± 1.01 b | 6.47 ± 0.24 bc |
GCR | 104.20 ± 3.01 a | 94.72 ± 2.09 a | 83.50 ± 2.89 ab | 11.19 ± 0.34 a | 21.67± 1.52 a | 22.69 ± 0.94 b | 7.50 ± 0.02 b |
CS | 82.06 ± 1.55 b | 47.76 ± 6.42 b | 43.70 ± 2.04 c | 1.50 ± 0.92 c | 32.69 ± 0.38 a | 20.60 ± 0.66 b | 6.02 ± 0.60 bc |
CSR | 92.07 ± 3.68 ab | 47.79 ± 8.97 b | 88.71 ± 9.91 b | 1.92 ± 0.37 c | 16.52 ± 1.26 b | 27.38 ± 1.31 a | 11.69 ± 0.23 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Zhao, W.; Li, Z.; Zhang, N.; Wang, S.; Shi, J.; Zhai, X.; Zhang, J.; Shen, T. Preparation of a Dual-Functional Active Film Based on Bilayer Hydrogel and Red Cabbage Anthocyanin for Maintaining and Monitoring Pork Freshness. Foods 2023, 12, 4520. https://doi.org/10.3390/foods12244520
Huang X, Zhao W, Li Z, Zhang N, Wang S, Shi J, Zhai X, Zhang J, Shen T. Preparation of a Dual-Functional Active Film Based on Bilayer Hydrogel and Red Cabbage Anthocyanin for Maintaining and Monitoring Pork Freshness. Foods. 2023; 12(24):4520. https://doi.org/10.3390/foods12244520
Chicago/Turabian StyleHuang, Xiaowei, Wanying Zhao, Zhihua Li, Ning Zhang, Sheng Wang, Jiyong Shi, Xiaodong Zhai, Junjun Zhang, and Tingting Shen. 2023. "Preparation of a Dual-Functional Active Film Based on Bilayer Hydrogel and Red Cabbage Anthocyanin for Maintaining and Monitoring Pork Freshness" Foods 12, no. 24: 4520. https://doi.org/10.3390/foods12244520