Effects of NaCl on the Physical Properties of Cornstarch–Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment 1
2.1.1. Materials
2.1.2. Preparation of CS–MC Mixtures
2.1.3. Swelling Power
2.1.4. Pasting Properties
2.1.5. Rheological Measurements
2.2. Experiment 2
2.2.1. Preparation of CS–MC Pastes
2.2.2. 3D Printing Process
2.2.3. Dimensional Stability
2.2.4. Printing Accuracy
2.2.5. Post-Processing Characteristics
Cooking Loss
Shrinkage
2.2.6. Mechanical Properties
Texture Profile Analysis
Cutting Test
2.2.7. Statistical Analysis
3. Results and Discussion
3.1. Experiment 1
3.1.1. Swelling Power
3.1.2. Pasting Properties
3.1.3. Rheological Properties
Steady Shear Flow Properties
Dynamic Viscoelastic Properties
3.2. Experiment 2
3.2.1. Dimensional Stability
3.2.2. Printing Accuracy
3.2.3. Post-Processing Properties
3.2.4. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chi, C.; Li, X.; Huang, S.; Chen, L.; Zhang, Y.; Li, L.; Miao, S. Basic principles in starch multi-scale structuration to mitigate digestibility: A review. Trends Food Sci. Technol. 2021, 109, 154–168. [Google Scholar] [CrossRef]
- Lee, H.M.; Lee, Y.T. Pasting properties of corn, potato, sweet potato starches and wheat flours with partial rice starch substitution. Food Eng. Prog. 2013, 17, 238–244. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Sodhi, N.S.; Gill, B.S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Motasim, A.M.; Samsuri, A.W.; Sukor, A.S.A.; Amin, A.M. Effects of Liquid Urea Application Frequency on the Growth and Grain Yield of Corn (Zea mays L.). Commun. Soil Sci. Plant Anal. 2022, 53, 2245–2256. [Google Scholar] [CrossRef]
- Mukri, G.; Patil, M.S.; Motagi, B.N.; Bhat, J.S.; Singh, C.; Jeevan Kumar, S.P.; Simal-Gandara, J. Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.). Mol. Biol. Rep. 2022, 49, 4517–4524. [Google Scholar] [CrossRef] [PubMed]
- Rathna Priya, T.S.; Manickavasagan, A. Characterising corn grain using infrared imaging and spectroscopic techniques: A review. J. Food Meas. Charact. 2021, 15, 3234–3249. [Google Scholar] [CrossRef]
- Van Hung, P.; Binh, V.T.; Nhi, P.H.Y.; Phi, N.T.L. Effect of heat-moisture treatment of unpolished red rice on its starch properties and in vitro and in vivo digestibility. Int. J. Biol. Macromol. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Assatory, A.; Vitelli, M.; Rajabzadeh, A.R.; Legge, R.L. Dry fractionation methods for plant protein, starch and fiber enrichment: A review. Trends Food Sci. Technol. 2019, 86, 340–351. [Google Scholar] [CrossRef]
- Zhou, D.N.; Zhang, B.; Chen, B.; Chen, H.Q. Effects of oligosaccharides on pasting, thermal and rheological properties of sweet potato starch. Food Chem. 2017, 230, 516–523. [Google Scholar] [CrossRef]
- Whistler, R.L.; BeMiller, J.N. Starches, modified food starches, and other products from starches. In Carbohydrate Chemistry for Food Scientists; American Association of Cereal Chemists: St. Paul, MN, USA, 2017; pp. 117–151. [Google Scholar]
- Chen, L.; Tong, Q.; Ren, F.; Zhu, G. Pasting and rheological properties of rice starch as affected by pullulan. Int. J. Biol. Macromol. 2014, 66, 325–331. [Google Scholar] [CrossRef]
- Orgulloso-Bautista, S.; Ortega-Toro, R.; Garcia Zapateiro, L.A. Design and application of hydrocolloids from butternut squash (Cucurbita moschata) epidermis as a food additive in mayonnaise-type sauces. ACS Omega 2021, 6, 5499–5508. [Google Scholar] [CrossRef] [PubMed]
- Pematilleke, N.; Kaur, M.; Wai, C.T.R.; Adhikari, B.; Torley, P.J. Effect of the addition of hydrocolloids on beef texture: Targeted to the needs of people with dysphagia. Food Hydrocoll. 2021, 113, 106413. [Google Scholar] [CrossRef]
- Herrera, M.P.; Vasanthan, T. Rheological characterization of gum and starch nanoparticle blends. Food Chem. 2018, 243, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Gonera, A.; Cornillon, P. Gelatinization of starch/gum/sugar systems studied by using DSC, NMR, and CSLM. Starch-Stärke 2002, 54, 508–516. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Szymanowska, U.; Skrzypek, T.; Bartkowiak, A.; Materska, M.; Łupina, K. Release of fireweed extract (Epilobium angustifolium L.) from corn starch-and methylcellulose-based films—A comparative study. Food Hydrocoll. 2021, 120, 106887. [Google Scholar] [CrossRef]
- Peressini, D.; Bravin, B.; Lapasin, R.; Rizzotti, C.; Sensidoni, A. Starch–methylcellulose based edible films: Rheological properties of film-forming dispersions. J. Food Eng. 2003, 59, 25–32. [Google Scholar] [CrossRef]
- Choi, O.J.; Shin, M.S.; Chough, S.H. Viscosity properties of corn, potato and sweet potato starch according to pH. Korean J. Hum. Ecol. 2000, 3, 88–99. [Google Scholar]
- Viturawong, Y.; Achayuthakan, P.; Suphantharika, M. Gelatinization and rheological properties of rice starch/xanthan mixtures: Effects of molecular weight of xanthan and different salts. Food Chem. 2008, 111, 106–114. [Google Scholar] [CrossRef]
- Gil, B.; Yoo, B. Effect of salt addition on gelatinization and rheological properties of sweet potato starch–xanthan gum mixture. Starch-Stärke 2015, 67, 117–123. [Google Scholar] [CrossRef]
- Sasaki, T. Effects of xanthan and guar gums on starch digestibility and texture of rice flour blend bread. Cereal Chem. 2018, 95, 177–184. [Google Scholar] [CrossRef]
- Donmez, D.; Pinho, L.; Patel, B.; Desam, P.; Campanella, O.H. Characterization of starch–water interactions and their effects on two key functional properties: Starch gelatinization and retrogradation. Curr. Opin. Food Sci. 2021, 39, 103–109. [Google Scholar] [CrossRef]
- Luo, Y.; Shen, M.; Han, X.; Wen, H.; Xie, J. Gelation characteristics of Mesona chinensis polysaccharide-maize starches gels: Influences of KCl and NaCl. J. Cereal Sci. 2020, 96, 103108. [Google Scholar] [CrossRef]
- Park, S.M.; Kim, H.W.; Park, H.J. Callus-based 3D printing for food exemplified with carrot tissues and its potential for innovative food production. J. Food Eng. 2020, 271, 109781. [Google Scholar] [CrossRef]
- Jo, G.H.; Lim, W.S.; Kim, H.W.; Park, H.J. Post-processing and printability evaluation of red ginseng snacks for three-dimensional (3D) printing. Food Biosci. 2021, 42, 101094. [Google Scholar] [CrossRef]
- Kim, C.T.; Maeng, J.S.; Shin, W.S.; Shim, I.C.; Oh, S.I.; Jo, Y.H.; Kim, C.J. Food 3D-printing technology and its application in the food industry. Food Eng. Prog. 2017, 21, 12–21. [Google Scholar] [CrossRef]
- Ko, H.J.; Wen, Y.; Choi, J.H.; Park, B.R.; Kim, H.W.; Park, H.J. Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocoll. 2021, 120, 106898. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, C.; Yoo, B. Steady and dynamic shear rheology of rice starch-galactomannan mixtures. Starch-Stärke 2005, 57, 310–318. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, H.; Yang, H.; Zhao, S.; Liu, Y.; Liu, R. Effects of salts on the gelatinization and retrogradation properties of maize starch and waxy maize starch. Food Chem. 2017, 214, 319–327. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, H.W.; Park, H.J. Preparation and characterization of surimi-based imitation crab meat using coaxial extrusion three-dimensional food printing. Innov. Food Sci. Emerg. Technol. 2021, 71, 102711. [Google Scholar] [CrossRef]
- Fan, H.; Zhang, M.; Liu, Z.; Ye, Y. Effect of microwave-salt synergetic pre-treatment on the 3D printing performance of SPI-strawberry ink system. LWT 2020, 122, 109004. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.; Bhandari, B. 3D Printing of Steak-like Foods Based on Textured Soybean Protein. Foods 2021, 10, 2011. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, X.; You, J.; Xiong, S. Rapid determination of the textural properties of silver carp (Hypophthalmichthys molitrix) using near-infrared reflectance spectroscopy and chemometrics. LWT 2020, 129, 109545. [Google Scholar] [CrossRef]
- Samutsri, W.; Suphantharika, M. Effect of salts on pasting, thermal, and rheological properties of rice starch in the presence of non-ionic and ionic hydrocolloids. Carb. Polym. 2012, 87, 1559–1568. [Google Scholar] [CrossRef]
- Guo, L.; Du, X. Retrogradation kinetics and glass transition temperatures of Pueraria lobata starch, and its mixtures with sugars and salt. Starch-Stärke 2014, 66, 887–894. [Google Scholar] [CrossRef]
- Yu, K.; Wang, Y.; Wang, Y.; Guo, L.; Du, X. Effects of annealing and additives on the gelatinization, structure, and textural characteristics of corn starch. Int. J. Food Prop. 2016, 19, 1272–1281. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Zheng, P.; Lam, Y.C.; Hu, X. Controllable gelation of methylcellulose by a salt mixture. Langmuir 2004, 20, 6134–6138. [Google Scholar] [CrossRef]
- Ma, S.; Zhu, P.; Wang, M. Effects of konjac glucomannan on pasting and rheological properties of corn starch. Food Hydrocoll. 2019, 89, 234–240. [Google Scholar] [CrossRef]
- Amboon, W.; Tulyathan, V.; Tattiyakul, J. Effect of hydroxypropyl methylcellulose on rheological properties, coating pickup, and oil content of rice flour-based batters. Food Bioprocess Technol. 2012, 5, 601–608. [Google Scholar] [CrossRef]
- Choi, H.M.; Yoo, B. Steady and dynamic shear rheology of sweet potato starch–xanthan gum mixtures. Food Chem. 2009, 116, 638–643. [Google Scholar] [CrossRef]
- Sudhakar, V.; Singhal, R.S.; Kulkarni, P.R. Studies on starch-hydrocolloid interactions: Effect of salts. Food Chem. 1995, 53, 405–408. [Google Scholar] [CrossRef]
- Singh, A.; Geveke, D.J.; Yadav, M.P. Improvement of rheological, thermal and functional properties of tapioca starch by using gum arabic. LWT 2017, 80, 155–162. [Google Scholar] [CrossRef]
- Wyatt, N.B.; Liberatore, M.W. The effect of counterion size and valency on the increase in viscosity in polyelectrolyte solutions. Soft Matter 2010, 6, 3346–3352. [Google Scholar] [CrossRef]
- Meyer, E.L.; Fuller, G.G.; Clark, R.C.; Kulicke, W.M. Investigation of xanthan gum solution behavior under shear flow using rheooptical techniques. Macromolecules 1993, 26, 504–511. [Google Scholar] [CrossRef]
- Tunick, M.H. Small-strain dynamic rheology of food protein networks. J. Agric. Food Chem. 2011, 59, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Kim, M.J.; Yoo, B. Dynamic rheological properties of rice flour-starch blends. Starch-Stärke 2010, 62, 321–325. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Weiss, P.; Tancret, F.; Bouler, J.M. The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution. Acta Biomater. 2013, 9, 5740–5750. [Google Scholar] [CrossRef]
- Phuhongsung, P.; Zhang, M.; Devahastin, S. Investigation on 3D printing ability of soybean protein isolate gels and correlations with their rheological and textural properties via LF-NMR spectroscopic characteristics. LWT 2020, 122, 109019. [Google Scholar] [CrossRef]
- Zheng, L.; Ren, A.; Liu, R.; Xing, Y.; Yu, X.; Jiang, H. Effect of sodium chloride solution on quality of 3D-printed samples molded using wheat starch gel. Food Hydrocoll. 2022, 123, 107197. [Google Scholar] [CrossRef]
- Tan, H.L.; Tan, T.C.; Easa, A.M. Effects of sodium chloride or salt substitutes on rheological properties and water-holding capacity of flour and hardness of noodles. Food Struct. 2020, 26, 100154. [Google Scholar] [CrossRef]
- Smith, D.M.; Scherer, G.W.; Anderson, J.M. Shrinkage during drying of silica gel. J. Non-Cryst. Solids 1995, 188, 191–206. [Google Scholar] [CrossRef]
- Dexter, J.E.; Matsuo, R.R.; Dronzek, B.L. A scanning electron microscopy study of Japanese noodles. Cereal Chem. 1979, 56, 202–208. [Google Scholar]
- Phothiset, S.; Charoenrein, S. Morphology and physicochemical changes in rice flour during rice paper production. Food Res. Int. 2007, 40, 266–272. [Google Scholar] [CrossRef]
- Sangpring, Y.; Fukuoka, M.; Ratanasumawong, S. The effect of sodium chloride on microstructure, water migration, and texture of rice noodle. LWT 2015, 64, 1107–1113. [Google Scholar] [CrossRef]
- Li, Q.; Xie, Q.; Yu, S.; Gao, Q. Application of digital image analysis method to study the gelatinization process of starch/sodium chloride solution systems. Food Hydrocoll. 2014, 35, 392–402. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Karaman, S.; Dogan, M.; Yetim, H.; Kayacier, A. Characterization of O/W model system meat emulsions using shear creep and creep recovery tests based on mechanical simulation models and their correlation with texture profile analysis (TPA) parameters. J. Food Eng. 2012, 108, 327–336. [Google Scholar] [CrossRef]
- Osen, R.; Toelstede, S.; Wild, F.; Eisner, P.; Schweiggert-Weisz, U. High moisture extrusion cooking of pea protein isolates: Raw material characteristics, extruder responses, and texture properties. J. Food Eng. 2014, 127, 67–74. [Google Scholar] [CrossRef]
Sample | Corn Starch (g) | Methyl Cellulose (g) | NaCl (g) | Rice Flour (g) | Distilled Water (g) | Total Mass (g) |
---|---|---|---|---|---|---|
1 S0 | 17 | 0.5 | 0 | 40 | 42.5 | 100 |
S1 | 17 | 0.5 | 1 | 39 | 42.5 | 100 |
S2 | 17 | 0.5 | 2 | 38 | 42.5 | 100 |
S3 | 17 | 0.5 | 3 | 37 | 42.5 | 100 |
S4 | 17 | 0.5 | 4 | 36 | 42.5 | 100 |
NaCl (%) | Swelling Power (g/g) |
---|---|
0 | 1 24.82 ± 0.40 a2 |
1 | 12.75 ± 0.01 b |
2 | 8.90 ± 0.02 c |
3 | 6.81 ± 0.01 d |
4 | 5.53 ± 0.01 e |
NaCl (%) | Pasting Temperature (°C) | Viscosity (cP) | ||||
---|---|---|---|---|---|---|
Peak | Trough | Breakdown | Final | Setback | ||
0 | 1 88.8 ± 0.0 b2 | 781.0 ± 4.2 a | 598.0 ± 59.4 a | 183.0 ± 55.2 a | 586.5 ± 55.5 a | 14.0 ± 1.8 a |
1 | 79.5 ± 0.6 c | 644.5 ± 7.7 b | 477.0 ± 1.4 b | 167.5 ± 9.1 ab | 490.5 ± 0.7 a | 13.5 ± 2.1 a |
2 | 90.8 ± 0.4 b | 592.5 ± 6.3 c | 488.5 ± 9.1 b | 104.0 ± 2.8 abc | 506.0 ± 5.6 a | 17.5 ± 0.7 a |
3 | 91.7 ± 1.6 ab | 549.0 ± 0.0 d | 478.5 ± 0.7 b | 70.5 ± 0.7 bc | 500.0 ± 1.4 a | 21.5 ± 2.1 a |
4 | 94.8 ± 0.4 a | 533.5 ± 10.6 d | 479.5 ± 10.6 b | 54.0 ± 0.0 c | 501.0 ± 12.7 a | 21.5 ± 2.1 a |
NaCl (%) | Power Law Model | Casson Model | ||||
---|---|---|---|---|---|---|
Flow Behaviour Index, n | Consistency Index, K (Pa·sn) | Apparent Viscosity, ηa,500 (Pa·s) | R2 | Casson Yield Stress, σoc (Pa) | R2 | |
0 | 1 0.20 ± 0.00 c2 | 16.04 ± 0.74 a | 0.11 ± 0.01 b | 0.97 | 16.87 ± 0.65 a | 0.92 |
1 | 0.22 ± 0.00 bc | 13.49 ± 0.72 ab | 0.11 ± 0.01 b | 0.96 | 13.56 ± 0.42 b | 0.97 |
2 | 0.25 ± 0.01 bc | 12.35 ± 1.14 b | 0.11 ± 0.00 b | 0.95 | 12.16 ± 1.07 b | 0.97 |
3 | 0.27 ± 0.05 b | 10.86 ± 2.23 bc | 0.12 ± 0.01 b | 0.95 | 10.69 ± 2.22 bc | 0.98 |
4 | 0.34 ± 0.01 a | 8.84 ± 0.05 c | 0.14 ± 0.01 a | 0.98 | 8.83 ± 0.28 c | 0.97 |
NaCl (%) | Storage Modulus G′ (Pa) | Loss Modulus G″ (Pa) | Complex Viscosity η* (Pa·s) | Tan δ |
---|---|---|---|---|
0 | 1 19.95 ± 0.81 c2 | 3.66 ± 0.20 c | 3.22 ± 0.12 c | 0.18 ± 0.02 ab |
1 | 34.58 ± 6.89 b | 7.02 ± 1.26 b | 5.60 ± 1.11 b | 0.20 ± 0.00 a |
2 | 44.09 ± 2.57 b | 7.66 ± 0.49 b | 7.10 ± 0.39 b | 0.17 ± 0.02 ab |
3 | 44.49 ± 1.59 b | 8.31 ± 0.57 ab | 7.18 ± 0.26 b | 0.19 ± 0.01 ab |
4 | 63.50 ± 7.54 a | 10.59 ± 1.51 a | 10.22 ± 1.22 a | 0.17 ± 0.00 b |
NaCl (%) | Length (%) | Width (%) | Height (%) |
---|---|---|---|
0 | 1 100.0 ± 0.0 a2 | 100.0 ± 1.2 a | 97.8 ± 2.0 a |
1 | 100.0 ± 1.2 b | 100.0 ± 1.2 b | 98.9 ± 2.0 a |
2 | 100.0 ± 1.2 b | 100.0 ± 1.2 b | 98.9 ± 2.0 a |
3 | 100.0 ± 1.2 b | 100.0 ± 1.2 b | 98.9 ± 2.0 a |
4 | 100.0 ± 0.0 b | 100.0 ± 0.0 b | 100.0 ± 0.0 a |
NaCl (%) | Cooking Loss (%) | Transversal Shrinkage Ratio (%) | Longitudinal Shrinkage Ratio (%) |
---|---|---|---|
0 | 1 22.74 ± 0.84 a2 | 9.59 ± 0.76 a | 6.63 ± 0.36 a |
1 | 20.50 ± 0.41 b | 4.98 ± 0.43 b | 5.14 ± 0.52 a |
2 | 19.09 ± 0.71 c | 4.30 ± 0.47 b | 5.16 ± 0.28 a |
3 | 18.98 ± 0.33 c | 4.02 ± 0.94 b | 5.22 ± 0.30 a |
4 | 17.98 ± 0.33 d | 3.69 ± 0.74 b | 5.30 ± 0.08 a |
NaCl (%) | Hardness (N) | Adhesiveness (N·sec) | Cohesiveness (-) | Springiness (-) | Chewiness (-) | Cutting Force (N) |
---|---|---|---|---|---|---|
0 | 1 124.55 ± 6.42 b2 | −0.7 ± 0.98 a | 0.64 ± 0.01 b | 0.8. ± 0.05 a | 175.7 ± 58.4 b | 64.25 ± 4.96 c |
1 | 142.63 ± 22.07 b | 0.3 ± 0.92 a | 0.67 ± 0.01 b | 0.81 ± 0.01 a | 280.2 ± 61.5 b | 78.27 ± 11.82 c |
2 | 174.33 ± 5.36 b | −0.1 ± 1.23 a | 0.68 ± 0.01 b | 0.84 ± 0.01 a | 1114.8 ± 148.3 a | 102.15 ± 5.56 bc |
3 | 184.07 ± 11.67 b | −0.5 ± 1.07 a | 0.73 ± 0.01 a | 0.84 ± 0.01 a | 1150.8 ± 261.7 a | 111.67 ± 7.93 b |
4 | 220.57 ± 2.28 a | −0.5 ± 0.91 a | 0.71 ± 0.01 a | 0.85 ± 0.03 a | 1177.2 ± 111.9 a | 133.73 ± 8.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Chang, Y.H.; Lee, Y. Effects of NaCl on the Physical Properties of Cornstarch–Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System. Foods 2023, 12, 4390. https://doi.org/10.3390/foods12244390
Kim J, Chang YH, Lee Y. Effects of NaCl on the Physical Properties of Cornstarch–Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System. Foods. 2023; 12(24):4390. https://doi.org/10.3390/foods12244390
Chicago/Turabian StyleKim, Juhee, Yoon Hyuk Chang, and Youngseung Lee. 2023. "Effects of NaCl on the Physical Properties of Cornstarch–Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System" Foods 12, no. 24: 4390. https://doi.org/10.3390/foods12244390
APA StyleKim, J., Chang, Y. H., & Lee, Y. (2023). Effects of NaCl on the Physical Properties of Cornstarch–Methyl Cellulose Blend and on Its Gel Prepared with Rice Flour in a Model System. Foods, 12(24), 4390. https://doi.org/10.3390/foods12244390